结构力学第五版 李廉锟 结构位移计算1图文
合集下载
结构力学(李廉锟第五版)(课堂PPT)

C
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
力法李廉锟结构力学中南大学PPT课件

§7-4 力法的典型方程
作剪力图的原则是, 截取每一杆为隔离体,由平衡条件便可求出剪力。
杆AC:
杆CB:
2M/5
C FSCA
3 M / 5 FS CB
C
2 M/5 C
FS BC
B
B
3M/5
A FSAC
M/ 5
M
A M/5
l/2
C
B
6M /5l
FS
A
l/ 2
第36页/共206页
l
3M/ 5l
l
§7-4 力法的典型方程
3)框格法
一个封闭无铰框格
n3
m个封闭
无铰框格
n 3 5 15
第16页/共206页
§7-2 超静定次数的确定
若有铰
h — 单铰数,则
n 3m h
注意:
n 359 6
多少个封闭无铰框格?
第17页/共206页
§7-2 超静定次数的确定 三、计算示例
n6
拆除多余联系变成的静 定结构形式:
第18页/共206页
(6)去掉一个连接n个杆件的刚结点,等于拆掉3(n-1)个约束。
第13页/共206页
§7-2 超静定次数的确定
(7)只能拆掉原结构的多于约束,不能拆掉必要约束。 (8)只能在原结构中减少约束,不能增加新的约束。
注意:同一超静定结构可有不同的解除多余约束的方式,但解除约束的 个数是相同的, 解除约束后的体系必须是几何不变的。
(a)
第30页/共206页
§7-4 力法的典型方程
将
,
,
代入(b)式, 得两次超静定的力法基本方程
(b) (c)
第31页/共206页
结构力学第五版 李廉锟 第七章 力法(7-6---7-13)

A
EI
(a)
B
得到力法方程: 1 (δ11 ) X 1 Δ1p 0 k 由图乘得到 4 l3 ql 11 , Δ1p 3EI 8 EI
11 X 1 Δ1p 0
(3) 计算系数及自由项。 计算FN1和FNP。
F C
0
0
X1 =1
D 0
C 1
D
C
-0.442 F
D
0.558F
F
A
-
1
2F
F NP
B
A
FN1
25 6 . 0
A
F
-0
.78 9F
B
B
1 Fl Δ1p F 1 l 2 F ( 2 ) 2l 1 2 2 EA EA 2 FN 1 l 1 2 2 l 11 1 l 3 2 2l 2 3 4 2 EA EA EA
EIEI 2 2 BA
l
A
l /2 l /2
B
A
B
基本体系
解: (1)原结构是三次超静定。 力法基本方程为: 11 X 1 12 X 2 13 X 3 Δ1p 0 21 X 1 22 X 2 23 X 3 Δ2 p 0 31 X 1 32 X 2 33 X 3 Δ3p 0
C F
C P
D
D
F P
C F
Mp
D F a
Fa
MP AB B A Pa Fa Pa
Fa
A
Fa
B
(g)
(g)
(h)
例 7-7 试用力法计算图示单跨梁。梁的 B 支座 为弹簧支承,弹簧的刚度系数为k (当B点产生单位位 移弹簧所产生的反力 )。 q q
结构力学李廉锟版-矩阵位移法 (1)

e i e e j
(v je vie )
第二节 单元刚度矩阵
将上述(a)和(b)两式合在一起,写成矩阵形式,有
Fxie Fe yi M e i Fe xj Fe yj M e j
平面刚架单元的杆力列向量为
{F e } FNi FSi Mi FNj FSj
Mj
T
(10-1)
平面刚架单元的杆端位移列向量为
{δe } (ui vi i u j v j j )T
(10-2)
注意:杆端力与杆端位移必定是一一对应的,即有 几个杆端位移分量就有几个杆端力分量。
第一节 概述
u j 1 v j 1 j 1
EA l 0 0 EA l 0 0 12 EI 6 EI 3 l l2 6 EI 2 EI 2 l l 0 0 12 EI 6 EI 2 l3 l 6 EI 4 EI 2 l l 66 0 0
e xi
( a)
第二节 单元刚度矩阵
杆端横向位移△ij正负 号规定:使杆的j 端绕 i 端 作顺时针转时为正值。
Δij (v je vie )
由两端固定等截面 直杆的转角位移方程有
6 EI e 4 EI e 6 EI e 2 EI e M 4i i 2i 6i 2 vi i 2 v j j l l l l l e e (v j vi ) 6 EI e 2 EI e 6 EI e 4 EI e e e e M j 2i i 4i j 6i 2 vi i 2 v j j l l l l l e 12 EI 6 EI 12 EI 6 EI F yi 3 vie 2 i e 3 v je 2 je l l l l e 12 EI e 6 EI e 12 EI e 6 EI e F yj 3 vi 2 i 3 v j 2 j ( b) l l l l
(v je vie )
第二节 单元刚度矩阵
将上述(a)和(b)两式合在一起,写成矩阵形式,有
Fxie Fe yi M e i Fe xj Fe yj M e j
平面刚架单元的杆力列向量为
{F e } FNi FSi Mi FNj FSj
Mj
T
(10-1)
平面刚架单元的杆端位移列向量为
{δe } (ui vi i u j v j j )T
(10-2)
注意:杆端力与杆端位移必定是一一对应的,即有 几个杆端位移分量就有几个杆端力分量。
第一节 概述
u j 1 v j 1 j 1
EA l 0 0 EA l 0 0 12 EI 6 EI 3 l l2 6 EI 2 EI 2 l l 0 0 12 EI 6 EI 2 l3 l 6 EI 4 EI 2 l l 66 0 0
e xi
( a)
第二节 单元刚度矩阵
杆端横向位移△ij正负 号规定:使杆的j 端绕 i 端 作顺时针转时为正值。
Δij (v je vie )
由两端固定等截面 直杆的转角位移方程有
6 EI e 4 EI e 6 EI e 2 EI e M 4i i 2i 6i 2 vi i 2 v j j l l l l l e e (v j vi ) 6 EI e 2 EI e 6 EI e 4 EI e e e e M j 2i i 4i j 6i 2 vi i 2 v j j l l l l l e 12 EI 6 EI 12 EI 6 EI F yi 3 vie 2 i e 3 v je 2 je l l l l e 12 EI e 6 EI e 12 EI e 6 EI e F yj 3 vi 2 i 3 v j 2 j ( b) l l l l
结构力学第五版第十章矩阵位移法ppt课件

k12
p3 k31 k32 k33 3
k112
简记为 P k---结构刚度方程
k21 k31
k 211 =1 k22
1
k
1 22
1
k32
2
k
2 21
k --结构刚度矩阵(总刚)
k11 k111 k21 k211
k31 0
k13 k121
k23 k33
=1
3
k12 k112 k22 k212 k121 k32 k221
1 2 3
6 3 P3
3 (P3 01 4 2 ) /(8 N ) 3 0
六.非结点荷载
(1).等效结点荷载
PE
PPEE12
PE3
PE1
PE 2
PE 3
---结构等效结点荷载
“等效”是指等效结点荷载引起的结点 位移与非结点荷载引起的结点位移相同
(2).等效结点荷载的计算
1
4
6/ 1.5
8
1.5 1 1
3
2
2
EI1 6 EI 2 24
4m 4m 12m
1
2
1
2
EI1 6
8m
34
3
2
3
1
2
k 2
4
24 4
/12
4 1 2 8 2 3
34
12
k
3
3 1.5
1.5 1 3
3
2
4
3 1.5 0 0
k 1.5 11
4
0
0 4 11 1.5
0
0
1.5
1 2
Fq
2
ql 2 /12 ql2 /12
结构力学(第五版)第六章 结构位移计算

相对位移 △CD= △C+ △D
3. 计算位移的目的
(1)校核结构的刚度。 (2)结构施工的需要。 (3)为分析超静定结构打 基础。
△ 起拱高度
除荷载外,还有一些因素如温度变化、支座移动、 材料收缩、制造误差等,也会使结构产生位移。 结构力学中计算位移的一般方法是以虚功原理为 基础的。本章先介绍变形体系的虚功原理,然后讨论 静定结构的位移计算。 返4回
B
变力 W= 1 M· ϕ 2
(d )
返6回
P
(2)实功与虚功 实功: 力本身引起的位移上所作的功。 例如: W=
A 力在其它 虚功: 因素引起的位移上所作 的功。力与位移是彼此无关的量,分别属于同一体系 的两种彼此无关的状态。
△2
2
A
P1
△1
1
B P2 B
例如:
W12=P1·△2
返7回
2. 变形体的虚功原理:
A RA
P
M
q B dS
q
RB N+dN Q+dQ
Q N 力状态 A
ds B dS
dWi=Ndu+QγdS+Mdϕ Wi=
(6—2)
整个结构内力的变形虚功为
虚功方程为
W=
(6—3)
dS du
dϕ
γ γ
dS
位移状态
dS
9
返dx γ回
§6—3 位移计算的一般公式
k 1. 位移计算的一般公式 t1 K △K t2 c3 K ds 设平面杆系结构由 ds k R 3 K′ 于荷载、温度变化及支 k P1 座移动等因素引起位移 du、dϕ、γdS N MQ 、、 如图示。 R 1 c2 求任一指定截面K K c1 2 沿任一指定方向 k—k 实际状态-位移状态 R 虚拟状态-力状态 上的位移△K 。
结构力学(位移计算课件)

解:近似采用直杆的位移计算公式,只考虑弯 矩影响.实际状态中的截面弯矩为
M P = FR sin θ
虚拟状态如图b,截面弯矩为
M = 1 ( R R cos θ ) = R (1 cos θ )
代入位移计算公式,可得
虚拟状态
MM P ds (1 cos α ) 2 FR 3 = (→) ΔBx = ∑ ∫ EI 2 EI 20
2
A′
§6—1 概 1. 变形和位移
述
在荷载或其它因素作用下,结构将产生 变形和位移. 变形:是指结构形状的改变. 位移:是指结构各处位置的移动.
P A
△A
y
△A
□
△Ax
A′
2. 位移的分类
线位移: AA ' (△A) △Ay △Ax 角位移: A 绝对位移 相对位移:
指两点或两截面之间的位置改变量
§6-4 静定结构在荷载作用下的位移计算
(4)讨论
5 ql 4 8 I 4 kEI ΔAy = (1 + + ) 2 2 8 EI 5 Al 5 GAl
上式中:第一项为弯矩的影响,第二,三项分别为轴力,剪力的影响. 设:杆件截面为矩形,宽度为b,高度为h,A=bh,I=bh3/12,k=6/5
5 ql 4 2 h 2 E h 2 ΔAy = [1 + ( ) 2 + ( ) ] 8 EI 15 l 25 G l
12 1 2
2. 变形体的虚功原理:
对于杆件结构(非刚体),在发生变形的过程中,不但各杆件发生位 移,内部材料同时也产生应变,虚功原理可以表述如下:
设结构(包括变形体)在某力系处于平衡,对于结构上产 生的任何微小的虚位移,外力所作的虚功总和等于该结构 各微段上内力所作的变形虚功总和.简单地说,外力虚功 等于变形虚功(或称内力虚功),即
M P = FR sin θ
虚拟状态如图b,截面弯矩为
M = 1 ( R R cos θ ) = R (1 cos θ )
代入位移计算公式,可得
虚拟状态
MM P ds (1 cos α ) 2 FR 3 = (→) ΔBx = ∑ ∫ EI 2 EI 20
2
A′
§6—1 概 1. 变形和位移
述
在荷载或其它因素作用下,结构将产生 变形和位移. 变形:是指结构形状的改变. 位移:是指结构各处位置的移动.
P A
△A
y
△A
□
△Ax
A′
2. 位移的分类
线位移: AA ' (△A) △Ay △Ax 角位移: A 绝对位移 相对位移:
指两点或两截面之间的位置改变量
§6-4 静定结构在荷载作用下的位移计算
(4)讨论
5 ql 4 8 I 4 kEI ΔAy = (1 + + ) 2 2 8 EI 5 Al 5 GAl
上式中:第一项为弯矩的影响,第二,三项分别为轴力,剪力的影响. 设:杆件截面为矩形,宽度为b,高度为h,A=bh,I=bh3/12,k=6/5
5 ql 4 2 h 2 E h 2 ΔAy = [1 + ( ) 2 + ( ) ] 8 EI 15 l 25 G l
12 1 2
2. 变形体的虚功原理:
对于杆件结构(非刚体),在发生变形的过程中,不但各杆件发生位 移,内部材料同时也产生应变,虚功原理可以表述如下:
设结构(包括变形体)在某力系处于平衡,对于结构上产 生的任何微小的虚位移,外力所作的虚功总和等于该结构 各微段上内力所作的变形虚功总和.简单地说,外力虚功 等于变形虚功(或称内力虚功),即
结构力学(李廉锟第五版)_图文

§4-3 三铰拱的合理拱轴线
在均匀静水压力作用下,q=常数,因而
三铰拱在均匀静水压力作用下,其合理轴线的曲 率半径为一常数, 就是一段圆弧。
因此,拱坝的水平截面常是圆弧形,高压隧洞 常采用圆形截面。
拱桥实例介绍
5)刚架拱桥
1989江苏无锡100米下甸桥
变截面,四分点附近截面高度最大,分别向拱脚、跨中减小 。取消斜撑,拱上建筑采用23m预应力混凝土简支梁以过渡 。
§4-3 三铰拱的合理拱轴线
例4-3 设三铰拱上作用有沿拱轴均匀分布的竖向 荷载(如自重),试求其合理拱轴线。
解:当拱轴线改变时,荷载也随之改变。 令p(x)为沿拱轴线每单位长的自重,荷载沿水平
方向的集度为q(x) 由 有
§4-3 三铰拱的合理拱轴线
将
代入方程(4-5),得
由于规定y 向上为正, x 向右为正,q 向下为 正,故上式右边为正号。
§4-3 三铰拱的合理拱轴线
或
积分后,得 如p(x)=常数=p ,则
即 式中A为积分常数。
§4-3 三铰拱的合理拱轴线
由于当x =0时,
,故常数A等于零,即
再积分一次,得 由于当x=0时,y=0, 故
最后得 等截面拱在自重荷载作用下,合理轴线为一悬链线。
§4-3 三铰拱的合理拱轴线
在一般荷载作用下,为了寻求相应的合理轴线,可假 定拱处于无弯矩状态并写出相应的平衡微分方程。
§4-1 概 述
拱与其同跨度同荷载的简支梁相比其弯矩要小 得多,所以拱结构适用于大跨度的建筑物。它广泛 地应用房屋桥梁和水工建筑物中。由于推力的存在 它要求拱的支座必须设计得足够的牢固,这是采用 拱的结构形式时必须注意的。
§4-2 三铰拱的数值解 一、三铰拱的反力和内力计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
Δ11
第六章 结构位移的计算
(2)位移不是由做功的力引起的,而是由其他因
素引起的。
若在如图所示简支梁的基础上,又在梁上施加另外一
个静力荷载F2,梁就会达到新的平衡状态,F1的作用点沿 F1方向又产生了位移Δ12如图所示。
力F1(此时的F1不再是静力荷载,而是一个恒力)在
位移Δ12上做了功。由于位移Δ12不是F1引起的,而是由
例如图(a)所示的简支梁,在荷载作用下发生如
图中虚线所示的变形,梁的跨中截面的形心C移动
了一段距离 C C, 称为C点的线位移或挠度 ;支座截
面B转动了一个角度
,称为截面的角位移或转角。
B
(a)
第六章 结构位移的计算
又如图所示的刚架,在荷载作用下发生如图中虚线所
示的变形。刚架上的C点移动至C点,则称 CC 为点C的线位
移,用ΔC表示。
还可将该线位移分解
为沿水平方向和竖直方向的
两个分量,分别称为点C的
水平位移和竖向位移,分
别用ΔCx和ΔCy表示,几何关
系如图(b)所示,图中的 C
Cy
为截面C的转角,称为截面
C的角位移,上述线位移和
C x
角位移统称为绝对位移。
第六章 结构位移的计算
此外,在计算中还将涉及到另一种位移,即相对位移。 例如图所示的刚架,在荷载F作用下,发生如图中虚 线所示的变形。
A、B两点的水平位移分
别为ΔAH和ΔBH,它们之和 为(ΔAB )H =ΔAH+ΔBH,称 为A、B两点的水平相对
线位移。A、B两个截面
的转角分别为 和 ,它
们之和A 为B
,
称为AAB、B两A 个截B 面的相
对角位移。
ΔAH
F
A
A
B AB
ΔBH
F B
第六章 结构位移的计算
2. 结构位移的种类 (1)某点的线位移 (2)某截面的角位移 (3)两点间的相对线位移 (4)两截面间的相对角移
第六章 结构位移的计算
第六章 结构位移的计算
如屋架在竖向荷载作用下,下弦各结点产生虚线所示位移
将各下弦杆做得 比实际长度短些,拼 装后下弦向上起拱。
在屋盖自重作用下,下弦各杆位于原设计的水平位置。
第六章 结构位移的计算
§6-2 变形体的虚功原理
1.实功与虚功
在力学中功的定义是:一个不变的集中力所
式中:M=2Fr,即力偶所作的功等于
力偶矩与角位移的乘积。
为了方便起见,我们将上述的各种位移无论是线位 移或是角位移,无论是绝对位移或是相对位移,统一称 为广义位移。
第六章 结构位移的计算
由上述可知,功包含了两个因素,即力和位 移。若用F表示广义力,用Δ表示广义位移,则功 的一般表达式为 W=FΔ
力F2所引起的,我们把力在由其他因素引起的位移上所
做的功称为虚功。
F
F移的计算
在虚功中,既然做功的力和 相应的位移是彼此无因果关系的 两个因素,所以,可将二者看成 是同一结构的两种独立无关的状 态。其中,力系所属的状态称为 力状态[图(a)],位移所属的状态 称为位移状态[图(b)]。
(a)力状态 (b)位移状态
第六章 结构位移的计算
如果在力状态中有集中力、集中力偶、均布 力和支座反力等外力,统称为广义力,用Fi表示。 Δi表示与广义力Fi相应的广义位移,若用We表示 外力虚功,则[图(a)]所示的力状态在[图(b)]所示 的位移状态上所做的外力总虚功为
A
线位移: 绝对位移
角位移:
相对位移 线位移: 角位移:
一般来说,结果的位移与结构 的几何尺寸相比都是极其微小的。
P C
△C
△BC
B
△B
C
B
BC
第六章 结构位移的计算
二、结构位移产生的原因 1、荷载作用 2、温度改变和材料胀缩 3、支座移动和制造误差
P t
第六章 结构位移的计算
计算位移的目的
静定结构的位移计算是结构分析的一个重要内容, 在工程设计和施工过程中,都需要计算结构的位移。概 括地说,它有以下三个目的:
从以上示例看出,一个广义力可以是一个力或一 个力偶,其对应的广义位移是一个线位移或一个角位 移。故广义力可有不同的量纲,相应的广义位移也可 有不同的量纲。但在做功时广义力与广义位移的乘积 却恒具有相同的量纲,即功的量纲。其常用单位为牛 顿米(N·m)或千牛顿米(kN·m)。
第六章 结构位移的计算
既然功是力与位移的乘积,根据力与位移的关系可 将功分为两种情况:
做的功,等于该力的大小与其作用点沿力的作用
线方向所发生的相应位移的乘积。当物体沿直线
有位移Δ时[如图],作用于物体的常力F在位移Δ上
所做的功为
W FΔcos。
F
F
α
Δ
第六章 结构位移的计算
如果一对大小相等方向相反的力F作用在圆盘的A、B 两点上(如图)。设圆盘转动时,力F的大小不变而方向
始终垂直于直径AB。当圆盘转过一角度 时,两力所做 的功为 W=2Fr =M
(1)位移是由做功的力引起的 例如图所示简支梁,在静力荷载F1的作用下,当F1
由零缓慢逐渐的加到其最终值时,其作用点沿F1方向产 生了位移Δ11,简支梁达到平衡状态,其变形如图虚线所 示,力F1在位移Δ11上做了功。
由于位移Δ11是由做功的力F1引起的,我们把力在自 身引起的位移上所做的功称为实功。
第六章 结构位移的计算
要求静定结构的位移,必先求出静定结构的内 力。因此本章可以说是对前面所学的各类静定结构 的内力计算的复习。同时,位移计算又是下章即将 开始学习的超静定结构的基础。
因而,从全课程来看,本章是承上启下的一章, 也是十分重要的内容。
第六章 结构位移的计算
§6-1 概述
1、变形和位移 变形——结构(或其一部分)形状的改变(变形是泛指,有
弯曲变形,扭转变形,拉伸压缩变形等,研究对象通常为整个杆
件,或其他单个整体构件。 ) 位移——结构各处位置的移动—— 杆件截面位置的改变
建筑结构在施工和使用过程中,结构杆件的形
状会发生改变,称为结构的变形。结构变形时,结
构上某个点发生的移动或某个截面发生的移动或转
动,称为结构的位移。
第六章 结构位移的计算
(1)校核结构刚度—刚度小,变形过大,即使不破坏也不能 正常使用。 位移最大值≤允许值 (2)为计算超静定结构打基础---在计算超静定结构的反力和内力 时,除了要考虑结构的平衡条件外,还必须要考虑结构的位移条 件,需要计算结构的位移。
(3)计算结构变形后的位置---在结构的制作、架设等施工过程 中,经常需要预先知道结构变形后的位置,以便采取相应的施 工措施,因而也需要计算结构的位移。(施工要求)
Δ11
第六章 结构位移的计算
(2)位移不是由做功的力引起的,而是由其他因
素引起的。
若在如图所示简支梁的基础上,又在梁上施加另外一
个静力荷载F2,梁就会达到新的平衡状态,F1的作用点沿 F1方向又产生了位移Δ12如图所示。
力F1(此时的F1不再是静力荷载,而是一个恒力)在
位移Δ12上做了功。由于位移Δ12不是F1引起的,而是由
例如图(a)所示的简支梁,在荷载作用下发生如
图中虚线所示的变形,梁的跨中截面的形心C移动
了一段距离 C C, 称为C点的线位移或挠度 ;支座截
面B转动了一个角度
,称为截面的角位移或转角。
B
(a)
第六章 结构位移的计算
又如图所示的刚架,在荷载作用下发生如图中虚线所
示的变形。刚架上的C点移动至C点,则称 CC 为点C的线位
移,用ΔC表示。
还可将该线位移分解
为沿水平方向和竖直方向的
两个分量,分别称为点C的
水平位移和竖向位移,分
别用ΔCx和ΔCy表示,几何关
系如图(b)所示,图中的 C
Cy
为截面C的转角,称为截面
C的角位移,上述线位移和
C x
角位移统称为绝对位移。
第六章 结构位移的计算
此外,在计算中还将涉及到另一种位移,即相对位移。 例如图所示的刚架,在荷载F作用下,发生如图中虚 线所示的变形。
A、B两点的水平位移分
别为ΔAH和ΔBH,它们之和 为(ΔAB )H =ΔAH+ΔBH,称 为A、B两点的水平相对
线位移。A、B两个截面
的转角分别为 和 ,它
们之和A 为B
,
称为AAB、B两A 个截B 面的相
对角位移。
ΔAH
F
A
A
B AB
ΔBH
F B
第六章 结构位移的计算
2. 结构位移的种类 (1)某点的线位移 (2)某截面的角位移 (3)两点间的相对线位移 (4)两截面间的相对角移
第六章 结构位移的计算
第六章 结构位移的计算
如屋架在竖向荷载作用下,下弦各结点产生虚线所示位移
将各下弦杆做得 比实际长度短些,拼 装后下弦向上起拱。
在屋盖自重作用下,下弦各杆位于原设计的水平位置。
第六章 结构位移的计算
§6-2 变形体的虚功原理
1.实功与虚功
在力学中功的定义是:一个不变的集中力所
式中:M=2Fr,即力偶所作的功等于
力偶矩与角位移的乘积。
为了方便起见,我们将上述的各种位移无论是线位 移或是角位移,无论是绝对位移或是相对位移,统一称 为广义位移。
第六章 结构位移的计算
由上述可知,功包含了两个因素,即力和位 移。若用F表示广义力,用Δ表示广义位移,则功 的一般表达式为 W=FΔ
力F2所引起的,我们把力在由其他因素引起的位移上所
做的功称为虚功。
F
F移的计算
在虚功中,既然做功的力和 相应的位移是彼此无因果关系的 两个因素,所以,可将二者看成 是同一结构的两种独立无关的状 态。其中,力系所属的状态称为 力状态[图(a)],位移所属的状态 称为位移状态[图(b)]。
(a)力状态 (b)位移状态
第六章 结构位移的计算
如果在力状态中有集中力、集中力偶、均布 力和支座反力等外力,统称为广义力,用Fi表示。 Δi表示与广义力Fi相应的广义位移,若用We表示 外力虚功,则[图(a)]所示的力状态在[图(b)]所示 的位移状态上所做的外力总虚功为
A
线位移: 绝对位移
角位移:
相对位移 线位移: 角位移:
一般来说,结果的位移与结构 的几何尺寸相比都是极其微小的。
P C
△C
△BC
B
△B
C
B
BC
第六章 结构位移的计算
二、结构位移产生的原因 1、荷载作用 2、温度改变和材料胀缩 3、支座移动和制造误差
P t
第六章 结构位移的计算
计算位移的目的
静定结构的位移计算是结构分析的一个重要内容, 在工程设计和施工过程中,都需要计算结构的位移。概 括地说,它有以下三个目的:
从以上示例看出,一个广义力可以是一个力或一 个力偶,其对应的广义位移是一个线位移或一个角位 移。故广义力可有不同的量纲,相应的广义位移也可 有不同的量纲。但在做功时广义力与广义位移的乘积 却恒具有相同的量纲,即功的量纲。其常用单位为牛 顿米(N·m)或千牛顿米(kN·m)。
第六章 结构位移的计算
既然功是力与位移的乘积,根据力与位移的关系可 将功分为两种情况:
做的功,等于该力的大小与其作用点沿力的作用
线方向所发生的相应位移的乘积。当物体沿直线
有位移Δ时[如图],作用于物体的常力F在位移Δ上
所做的功为
W FΔcos。
F
F
α
Δ
第六章 结构位移的计算
如果一对大小相等方向相反的力F作用在圆盘的A、B 两点上(如图)。设圆盘转动时,力F的大小不变而方向
始终垂直于直径AB。当圆盘转过一角度 时,两力所做 的功为 W=2Fr =M
(1)位移是由做功的力引起的 例如图所示简支梁,在静力荷载F1的作用下,当F1
由零缓慢逐渐的加到其最终值时,其作用点沿F1方向产 生了位移Δ11,简支梁达到平衡状态,其变形如图虚线所 示,力F1在位移Δ11上做了功。
由于位移Δ11是由做功的力F1引起的,我们把力在自 身引起的位移上所做的功称为实功。
第六章 结构位移的计算
要求静定结构的位移,必先求出静定结构的内 力。因此本章可以说是对前面所学的各类静定结构 的内力计算的复习。同时,位移计算又是下章即将 开始学习的超静定结构的基础。
因而,从全课程来看,本章是承上启下的一章, 也是十分重要的内容。
第六章 结构位移的计算
§6-1 概述
1、变形和位移 变形——结构(或其一部分)形状的改变(变形是泛指,有
弯曲变形,扭转变形,拉伸压缩变形等,研究对象通常为整个杆
件,或其他单个整体构件。 ) 位移——结构各处位置的移动—— 杆件截面位置的改变
建筑结构在施工和使用过程中,结构杆件的形
状会发生改变,称为结构的变形。结构变形时,结
构上某个点发生的移动或某个截面发生的移动或转
动,称为结构的位移。
第六章 结构位移的计算
(1)校核结构刚度—刚度小,变形过大,即使不破坏也不能 正常使用。 位移最大值≤允许值 (2)为计算超静定结构打基础---在计算超静定结构的反力和内力 时,除了要考虑结构的平衡条件外,还必须要考虑结构的位移条 件,需要计算结构的位移。
(3)计算结构变形后的位置---在结构的制作、架设等施工过程 中,经常需要预先知道结构变形后的位置,以便采取相应的施 工措施,因而也需要计算结构的位移。(施工要求)