弦振动地误差分析报告方案设计

合集下载

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

弦振动的研究实验报告

弦振动的研究实验报告

弦振动的研究实验报告实验目的:通过实验研究弦的振动特性,并分析弦振动时的动力学特点。

实验装置和材料:1. 弦:选用一根细长的弹性绳或细细的金属丝作为实验弦。

2. 振动源:使用一个固定在实验台上的振动源,可以通过电机或手动方式产生振动。

3. 能量传输装置:使用一个振动传输装置,将振动传输到实验弦上,如夹子、固定块等。

4. 振动探测器:使用一个合适的装置或传感器,用于测量弦的振动状态,如光电传感器、激光干涉仪等。

5. 数据采集设备:使用一个数据采集器,将振动数据进行记录和分析。

实验步骤:1. 将实验弦固定在实验台上,并将振动源固定在一端,确保弦能够自由振动。

2. 施加适量的拉力到弦上,以保证弦的紧绷度。

3. 使用振动源产生一定频率和振幅的振动,并将振动传输到实验弦上。

4. 启动数据采集设备记录弦的振动数据,包括振动频率、振幅和相位等。

5. 根据需要,可以改变振动源的频率和振幅,记录不同条件下的振动数据。

6. 对实验数据进行分析,绘制振动频率与振幅的关系图,并分析振动的谐波特性。

实验结果与分析:1. 实验数据表明,弦的振动频率与振幅呈正相关关系,即振动频率随着振幅的增加而增加。

2. 弦振动呈现出谐波特性,即振动状态可分解为基频振动和多个谐波振动的叠加。

3. 弦的振动模式与弦长度、拉力和材料特性有关,可以通过改变这些参数来调节振动频率和振幅。

结论:通过实验研究弦的振动特性,我们发现弦振动具有谐波特性,振动频率与振幅呈正相关关系。

弦的振动模式受到弦长度、拉力和材料特性的影响。

这些实验结果对于理解弦乐器的音色产生原理和振动系统的动力学特性具有重要意义。

弦振动实验报告

弦振动实验报告

弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。

2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。

三、波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2 (ft-x/ )Y2=Acos[2 (ft+x/λ)+ ]式中A为简谐波的振幅,f为频率, 为波长,X为弦线上质点的坐标位置。

两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2 (x/ )+ /2]Acos2 ft ①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位置x有关。

由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=02 (x/ )+ /2=(2k+1) / 2 ( k=0. 2. 3. … )可得波节的位置为:x=k /2 ②而相邻两波节之间的距离为:x k+1-x k =(k+1) /2-k / 2= / 2 ③又因为波腹处的质点振幅为最大,即|cos[2 (x/ )+ /2] | =12 (x/ )+ /2 =k ( k=0. 1. 2. 3. )可得波腹的位置为:x=(2k-1) /4 ④这样相邻的波腹间的距离也是半个波长。

因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。

在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:L=n / 2 ( n=1. 2. 3. … )由此可得沿弦线传播的横波波长为:=2L / n ⑤式中n为弦线上驻波的段数,即半波数。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

弦振动实验报告

弦振动实验报告

弦振动实验报告实验目的:通过实验,观察弦的振动规律,了解弦的振动特性,并掌握测量弦的振动频率和波长的方法。

实验仪器和材料:1.弦振动装置。

2.频率计。

3.定尺。

4.拉力计。

5.弦。

实验原理:当弦被扰动后,弦上的每一点都做简谐振动,形成驻波。

弦的振动频率和波长与弦的材料、长度、张力和线密度有关。

振动频率与波长的关系由弦的特性决定。

实验步骤:1.调整弦振动装置,使其保持稳定状态。

2.用定尺测量弦的长度L,并记录。

3.用拉力计测量弦的张力F,并记录。

4.用频率计测量弦的振动频率f,并记录。

5.根据实验数据计算弦的线密度μ。

6.根据实验数据计算弦的振动波长λ。

实验数据记录:弦的长度L=50cm。

弦的张力F=10N。

弦的振动频率f=100Hz。

实验结果分析:根据实验数据计算得到弦的线密度μ=0.02kg/m。

根据实验数据计算得到弦的振动波长λ=2m。

实验结论:通过本次实验,我们观察到了弦的振动规律,了解了弦的振动特性。

我们掌握了测量弦的振动频率和波长的方法,并通过实验数据计算得到了弦的线密度和振动波长。

实验结果表明,弦的振动频率和波长与弦的材料、长度、张力和线密度有密切关系。

这些结论对于我们进一步研究弦的振动特性具有重要的指导意义。

实验存在的问题和改进方案:在本次实验中,我们发现了一些问题,如实验装置的稳定性有待提高,实验数据的精确度有待提高等。

为了改进这些问题,我们可以采取一些措施,如加强实验装置的固定,提高测量仪器的精确度等。

总结:本次实验使我们更加深入地了解了弦的振动规律,掌握了测量弦的振动频率和波长的方法,提高了我们的实验操作能力和数据处理能力。

希望通过不断的实验实践,我们能够进一步加深对弦振动特性的理解,为相关领域的研究和应用奠定坚实的基础。

弦振动的研究 实验报告

弦振动的研究 实验报告
1.97
49.63
2.65
4.09
50.82
3.92
6.06
54.65
5.15
8.90
55.45
6.29
9.75
57.20
L=37.5cmsina=h/L 单位:cm
注:α 为电动音叉与水平面的夹角,h为音叉一端距水平面间的高度,λ为波长。
由实验数据知电动音叉与水平面之间的夹角越大则弦振动的波长越大
令α=x y=λ/2y=a-bx
有最小二乘法得
r= =0.95故α与λ/2成线性关系
b= =1.26故y=1.26x+44.32
指导教师意见:
指导教师:
年 月 日
说明:
1、研究现状:综述其他人对该实验项目的研究情况,取得了哪些成果。
向并不是沿水平方向传播的而是与水平面有一定的夹角)对波长有没有影响,如果有影响则
它们之间的关系是什么?
实验创新之处
不按照常规的实验思路,在实验时改变实验装置来探究音叉与水平面夹角α对波长λ是
否有影响及其波长λ与α间的关系
五、实验结果(包括实验数据、数据分析、实验结论等)
h
αλLeabharlann 20043.32
1.28
参考文献:
[1]苏州大学物理实验PPT]弦振动的研究
[2]上饶师范学院优秀本科毕业论文
二、实验需要的主要仪器设备和材料
尼龙细线、砝码、米尺、电动音叉、滑轮、分析天平、木块
三、实验的研究目的
探究音叉与水平面夹角α与波长λ的关系和产生这种结果的原因
四、实验的研究内容
如果音叉并不是平行放在水平面上,而是音叉与水平面有一定的夹角,(即波的传播方
2010—2011学年度上学期物理实验教学示范中心

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弦振动中误差的研究
实验目的:
(1)研究弦振动中砝码的重力与绳子拉力之间的关系,测量砝码重力在多大范围内是和绳子张力相等的;
(2)研究弦振动中频率的改变对绳子张力和密度的影响,算出它们的误差。

实验原理:
如图(1)实验时在①和⑥间接上弦线(细铜丝),使弦线绕过定滑轮⑩结上砝码盘并接通正弦信号源。

在磁场中,通有电流的弦线就会受到磁场力(称为安培力)的作用,若细铜丝上通有正弦交变电流时,则它在磁场中所受的与电流垂直的安培力,也随着正弦变化,移动两劈尖(铜块)即改变弦长,当固定弦长是半波长倍数时,弦线上便会形成驻波。

移动磁钢的位置,使弦振动调整到最佳状态(弦振动面与磁场方向完全垂直),使弦线形成明显的驻波。

此时我们认为磁
波。

到适合位置.弦线上的波就形成驻波。

这时,弦线上的波被分成几段形成波节和波腹。

驻波形成如图(2)所示。

设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。

向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成
驻波用粗实线表示。

由图可见,
这可从波
动方程推导出来。

下面用简谐波表达式对驻波进行定量描述。

设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:
Y1=Acos2 (ft-x/ )
Y2=Acos[2 (ft+x/λ)+ ]
式中A为简谐波的振幅,f为频率, 为波长,X为弦线上质点的坐标位置。

两波叠加后的合成波为驻波,其方程为:
Y1+Y2=2Acos[2 (x/ )+ /2]Acos2 ft ……………①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位置x 有关。

由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=0
2 (x/ )+ /2=(2k+1) / 2 ( k=0. 2. 3. …)
可得波节的位置为:
x=k /2 ……………②
而相邻两波节之间的距离为:
x k+1-x k =(k+1) /2-k / 2= / 2 ……………③又因为波腹处的质点振幅为最大,即|cos[2 (x/ )+ /2] | =1
2 (x/ )+ /2 =k ( k=0. 1. 2. 3. )
可得波腹的位置为:
x=(2k-1) /4 ……………④这样相邻的波腹间的距离也是半个波长。

因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。

在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:
L=n / 2 ( n=1. 2. 3. …)
由此可得沿弦线传播的横波波长为:
=2L / n ……………⑤
式中n为弦线上驻波的段数,即半波数。

根据波速、频率及波长的普遍关系式:V= f,将⑤式代入可得弦线上横波的传播速度:
V=2Lf/n ……………⑥另一方面,根据波动理论,弦线上横波的传播速度为:
V=(T/ρ)1/2 ……………⑦式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。

再由⑥⑦式可得
f =(T/ρ)1/2(n/2L )

2
2
2⎪⎭

⎝⎛=n l f F T ρ
由⑧式可知,当给定T 、ρ、L ,频率f 只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。

实验步骤
1、 连接实验装置。

2、
测量弦线线密度ρ。

测出弦线的质量及其长度。

根据l m =ρ,计算弦线
密度。

3、 测圆柱半径,用游标卡尺测量其直径,多次测量求平均值。

4、
观测频率和绳子张力T F 之间的关系
(1)取质量为50g 的砝码挂于弦线的另一端,然后调节频率,调节劈尖的位置,得到稳定的驻波。

分别测量波节N=1,N=2,N=3时,劈尖与圆柱底面圆心的距离。

当频率大于130Hz 时,取N=1,N=3,N=5. (2)改变频率f 从80Hz 到150Hz,砝码质量不变,重复上述步骤(1),并记录数据。

5、 观测砝码质量mg 与张力T F 之间的关系
调节频率为100Hz ,,砝码质量从10g 到200g 时调节劈尖的位置得到稳定的驻波,测量当N=1,N=2,N=3时,劈尖与圆柱底面圆心的距离。

注:当砝码质量为15g 时,取N=2,N=3,N=4. 6、 整理数据并处理
实验数据及处理
(一)
砝码质量对绳子张力和密度的影响:
1、ρ的测量
弦线
l cm 1=
质量g m 4.0=
ρ=l
m =0.433
-10
m kg ⨯
2、弦振动实验装置圆柱的半径
直径
如下表:表中M 为砝码的质量,N 为波节数目,l 为波节长度,λ为波长的平均值,ρ为绳子的密度,T F 为绳子拉力的平均值,
100Hz =ν 绳子密度2

νρF
=
绳子张力22λρν=F
注:仅当M=15g 时,波节数目为特殊情况。

其图像如下所示:(见下页)
(二)振动频率对绳子密度和张力的影响:
N mg G 49.08.910503
-=⨯⨯==
其图表如下图所示:
在实验过程中我们发现,
一方面,当固定振动的频率,改变砝码的质量。

若砝码的质量过小,几乎是15g左右时,基本上无法研究,实验现象不明显,振动特别不稳定。

但是,一旦砝码质量大于20g时,实验现象就明显了很多,而且绳子的张力与砝码的质量
误差基本保持在2.5%以下,尤其是50g到100g之间时,误差基本保持在1%左右,可以说是非常小的。

因此,我们在以后的实验过程中,只要砝码的质量大于40g往上,基本都是可取的。

另一方面,当固定砝码质量为50g时,我们通过改变频率来观测对绳子密度和拉力的影响。

实验发现,70Hz以前的频率是基本上不能测试的,绳子的振动非常不稳定。

因此,我们在实验过程中频率选在从80Hz到150Hz,由实验结论和实验图表可得:改变振动频率产生的实验误差是先减小到100Hz后又增大,因此在以后进行实验时,频率选在100Hz时,误差最小。

还有一个特殊现象,当频率过大,大于130Hz时,会出现一个特殊现象,当波节数目为偶数时,振动特别不稳定,劈尖到滑轮处也会出现微小的波节。

而且,本来出现的两个波节会慢慢的合成一个波节,合成后的波节长度几乎和原来两个波节的长度相等,且振动幅度特别大,但是当出现奇数波节时,则不会出现这种情况,实验现象也相对稳定。

这对实验带来了难度,因此,我们为了避免这种情况,减小实验误差,测量时,我们只选取奇数波节时的波节长度,这样,得出的结论就相当准确。

当然,由于实验室的实验仪器本身用于教学,不属于研究器材,因此,实验精度本身就不是很高,所以所测的实验数据也不是非常精确,导致实验出现误差,当然这个误差是无法避免的。

同时,在测量波节长度l时,用于人肉眼原因,测量的数据相对也会出现偏差。

实验心得
这次实验中,我们组成员分工明确,齐力配合,取得的成绩非常明显。

实验
过程中,由于实验数据的巨大性,我们走了不少弯路,经过小组成员讨论,查阅资料,然后以严谨的态度测量每一组实验数据,终于,功夫不负有心人。

我们终于得出了绳子拉力和砝码重力的关系,以及砝码的重力在什么情况下和绳子的张力近乎相等。

同时,也研究了圆柱震动频率和绳子的张力及密度之间的关系,实验结论效果相当明显。

通过本次实验,我们体验到团队合作的重要性和必要性。

没有队友的努力,根本不会有我们今天的成绩,当然,还有指导老师的指导,老师在我们都比较迷茫的时候给我们指了一条方向,实验才有了实质性的进展。

在此,衷心感谢老师。

小组组长:於佩
组员:刘祥王宝林
李佳杨懿
2012-5-10。

相关文档
最新文档