用样本的频率分布估计总体分布(一)(解析版)

合集下载

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

通过抽样,我们获得了100位居民某年的月平均用水量 (单位:t) ,如下表:
条形图
饼状图
频数分布直方图
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
小结
画频率分布直方图的骤:
一、求极差:即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、决定分点: 分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、列频率分布表
五、画出频率分布直方图(纵轴表示频率/组距)
作业: 请大家抽查我们年级同学每天数学作业的 用时,作出频率分布直方图,并对数据进 行分析,结合实际情况,向我们年级数学 备课组提出合理化建议。 要求:1、可以按班级小组进行合作调查 2、结果以电子文档形式呈现 3、下周三完成。谢谢
用样本的频曹付生
我国是世界上严重缺水的国家之一,城市缺 水问题较为突出,某市政府为了节约生活 用水,计划在本市试行居民生活用水定额 管理,即确定一个居民月用水量标准a,用 水量不超过a的部分按平价收费,超出a的 部分按议价收费。 (1)如果希望大部分居民的日常生活不受影 响,那么标准a定为多少比较合理呢 ? (2)你认为,为了较为合理地确定出这个标 准,需要做哪些工作?
4、 列频率分布表
100位居民月平均用水量的频数分布直方图
5、画频率分布直方图
频率/组距 0.50 0.40 0.30 0.20 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计教学目标:1 知识与能力目标:(1).了解样本的频率分布与总体分布的关系,能用样本的频率分布去估计相应的总体分布。

(2).在表示样本数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点。

(3).通过学生应用所学知识解决实际问题,进一步提高学生理论联系实际的能力。

2 情感目标:(1)渗透数形结合思想。

(2)结合教学内容培养学生学习数学的兴趣及“用数学”的意识,激励学生勇于自我创新。

(3)培养学生普遍联系、数学来源于实践又指导实践的辩证唯物主义观点及勇于探索的创新精神。

教学重点:通过实例体会分布的意义和作用,能做出样本的频率分布表、画频率分布直方图和频率折线图。

教学方法:以教师为主导,学生为主体,以能力发展为目标,强化学生的注意力及新旧知识的联系,通过教师讲授、学生尝试练习,调动学生的积极性,发挥学生的主体作用。

教学环节教学内容师生互动设计意图复习统计的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体。

前面我们学习了哪些抽样方法?问题:抽取样本后怎样用样本来估计总体呢?即用什么方法来处理得到的样本数据,来估计、推测总体的特征、特性?理论证明,可以用样本的频率分布估计总体的分布,用样本数字特征估计总体的数字特征。

本节我们学习用样本的频率分布估计总体的分布,教师提出问题,铺垫复习,学生思考、积极回答问题教师根据学生的回答、进一步提出问题,导入新课。

学生思考、讨论教学重难点新课前的复习即可加深对学过的知识的理解,又可为学习新知识埋下伏笔。

先设疑、激发学生的求知欲望、提高学生学习教学的兴趣让学生了解本节学生内容和学习的重难点,为学好本节做好知识和心理上的准备。

导入(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量,结果如下(单位:厘米)167 154 159 166 169 159 156 166162 158 159 156 166 160 164 160 157 156 157 161 158 158153 158 164 158 163 158 153157 162 162 159 154 165 166157 151 146 151 158 160 165158 163 163 162 161 154 165162 162 159 157 159 149 164 168 159 153我们希望了解身高在哪个小范围内的学生多,在那个小范围内的学生少?(2)为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:厘米)甲:12 13 14 15 10 16 13 11 15 11乙:11 16 17 14 13 19 6 8 1016问:那种小麦的10株苗高比较整齐?频率分布直方图如果样本容量较大,很难从一个个数字中直接看出样本所包含的信息。

221用样本的频率分布估计总体分布1

221用样本的频率分布估计总体分布1
(1)编制频率分布表;(2)绘制频率分布直方图;
(3)估计该片经济林中底部周长小于100cm的树木 约占多 少,周长不小于120cm的树木约占多少。
解: (1)从表中可以看出: 这组数据的最大值为135,最小值为80, 故极差为55, 可将其分为11组,组距为5。
从第1组[80,85)开始, 将各组的频数、频率和 频率/组距 填入表中
分组
频数
[80,85) [85,90) [90,95) [95,100) [100,105) [105,110) [110,115) [115,120) [120,125)
[125,130)
[130,135) 合计
频率
频数/组距
1
0.01 0.002
2
0.02 0.004
4
0.04 0.008
14
0.40 0.30 0.20 0.10
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
画一组数据的频率分布直方图,可以按以下的 步骤进行:
一、求极差,即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、登记频数,计算频率,列出频率分布表
三级品 13
0.43
次品
4
0.13
(2)此种产品为二级品或三级品的概率约为0.27+0.43=0.7.
2.有一个容量为50的样本,数据的分组及其 频数如下所示, 请将其制成频率直方图.
频率分布表如下:
分组 [25,30) [30,35) [35,40) [40,45)
[45,50) [50,55) [55,60]

2.2.1 用样本的频率分布估计总体分布(1)

2.2.1 用样本的频率分布估计总体分布(1)

0.020 0.053 0.060 0.073 0.067 0.033 0.027
频率分布直方图如下:
频率 组距 0.070 0.060 0.050
0.040
0.030 0.020 0.010
12.5 15.5
练习
1. 已知一组数据如下: 25 21 23 25 27 29 25 28 30 29 26 24 25 27 26 22 24 25 26 28 填写下面的频率分布表,绘出频率分布直方图. 组别 频数累计 频数 频率
率,你能用公式表示出样本容量、频数 和频率之间的关系吗?各组的频数和等 于几?各组的频率和呢?
(1) f i
ti n
(2)t1 t 2 ... t n n
(3) f 1 f 2 ... f n 1
小结
画频率分布直方图的步骤
1、求极差(即一组数据中最大值与最小值的差) 知道这组数据的变动范围4.3-0.2=4.1 2、决定组距与组数(将数据分组) 组距:指每个小组的两个端点的距离,组距 组数:将数据分组,当数据在100个以内时, 按数据多少常分5-12组。 组数= 极差 4.1 8.2 3、 将数据分组(8.2取整,分为9组)
例2 有一个容量为50的样本数据的分组的频数
如下: [12.5, 15.5) 3
[15.5, 18.5) [18.5, 21.5) 8 9
[24.5, 27.5) [27.5, 30.5)
10 5
[30.5, 33.5)
4
[21.5, 24.5) 11
(1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少?

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布

分 组 [0,0.5) [0,0.5) [0.5, [0.5,1) [1,1.5) [1,1.5) [1.5, [1.5,2) [2,2.5) [2,2.5) [2.5, [2.5,3) [3,3.5) [3,3.5) [3.5, [3.5,4) [4, [4,4.5] 合计
频数 4 正 8 正 正 正 15 正 正 正 正 22 正 正 正 正 正 25 正 正 14 正 一 6 4 2 100
1.9 0.3 0.5 0.6 0.8 0.7 0.9 0.5 0.8 0.6
1.6 0.4 3.8 4.1 4.3 2.0 2.3 2.4 2.4 2.2
思考1 上述100个数据中的最大值和最 思考1:上述100个数据中的最大值和最 100 小值分别是什么? 小值分别是什么?由此说明样本数据的 变化范围是什么? 变化范围是什么? 0.2~ 0.2~4.3 思考2:样本数据中的最大值和最小值 思考2 的差称为极差 如果将上述100 极差. 100个数据 的差称为极差.如果将上述100个数据 组距为0.5进行分组 进行分组, 按组距为0.5进行分组,那么这些数据 共分为多少组? 共分为多少组? 4.3-0.2) (4.3-0.2)÷0.5=8.2
上图称为频率分布直方图, 上图称为频率分布直方图,其中横轴 频率分布直方图 表示月均用水量,纵轴表示频率/组距. 表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高 度在数量上有何特点? 度在数量上有何特点?
思考2 思考2:频率分布直方图中各小长方形的 面积表示什么? 面积表示什么?各小长方形的面积之和 为多少? 为多少?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

用样本的频率分布估计总体分布 课件

用样本的频率分布估计总体分布     课件
频率 (3)在 xOy 坐标平面内画频率分布直方图时,x=样本数据,y=组距,
频率 这样每一组的频率可以用该组的组距为底、组距为高的小矩形的 面积来表示.其中,矩形的高=频组率距=组距×样1 本容量×频数;
(4)同样一组数据,如果组距不同,横轴、纵轴单位不同,得到的 频率分布直方图的形状也会不同; (5)同一个总体,由于抽样的随机性,如果随机抽取另外一个容量 为100的样本,所形成的样本频率分布直方图一般会与前一个样本 频率分布直方图有所不同,但它们都可以近似地看做总体的分布.
【探究1】 一个容量为n的样本,分成若干组,已知某组的频数 和频率分别为40,0.125,则n的值为________. 解析 由题意得4n0=0.125,解得 n=320.
答案 320
【探究2】 在画频率分布直方图时,某组的频数为10,样本容量
为50,总体容量为600,则该组小矩形的面积是______.
解析 该组小矩形的面积即是数据落在该组的频率:1500=15.
答案
1 5
【探究3】 从某小区抽取100户居民进行月用电量调查,发现其 用电量都在50至350度之间,频率分布直方图如图所示.直方图中 x的值为________.
解析 ∵(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50 =1,∴x=0.004 4. 答案 0.004 4
用样本的频率分布估计总体分布
知识点1 频率分布直方图 1.频率分布直方图的画法
最大值与最小值
不小于k的最小
左闭右开
分组 频数累计 频数
频率
合计
样本容量
1
频率/组距 各小长方形的面积
1
2.频率分布折线图与总体密度曲线

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布
2019/4/10
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本的频率分布估计总体分布(一)班级:____________ 姓名:__________________一、选择题1.下列说法中错误的是()①用样本的频率分布估计总体频率分布的过程中,样本容量越大,估计越精确;②一个容量为n的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n的值为240;③频率分布直方图中,小长方形的高等于该小组的频率;④将频率分布直方图中各小长方形上端的一个端点顺次连接起来,就可以得到频率分布折线图;⑤每一个总体都有一条总体密度曲线,它反映了总体在各个范围内取值的百分比.A.①③B.②③④C.②③④⑤D.①②③④⑤解析:选C.样本越多往往越接近于总体,所以①正确;②中n=40÷0.125=320;③中频率分布直方图中,小长方形的高等于该小组的频率÷组距;④中应将频率分布直方图中各小长方形上端的中点顺次连接起来得到频率分布折线图;⑤中有一些总体不存在总体密度曲线,如“掷硬币”这样的离散型总体(结果是固定的,只有正面和反面两种可能,且可能性相等),故②③④⑤错误.2.观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)g的频率为()A.0.1 B.0.2C.0.3 D.0.4解析:选C.由题图可得,新生儿体重在[2 700,3 000)g的频率为0.001×300=0.3,故选C.3.在样本的频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的14,已知样本容量是80,则该组的频数为()A.20 B.16C.30 D.35解析:选B.设该组的频数为x,则其他组的频数之和为4x,由样本容量是80,得x+4x=80,解得x =16,即该组的频数为16,故选B.4.某厂对一批产品进行抽样检测,如图是抽检产品净重(单位:克)的频率分布直方图,样本数据分组为[76,78),[78,80),…,[84,86].若这批产品有120个,估计其中净重大于或等于78克且小于84克的产品的个数是()A.12 B.18C.25 D.90解析:选D.净重大于或等于78克且小于84克的频率为(0.100+0.150+0.125)×2=0.75,所以在该范围内的产品个数为120×0.75=90.5.对于向量a,b,c和实数 ,下列命题中正确的是()A .若0a b ⋅=,则0a =或0b =B .若0a λ=,则0λ=或0a =C .若22a b =,则a b =或a b =-D .若a b a c ⋅=⋅,则b c =【答案】B【解析】对于A 中,若0a b ⋅=,则0a =或0b =或a b ⊥,所以不正确; 对于B 中,若0a λ=,则0λ=或0a =是正确的;对于C 中,若22a b =,则a b =,不能得到a b =或a b =-,所以不正确;对于D 中,若a b a c ⋅=⋅,则()0a b c -=,不一定得到b c =,可能是()a b c ⊥-,所以不正确,综上可知,故选B.6.已知是12,e e ,夹角为60︒的两个单位向量,则12a e e =+与122b e e =-的夹角是( ) A .60︒ B .120︒ C .30 D .90︒【答案】B【解析】22222121122||()2a a e e e e e e ==+=+⋅+022cos 603,||3a =+⨯=∴=22222121122||(2)44b b e e e e e e ==-=-⋅+ 054cos 603,||3b =-⨯==,1212()(2)a b e e e e ⋅=+⋅-2201122321cos602e e e e =-⋅-=--=-,设,a b 的夹角为1,cos 2||||a b a b θθ⋅==-,20,3πθπθ≤≤∴=. 故选:B,7.设a ,b ,c 为平面向量,2a b a b ==⋅=,若()()20c a c b ⋅--=,则c b ⋅的最大值是( )A B .52+ C .174D .94【答案】B【解析】∵2a b a b ==⋅=,若a 与b 的夹角为θ知1cos 2θ= ∴3πθ=, 令(2,0),(1,3)b OB a OA ====,设(,)c OC x y ==而c b ⋅= 2x ,故求它的最大值即是求x 的最大值故2(21,23)c a x y -=--,(2,)c b x y -=-,又()()20c a c b ⋅--=即(2)()c a c b -⊥- ∴(21)(2)(23)0x x y y --+=,即223(21)(2)0y x x -+--= 方程有解:38(21)(2)0x x ∆=---≥523523x -+≤≤∴c b ⋅的最大值为532故选:B8.在ABC ∆中,2BAC π∠=,2AB AC ==,P 为ABC 所在平面上任意一点,则()PA PB PC⋅+的最小值为( )A .1B .12-C .-1D .-2【答案】C【解析】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y ⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-. 故选:C .二、填空题9.某地政府调查了工薪阶层1 000人的月工资收入,并把调查结果画成如图所示的频率分布直方图,为了了解工薪阶层对月工资收入的满意程度,要用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则[40,45)(百元)月工资收入段应抽出________人.解析:月工资收入在[40,45)(百元)段的频率为1-(0.01+0.02+0.04+0.05×2)×5=0.15,则[40,45)(百元)月工资收入段的总人数为0.15×1 000=150,现用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则[40,45)(百元)月工资收入段应抽出150×1001 000=15(人).答案:1510.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析:底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.答案:24 11.为了解某校学生的视力情况,随机抽查了该校的100名学生,得到如图所示的频率分布直方图.由于不慎将部分数据丢失,但知道前4组的频数和为40,后6组的频数和为87.设最大频率为a ,视力在4.5到5.2之间的学生数为b ,则a =________,b =________.解析:由频率分布直方图知组距为0.1,由前4组频数之和为40,后6组频数之和为87,知第4组频数为40+87-100=27,即4.6到4.7之间的频数最大,为27,故最大频率a =0.27.视力在4.5到5.2之间的频率为1-0.03-0.01=0.96,故视力在4.5到5.2之间的学生数b =0.96×100=96.答案:0.27 9612.已知a b c ,,为单位向量,且满足370a b c λ++=,a 与b 的夹角为3π,则实数λ=___________.【答案】8λ=-或5λ=【解析】由370a b c λ++=,可得7(3)c a b λ=-+,则22224996b b c a a λλ=++⋅.由a b c ,,为单位向量,得2221a b c ===,则24996cos 3πλλ=++,即23400λλ+-=,解得8λ=-或5λ=.三、解答题13.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求直方图中x 的值;(2)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)x =[1-(0.002+0.009 5+0.011+0.012 5+0.005+0.002 5)×20]÷20=0.007 5. (2)由频率分布直方图知,月平均用电量为[220,240),[240,260),[260,280),[280,300]的共有[(0.012 5+0.007 5+0.005+0.002 5)×20]×100=55(户),其中在[220,240)中的有0.012 5×20×100=25(户),因此,在所抽取的11户居民中,月平均用电量在[220,240)的用户中应抽取2555×11=5(户).14.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos 2sin )2CC ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值 【答案】(1)60C =︒;(23. 【解析】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=-()2222314442a b c c sinC cRcR R -=====.。

相关文档
最新文档