土壤中砷汞的测定
土壤中汞砷硒铋锑的测定方法

土壤中汞砷硒鉍锑的测定方法1. 汞的测定方法汞是一种常见的有毒重金属,在土壤中的浓度通常很低,但仍然需要进行精确测定。
常用的汞的测定方法包括原子荧光光谱法、原子吸收光谱法和化学分析法。
原子荧光光谱法是一种非常灵敏的测定方法,能够快速准确地测定土壤中的汞含量。
原子吸收光谱法也是一种常用的测定方法,它可以测定各种类型的土壤样品中的汞含量。
化学分析法通常需要将土壤样品进行预处理,然后使用化学方法来测定汞的含量。
2. 砷的测定方法砷是一种常见的有毒重金属,对土壤和周围环境有潜在的危害。
砷的测定方法包括火焰原子吸收光谱法、电化学方法和荧光光谱法。
火焰原子吸收光谱法是一种最常用的测定方法,它可以快速准确地测定土壤中的砷含量。
电化学方法包括极谱法和电感耦合等离子体发射光谱法,它们通常需要一些设备和技术来进行测定。
荧光光谱法也是一种常用的测定方法,它对砷的敏感度很高,能够对土壤中的砷含量进行准确的测定。
3. 硒的测定方法硒是一种关键的微量元素,对土壤和作物的生长发育至关重要。
硒的测定方法包括原子荧光光谱法、化学分析法和光谱法。
原子荧光光谱法是一种常用的测定方法,它可以快速准确地测定土壤中的硒含量。
化学分析法往往需要对土壤样品进行预处理,然后使用化学方法来测定硒的含量。
光谱法包括紫外-可见吸收光谱法和荧光光谱法,它们对硒的敏感度很高,能够对土壤中的硒含量进行准确的测定。
4. 鉍和锑的测定方法鉍和锑是一些常见的稀有金属元素,它们在土壤中的含量通常很低。
常用的鉍和锑的测定方法包括原子荧光光谱法、原子吸收光谱法和荧光光谱法。
这些方法都需要对土壤样品进行预处理,然后使用相应的仪器和技术来进行测定。
这些方法对鉍和锑的敏感度很高,能够准确地测定土壤中的鉍和锑的含量。
在进行土壤中汞、砷、硒、鉍和锑的测定时,需要注意以下几点:首先,需要对土壤样品进行适当的预处理,以消除干扰物质对测定结果的影响。
其次,需要选择适当的测定方法和仪器,以确保能够准确地测定土壤中的汞、砷、硒、鉍和锑的含量。
浅析原子荧光法测定土壤中的砷和汞元素含量

浅析原子荧光法测定土壤中的砷和汞元素含量【摘要】本文浅析了原子荧光法在测定土壤中砷和汞元素含量的方法和应用。
引言部分介绍了研究背景、研究目的和研究意义。
正文部分分别解释了原子荧光法的原理、土壤样品的制备方法、砷元素含量和汞元素含量的测定方法,并进行了结果分析。
结论部分总结了砷和汞元素在土壤中的含量水平,探讨了原子荧光法在土壤元素分析中的应用前景,并提出了未来研究展望。
本研究对土壤砷和汞元素含量的准确测定和环境保护具有重要意义,为相关研究提供了参考和借鉴。
【关键词】关键词:原子荧光法、土壤、砷、汞、元素含量、制备、测定方法、结果分析、含量水平、应用前景、研究展望1. 引言1.1 研究背景土壤是地球表面重要的自然资源之一,土壤中的元素含量对生态系统的稳定和人类健康都具有重要影响。
砷和汞是常见的土壤中的有害元素,由于它们的毒性和环境稳定性,长期受到人们的关注。
砷通常存在于土壤中,可以通过工业排放、农药使用等方式进入土壤中,对土壤生态系统和人类健康造成危害。
而汞也是一种常见的有害元素,其存在形式复杂,主要来源包括地质固有、人为排放等。
土壤中的砷和汞元素含量的测定对于环境监测、土壤污染治理以及农产品质量安全具有重要意义。
1.2 研究目的研究目的是为了通过原子荧光法准确测定土壤中砷和汞元素的含量,了解土壤中这两种元素的污染水平,为环境保护和土壤修复提供科学依据。
具体而言,研究目的包括:1. 探究砷和汞元素在不同类型土壤中的分布规律,揭示其来源及迁移转化过程。
2. 建立准确、快速、可靠的原子荧光法测定土壤中砷和汞元素含量的方法。
3. 比较不同土壤样品制备方法对测定结果的影响,提高数据准确性和可靠性。
4. 分析不同区域土壤中砷和汞元素含量的差异,为土壤环境保护和管理提供科学依据。
5. 评估原子荧光法在土壤元素分析中的应用效果,探讨其在实际工作中的可行性和优势。
6. 阐明砷和汞元素对土壤生态系统和人类健康的潜在风险,提出相关的防治措施和建议。
土壤质量总汞总砷总铅的测定原子荧光法

土壤质量总汞总砷总铅的测定原子荧光法土壤质量是影响农作物生长和环境保护的重要指标之一。
土壤中重金属元素的含量是评价土壤质量的关键因素之一。
其中,总汞(Total mercury, THg)、总砷(Total arsenic, TAs)和总铅(Total lead, TPb)是对土壤环境质量进行评估的重要指标。
为了测定土壤中这些重金属元素的含量,常采用原子荧光法进行分析。
原子荧光法是一种基于原子吸收、发射或荧光原理的分析方法,适用于各种样品中重金属元素的测定。
这种方法具有灵敏度高、选择性强、操作简便和多元素同时分析的优点,因此广泛应用于土壤、水体、植物等环境样品的分析。
在土壤中,总汞、总砷和总铅的测定需要经过样品的前处理、原子化和检测等步骤。
首先,样品的前处理对土壤样品进行干燥、研磨、筛选等处理,以去除杂质,提高分析的准确性和灵敏度。
土壤样品通常通过干燥箱或真空烘箱进行干燥,然后使用球磨机等设备对土壤进行研磨,最后通过不同孔径的筛网进行筛选,得到符合要求的土壤粉末样品。
接下来,将土壤样品中的重金属元素原子化。
常用的原子化方法有火焰原子吸收法(Flame Atomic Absorption Spectrophotometry, FAAS)、电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometry, ICP-MS)等。
其中,ICP-MS方法具有高灵敏度、高选择性和多元素同时测定的优点,被广泛应用于土壤重金属元素的分析。
最后,通过原子荧光光谱仪对土壤样品中的重金属元素进行检测。
原子荧光光谱仪是一种专用仪器,通过激发样品中的重金属元素原子,使其发射荧光信号,然后通过对荧光信号的测量和分析,确定重金属元素的含量。
原子荧光光谱仪具有高分辨率、高稳定性和高精确度的特点,能够准确测定样品中微量重金属元素的含量。
总的来说,土壤质量中总汞、总砷和总铅的测定主要采用原子荧光法进行分析。
土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解_原子荧光法

土壤和沉积物汞、砷、硒、铋、锑的测定微波消解_原子荧光法土壤和沉积物中的汞、砷、硒、铋和锑等重金属元素是环境中的常见污染物,对人类健康和生态环境造成了严重威胁。
因此,准确测定这些元素的含量是环境保护和食品安全监测的重要任务之一。
本文将使用微波消解和原子荧光法来测定土壤和沉积物中的这些元素的含量,并详细介绍每个步骤的操作原理和过程。
一、微波消解原理和步骤:微波消解是一种将样品中的有机和无机物质溶解为可测量形式的高效技术。
其原理是利用微波辐射对样品中的物质进行加热,在高温和高压环境中,将样品中的有机和无机物质转化为可溶性离子或配合物。
1. 样品制备:将待测土壤或沉积物样品称取一定重量,然后经过粉碎和混匀处理。
2. 加入酸溶液:将样品转移到微量容器中,添加适量的酸溶液(通常为硝酸和盐酸的混合溶液),使样品达到分解和溶解的条件。
3. 微波消解:将装有样品和酸溶液的微量容器放入微波消解仪内,设定合适的温度和压力,并加热一定时间,以实现样品的消解过程。
4. 冷却和转移:待样品冷却后,将溶液转移到锥形瓶中,然后向溶液中加入适量的去离子水,使溶液体积适宜进行原子荧光测定。
二、原子荧光法原理和操作步骤:原子荧光法是一种常用的快速、准确测定元素含量的分析方法。
它基于原子在能量激发下会发射特定波长的荧光光线的原理,通过测量样品中元素特征波长的荧光强度,来确定元素的含量。
1. 仪器准备:打开原子荧光光谱测量仪,进行预热和调节工作。
2. 校正和标定:选择合适的标准样品,通过逐一加入不同浓度的标准溶液,建立元素浓度与荧光信号强度之间的标定曲线。
3. 测量样品:将经过微波消解和稀释的样品放入样品槽中,通过仪器的自动吸取功能,将样品引入光谱测量仪中,进行测量。
同时,还需要测量一定数量的空白样品和质控样品,以确保测量结果的准确性和可靠性。
4. 数据处理:根据测量结果,使用相应的软件对荧光信号强度进行处理,通过标定曲线得出样品中元素的含量。
农业土壤中砷和汞测定

农业土壤中砷和汞测定随着现代工农业的发展,农业土壤大部分受到砷汞等重金属元素的污染。
土壤中砷和汞的污染途径是多方面的,如工业生产中有色金属冶炼排放的烟雾、含砷农药的使用、冶炼过程中使用汞的企业排放的废气等,都会对土壤造成重金属污染,重金属不但造成土壤的污染,而且使得农作物体内含量过高。
本文主要探讨农业土壤中砷和汞的测试方法。
标签:重金属;砷汞;测试1、土壤重金属砷汞的概述一般情况下,比重>5的金属称为重金属,土壤污染中的重金属主要指汞、镉、铅、铬等金属以及砷等具有显著生物毒性的类金属,同时也指铜、钴、锌、镍、锡等具有一定毒性的重金属。
重金属对土壤的污染短期内很难恢复,土壤中的重金属可能会通过相关食物链进入农产品,影响到农产品的质量安全,因此可能会严重危及到人类健康、生存和发展,因而对土壤中主要重金属的含量进行检测是十分必要的。
2、土壤重金属砷和汞的常规测试方法2.1 原子吸收光谱法原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。
其基本原理是从空心阴极灯或光源中发射出一束特定波长的入射光,通过原子化器中待测元素的原子蒸汽时,部分被吸收,透过的部分经分光系统和检测系统即可测得该特征谱线被吸收的程度即吸光度,根据吸光度与该元素的原子浓度成线性关系,即可求出待测物的含量。
原子吸收光谱法应用于土壤重金属检测中的优点是:选择性强、灵敏度高、分析范围广、抗干扰能力强、精密度高。
其不足之处有多元素同时测定有困难,对非金属及难熔元素的测定尚有困难,对复杂样品分析干扰也较严重,石墨炉原子吸收分析的重现性较差。
2.2 原子发射光谱法原子发射光谱法与原子吸收光谱法恰好相反,某元素原子的价电子受到激发跃迁到激发态,然后从激发态回到较低基态时,会以辐射的方式释放出其激发能产生的光谱,利用各元素原子的发射光谱来分析物质的组成成分,从而测定该元素含量。
浅析原子荧光法测定土壤中的砷和汞元素含量

浅析原子荧光法测定土壤中的砷和汞元素含量原子荧光法是一种常用的分析技术,可以准确测定土壤中砷和汞元素的含量。
下面对原子荧光法测定土壤中砷和汞元素含量进行浅析:原子荧光法是一种非破坏性分析方法,能够直接测定土壤中的砷和汞元素含量,不需要对样品进行任何预处理。
这与传统的溶解测定方法相比具有明显的优势,可以避免样品溶解过程中可能造成的元素丢失和污染等问题。
原子荧光法通过激发样品中的原子使其发生光谱发射,通过测定发射光谱的强度来确定元素的含量。
在测定土壤中的砷和汞元素含量时,通常采用原子荧光光谱仪进行测定。
该仪器具有高灵敏度、高分辨率和高准确性的特点,能够准确测定土壤中低浓度的砷和汞元素。
原子荧光法在测定土壤中的砷和汞元素含量时,需要进行样品的预处理和仪器的校准。
在样品预处理过程中,需要通过适当的方法将土壤样品中的有机质、杂质和团聚物去除,以避免对测定结果的影响。
在仪器校准过程中,需要使用标准物质进行校准,以确保测定结果的准确性和可靠性。
原子荧光法测定土壤中砷和汞元素含量的结果可以用于评估土壤的污染程度和环境风险。
砷和汞是常见的土壤重金属污染物,其高浓度对环境和人体健康具有较大的危害。
通过准确测定土壤中砷和汞元素含量,可以为土壤的环境修复和污染防治提供科学依据。
原子荧光法是一种准确测定土壤中砷和汞元素含量的有效方法。
它具有非破坏性、高灵敏度和高准确性的特点,可以为土壤污染研究和环境管理提供可靠的数据支持。
但是在实际应用过程中,还需考虑样品的预处理和仪器的校准等因素,以提高测定结果的准确性和可靠性。
土壤、底泥、沉积物和固体废物中总砷、总汞的测定(标准操作规程作业指导书) (2)

1. 适用范围:土壤、底泥、沉积物和固体废物中总砷、总汞的测定。
2. 测试原理:样品中的砷经加热消解后,在酸性条件下加入的硫脲使五价砷还原为三价砷,再加入硼氢化钾将其还原为砷化氢,由氩气导入石英原子化器进行原子化分解为原子态砷,在特制空心阴极灯的发射光激发下产生原子荧光,产生的荧光强度与试样中被测元素含量成正比,与标准系列比较,求得样品中砷的含量。
采用硝酸-盐酸混合试剂在沸水浴中,样品中的汞经加热消解后,在酸性条件下再用硼氢化钾或硼氢化钠将其还原为原子态汞,由氩气导入石英原子化器进行原子化分解,在特制空心阴极灯的发射光激发下产生原子荧光,产生的荧光强度与试样中被测元素含量成正比,与标准系列比较,求得样品中汞的含量。
3.仪器设备3.1具塞比色管:50 mL。
3.2 移液枪:符合《JJG 646-2006 移液器检定规程》计量性能要求;3.3 原子荧光光度计。
3.4 水浴恒温振荡器。
3.5 分析天平:0.0001 g、0.01g。
3.6 旋涡混合器。
3.6一般实验室常用仪器和设备,玻璃容器需符合国家A级标准。
4.试剂除非另有说明,分析时均用符合国家标准的分析纯试剂,实验用水为当天新制备的去离子水或等同纯度的水。
4.1一级水,文中所说水均指一级水。
4.2 硝酸:ρ(HNO3)=1.42 g/mL,优级纯。
4.3 盐酸:ρ(HNO3)=1.19 g/mL,优级纯。
4.4 (1+1)王水:先加入3份盐酸,再加入4份水,最后加入1份硝酸,混匀,此溶液用时现配。
4.5 氢氧化钾(KOH)或氢氧化钠(NaOH):优级纯。
4.6 硼氢化钾(KBH4):优级纯。
4.7 还原剂4.7.1 普析PF3-2:0.5%的氢氧化钾(KOH)+1.5%硼氢化钾(KBH4);4.7.2 海光AFS-230E4.7.2.1 总砷还原剂浓度:0.5%的氢氧化钾(KOH)+2.0%硼氢化钾(KBH4);4.7.2.2 总汞还原剂浓度:0.5%的氢氧化钾(KOH)+1.0%硼氢化钾(KBH4);4.7.3 配制1L的还原剂,先称取5.0g氢氧化钾,用少量的水溶解,称取适量(10.0g,15.0g,20.0g)硼氢化钾,加入氢氧化钾溶液中,溶解后用水稀释至1000ml,此溶液现用现配。
王水消解-原子荧光法同时测定土壤中砷汞

CN53-1205/X ISSN1673-9655
王水消解 -原子荧光法同时测定土壤中砷汞
刘景龙,罗守娟 (铜陵市环境监中的砷和汞,消解液作为汞的测试液,消解液加盐酸溶液、硫脲 -抗 坏血酸溶液后作为砷的测试液。通过实验,计算出砷、汞方法检出限分别为 0006mg/kg和 0003mg/kg, 砷和汞的相对标准偏差范围分别为 12% ~17%和 42% ~49%,表明该方法具有较好的准确性和稳定 性;同时通过加标实验,砷和汞的加标回收率均在 80% ~120%,进一步确认了该方法准确可靠。
取 5mL硫脲抗坏血酸混合溶液,用 10%盐酸
http: //hjkxdkyiesorgcn
王水消解 -原子荧光法同时测定土壤中砷汞 刘景龙
溶液定容至 50mL比色管中,以测定校准曲线时相 同的测试条件,对砷空白样品进行 11次连续测定。 用去离子水代替样品,加 1mL的王水溶液 (1+1), 定容至 10mL比色管中,以测定校准曲线时相同的 测试条件,对汞空白样品进行 11次连续测定。 134 标准样品和实样的测定以及加标实验
砷测试液:吸取 5mL消解试液于 10mL色管 中,加 2mL10%的盐酸、1mL硫脲 -抗坏血酸溶 液,用水稀释至刻度,摇匀待测。
汞测试液:直接吸取 5mL消解试液于比色管 中,待测。 132 校准曲线的绘制
采用 50%的盐酸溶液作为载流,硼氢化钾溶 液 (15%硼氢化钾 +05% 氢氧化钠) 作为还原 剂,砷标 准 系 列 浓 度 为:000μg/L,400μg/L, 800μg/L,120μg/L,160μg/L,200μg/L; 汞 标 准 系 列 浓 度 为: 00 μg/L, 02 μg/L, 04μg/L,06μg/L,08μg/L和 10μg/L:上机 测试后,分别得到汞和砷的标准曲线方程。 133 空白样品的测定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤中总砷/总汞的测定
1主要仪器
AFS-9700 9700-214561型原子荧光光度计
2测定
2.1分析条件
光电倍增管负高压290V
空心阴极灯电流砷60mA 汞25mA
原子化高度8mm
载气(高纯氩)400mL/min;屏蔽气800mL/min
2.2样品消解:
称取经风干,研磨并过筛(100目)的土壤样品0.5g于50mL比色管中,加少量水润湿样品,加(HNO3:HCl=1:3)王水10mL,加塞摇匀过夜,于沸水中消解4个小时,冷却后加入2.5mL盐酸,10mL5%硫脲+5%抗坏血酸溶液,定容待测。
2.3校准曲线
砷标准曲线:分别准确吸取砷标准工作溶液(1.00mg/L)0.00、0.50、1.00、2.00、3.00、4.00、5.00mL置于100mL容量瓶中,分别加入5mL盐酸,10mL5%硫脲+5%抗坏血酸溶液,定容,此时得砷含量分别为:0.00、5.00、10.0、20.0、30.0、40.0、50.0ng/mL的标准溶液系列。
汞标准曲线:分别准确吸取汞标准工作溶液(20ng/mL)【标100mg/L=100ng/L,稀释1-100,10-500】0.00、0.50、1.00、2.00、3.00、5.00、10.00mL置于50mL容量瓶中,用5%盐酸定容,此时得汞含量分别为:0.00、0.20、0.40、0.80、1.20、2.00、4.00ng/mL的标准溶液系列。
2.4样品分析
将仪器调节至工作条件,在还原剂(2%硼氢化钾+0.5%氢氧化钾)和载液(5%盐酸)的带动下,测定标准系列和空白及试样。
3结果计算
含量(mg/kg)=c×V×0.01×n/m
c----砷/汞的浓度,ng/ml;V----样品消解后定容体积,mL
n----稀释倍数 m ---样品取样量,g;。