复合材料的复合原理及界面
复合材料----复合材料的复合原理及界面

复合材料
第二章复合材料的复合原理及界面
1、弥散增强和颗粒增强的原理
1)弥散增强:复合材料是由弥散颗粒与基体复合而成,荷载主要由基体承担,弥散微粒阻碍基体的位错运动,微粒阻碍基体位错运动能力越大,增强效果愈大,微粒尺寸越小,体积分数越高,强化效果越好。
2)颗粒增强:复合材料是由尺寸较大(直径大于1 m)颗粒与基体复合而成,载荷主要由基体承担,但增强颗粒也承受载荷并约束基体的变形,颗粒阻止基体位错运动的能力越大,增强效果越好;颗粒尺寸越小,体积分数越高,颗粒对复合材料的增强效果越好。
2、什么是混合法则,其反映什么规律
混合法则(复合材料力学性能同组分之间的关系):σc=σf V f+σm V m,E c=E f V f+E m V m式中σ为应力,E为弹性模量,V 为体积百分比,c、m和f 分别代表复合材料、基体和纤维;反映的规律:纤维基体对复合材料平均性能的贡献正比于它们各自的体积分数。
3、金属基复合材料界面及改性方法有哪些
金属基复合材料界面结合方式:
①化学结合
②物理结合
③扩散结合
④机械结合。
界面改性方法:
①纤维表面改性及涂层处理;
②金属基体合金化;
③优化制备工艺方法和参数。
4、界面反应对金属基复合材料有什么影响
界面反应和反应程度(弱界面反应、中等程度界面反应、强界面反应)决定了界面的结构和性能,其主要行为有:
①增强了金属基体与增强体界面的结合强度;
②产生脆性的界面反应产物;
③造成增强体损伤和改变基体成分。
复合材料的界面

复合材料的界面复合材料是由两种或两种以上不同的材料组成的材料,通过各自的特性相互作用形成的一种新型材料。
界面是不同材料之间的接触面,是复合材料性能的决定因素之一。
下面将从界面的作用、界面的特性和界面的调控三个方面对复合材料的界面进行详细介绍。
界面在复合材料中起着连接、传递和分散应力的作用。
首先,界面连接了不同材料一起,使其形成整体性能优于单个材料的复合材料。
其次,界面能够传递应力,使复合材料整体受力均匀、分散应力集中,提高材料的强度和韧性。
最后,界面还能够分散应力,减少裂纹扩展和断裂的可能性,延长复合材料的使用寿命。
界面的特性主要包括接触角度、界面能、亲水性或疏水性等。
首先,接触角度反映了界面的亲水性或疏水性,即其与液体接触时的表面张力。
亲水性的界面会使液体在复合材料中能够更好地湿润、浸润,提高复合材料的粘合度和界面传递性。
其次,界面能是指界面上分子之间相互作用的能量。
界面能越小,表示复合材料中不同材料之间的相容性越好,界面强度越高。
最后,亲水性界面和疏水性界面对复合材料的性能也会产生不同的影响。
如亲水性界面可增加复合材料的应力强度、韧性和热稳定性,而疏水性界面可减少复合材料的吸湿性和电导性。
界面的调控主要通过界面改性和表面处理两个途径实现。
首先,通过界面改性可以改变界面的性质,提高其性能,例如通过添加界面活性剂进行处理,使界面能更好地吸附和传递应力;通过聚合物接枝物改性,增加界面粘合力等。
其次,通过表面处理可以对界面进行改善,例如通过物理或化学方法处理材料表面,使其表面特性更加适合复合材料的应用。
常用的表面处理方法有溶剂清洗、电子束辐照、化学氧化等。
综上所述,界面是影响复合材料性能的重要因素,通过界面的调控可以改善复合材料的性能。
理解和研究界面的特性和调控方法对于开发出更加优异的复合材料具有重要意义。
复合材料的界面

改变强化材料表面的性质
• 对SiC晶须表面采用化学方法处理后XPS(X-ray Photoelectron Spectroscopy)分析的结 果。由C(1s)和Si(2p)的波谱可以看出,有的地方存在SiO2,有的地方不存在SiO2。 利用这样的表面状态的差来增强界面的结合力。
6.6.2 向基体添加特定的元素
• 在用烧结法制造复合材料的过程中,为了有助于 烧结,往往向基体添加一些元素。有时为了使纤 维与基体发生适度的反应以控制界面,也可以添 加一些元素。在SiCPCS纤维强化玻璃陶瓷(LAS) 中,如果采用通常的LAS成分的基体,在晶化处 理时会在界面产生裂纹。而添加百分之几的Nb时, 热处理过程中会发生反应,在界面形成数微米的 NbC相,获得最佳界面,从而达到高韧化的目的。
5.5 界面行为
5.5.1 界面的脱粘与剥离(Debonding)
研究界面的脱粘与剥离的意义
研究思路 ➢ 考虑基体中仅有一根纤维,受到拉伸载荷为Pf的情
况 ➢ 分析复合材料中强化材料与基体间应力传递的方
式 解析法: ➢ 应用最大剪切应力理论 ➢ 应用断裂力学理论
脱粘、剥离与滑动的关系为一旦发生脱粘与剥离,剥离部分就产生滑 动。解析法可以应用最大剪切应力理论,也可以应用断裂力学理论。
临界值
• 断裂的机制 张开型裂纹 φ=0
剪切型裂纹 φ=90 φ=tan-1(KⅡ/KⅠ)
界面对复合材料性能的影响
• 界面特性
复合材料性能
界面黏结强度下降复合材料弹性模量下降
• 但界面特性与复合材料性能的定量关系少
• 界面参数 (强度,韧性)
• 脆性组元的界面区域,尺寸与厚度相当的缺 陷 断裂力学模型
5.2.1 界面应力与非弹性过程
第5章复合材料界面力学

第5章复合材料界面力学任何两种材料接触在一起,就存在一个界面,即使在同一种材料内部的原子之间、分子之间或晶粒之间也存在界面。
界面可以理解为数学界面和物理界面两种,数学界面只是一个理想化的概念,这种界面没有厚度,没有材料与性能的过渡;而物理界面却是有一定厚度的界面层,可以看作一相材料。
界面随着两种材料的接触而存在,随着两种材料的分离而消失。
在复合材料中,界面有不可缺少的作用。
复合材料中的纤维与基体通过界面粘接在一起,界面的性能可通过粘接方式得到控制。
进一步的研究发现,界面的性能对复合材料的各种性能有显著的影响,但程度是不同的,有正面的,也有负面的。
例如:为了提高复合材料的强度和抗蠕变性能,需要一个较强的界面;但为了提高复合材料的韧度,则希望存在一个较弱的界面,以有利于更多地耗散断裂过程中的能量。
因此,可以设计复合材料的界面,以调控复合材料的宏观力学性能,寻求一种综合性能的平衡或最优化的复合材料。
本章主要介绍复合材料界面性能表征、应力传递理论以及界面性能的分析方法。
§5.1 界面与界面层的形成机理在复合材料中,纤维与基体之间的界面是两种材料物理化学作用或固化反应的产物。
界面从宏观上可以简单地看作是两相材料的分界面,没有厚度,但它有一定的力学性能,界面的强度甚至有可能超过基体材料。
在细观尺度上,界面是具有一定厚度的界面层或界面相,其尺度范围在nm至 m之间,利用电镜可以观察到界面层的结构,但一般难以精确确定界面层的厚度。
复合材料界面(层)的几何与力学特性的表征一直是复合材料领域中的研究热点。
界面的形成机理是很复杂的,包含了许多复杂的物理和化学因素。
界面层的几何与力学特性不仅与两相组分材料有关,而且与复合工艺条件有密切的关系。
在纤维复合材料中,通过对纤维表面进行预处理可以部分控制界面的特性。
目前,对界面的形成机理主要有如下基本理论。
(1)化学键合作用,认为基体表面上的官能团与增强物表面上的官能团发生化学反应,形成由共价键结合而成的界面区。
复合材料的界面理论

复合材料的界面理论1、界面形成及其形成1.1界面的定义复合材料的界面是指基体与增强相之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
复合材料的界面是一个多层结构的过渡区域,约几个纳米到几个微米。
此区域的结构与性质都不同于两相中的任何一相。
这一界面区由五个亚层组成,每一亚层的性能都与基体和增强相的性质、复合材料成型方法有关。
界面区域如图1-1所示。
1.2界面的形成复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段: 第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。
在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。
要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。
所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。
第二阶段:液态(或粘流态)组份的固化过程,即凝固或化学反应。
固化阶段受第一阶段的影响,同时它也直接决定着所形成的界面层的结构。
以固热性树脂的固化过程为例,固化剂所在位置是固化反应的中心,固化反应从中心以辐射状向四周扩展,最后形成中心密度大、边缘密度小的非均匀固化结构,密度大的部分称为胶束或胶粒,密度小的称胶絮。
2、界面对复合材料性能的影响及影响界面结合强度的因素 2.1界面对复合材料性能的影响复合材料内界面结合强度是影响复合效果的最主要因素。
界面的结合强度主要取决于界面的结构、物理与化学性能。
具有良好结合强度的界面,可以产生如下强化效应:(1)阻止裂纹的扩散,提高材料的韧性;(2)通过应力传递,使强化相承受较大的外载荷,提高复合材料的承载能力;(3)分散和吸收各种机械冲击和热冲击的能量,提高抗外加冲击的能力;(4)使强化相与基体产生既相互独立又相互协调的作用,弥补各自的缺点,获得新的材料使用性能。
复合材料原理 朱和国 -回复

复合材料原理朱和国-回复复合材料原理是指通过将两种或更多种不同材料结合在一起,形成一种新的材料,具备了单一材料所没有的性能和特性。
这种组合的材料称为复合材料。
复合材料广泛应用于各个领域,包括航空航天、汽车工业、建筑工程等,因为它们具备了轻质、高强度、耐腐蚀和耐磨损等优点。
复合材料的原理可分为两个方面:界面作用和相互作用。
界面作用是指在两种不同材料之间形成的界面层。
该界面层可以通过各种方式形成,例如化学键结合、物理吸附和力学锁定等。
界面层的存在使得两种不同材料之间能够形成强的结合,从而提高整体材料的强度和韧性。
相互作用是指两种不同材料之间的相互影响和相互作用。
在复合材料中,这种相互作用可以通过不同材料间的力传递和应变分布来实现。
当外界施加载荷或应变时,各种材料会发生相互作用,从而使复合材料具备了更高的强度和韧性。
复合材料的组成可以分为两种基本类型:纤维增强复合材料和颗粒增强复合材料。
纤维增强复合材料是指在基体材料中添加纤维材料作为增强材料,常见的有碳纤维增强复合材料和玻璃纤维增强复合材料。
纤维增强复合材料的优点是具有较高的强度和刚度。
颗粒增强复合材料是指在基体材料中添加颗粒状的增强材料,常见的有陶瓷颗粒增强复合材料和金属颗粒增强复合材料。
颗粒增强复合材料的优点是具有较高的韧性和耐磨性。
除了纤维增强和颗粒增强外,还可以通过层压法、注塑法、挤压法等不同的加工工艺来制备复合材料。
层压法是将增强材料和基体材料依次叠加,然后通过热压或冷压使其密实。
注塑法是将增强材料通过挤塑机注入到基体材料中形成复合材料。
挤压法是将增强材料和基体材料通过挤压机挤压在一起,形成复合材料。
总结起来,复合材料原理主要包括界面作用和相互作用。
界面作用使得两种不同材料之间能够形成强的结合,从而提高整体材料的强度和韧性。
相互作用则是指两种不同材料之间的相互影响和相互作用,使得复合材料具备了更高的强度和韧性。
不同类型的复合材料可以通过加工工艺来制备,例如纤维增强复合材料和颗粒增强复合材料。
复合材料的界面及复合原则

体育器材领域
复合材料在体育器材领域的应用也十分广泛,主要应用于制造高性能的体育器材和装备。复合材料具 有轻质、高强度、抗冲击等优点,能够提高体育器材的性能和使用安全性。
例如,碳纤维复合材料可以用于制造高级自行车架、高尔夫球杆、滑雪板等体育器材,能够显著提高 器材的刚性和减震效果。同时,复合材料还可以用于制造运动鞋和运动服等装备,提高运动员的竞技 表现和舒适度。
向控制工艺。
03
复合材料结构的可设计性
提高复合材料结构的可设计性是实现其高性能的关键。通过发展先进的
计算设计和模拟技术,可以预测和控制复合材料的结构和性能,实现高
性能复合材料的快速研发。
THANKS
感谢观看
复合材料面临的挑战与解决方案
01
界面性能控制
复合材料的界面性能对其整体性能具有重要影响,但界面性能的调控仍
面临挑战。解决方案包括优化界面设计、改进制备工艺和引入新型界面
改性技术等。
02
增强材料的分散与取向
增强材料的分散和取向对复合材料的力学性能和功能性能有显著影响。
解决这一问题需要深入研究增强材料的物理和化学性质,优化分散和取
面能等因素。
提高界面粘附力的方法包括选择合适的粘合剂、对材料表面进
03
行预处理、优化复合工艺等。
界面稳定性
01
界面稳定性是指复合材料在长 期使用过程中保持其性能不变 的能力,它与材料的耐久性和 可靠性密切相关。
02
界面稳定性取决于组分之间的 化学键合、物理相互作用以及 环境因素如温度、湿度和化学 介质的影响。
复合材料的界面及复 合原则
目录
• 引言 • 复合材料的界面特性 • 复合原则 • 复合材料的应用 • 结论
《复合材料原理》PPT课件

良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
47
柏氏矢量示意图——刃型位错
┴
M Q
M
柏氏氏量
v b
v b
48
柏氏矢量示意图——螺型位错
49
位错柏氏氏量和位错线的关系
bφ F
E E处为螺型位错 F处为刃型位错 EF之间为混合位错 be=bsinφ bf=bcosφ 在切应力作用下混合位错的产生(a)及其 原子错排结构(b)
50
←位错环 与柏氏矢 量的确定
处于次要地位。
29
30
实际观察到的位错图片
31
矛盾之一:
原子由一个平衡位臵滑到下一个平衡位臵需要
G/2的应力,而在通常受力条件下,是难达到
的,即晶体难于滑动。
而实际上,τ=(10-3~ 10-4)G。
32
矛盾之二:
设想原子滑移时的切应力是周期性变化,并假 定为刚性球。 x很小时为弹性变形,sin2πx/a≈2πx/a。
一般颗粒直径为1~50μm,颗粒间距为1~25μm ,颗粒的体积 分数为5~50%。
56
弥散增强vs颗粒增强
颗粒尺寸越小,体积分数越高,增强效果越好?
57
Al–10Ti elemental powder mixtures via friction stir processing 离心条件下SiC 颗粒增强铝基 活塞微观组织图
15
(3)纤维与基体的热膨胀系数不能相差过大,否则
在热胀冷缩过程中会自动削弱它们之间的结合强度。
(4)纤维与基体之间不能发生有害的化学反应,特
别是不发生强烈的反应,否则将引起纤维性能降低而
失去强化作用。
16
(5)纤维所占的体积、纤维的尺寸和分布必须适宜。 一般而言,基体中纤维的体积含量越高,其增强效果 越显著; 纤维直径越细,则缺陷越少,纤维强度也越高; 连续纤维的增强作用大大高于短纤维,不连续短纤维 的长度必须大于一定的长度(一般是长径比>5)才能显示
a: GF/ PPESK; b: GF/ PPESK/ PEI ; c: GF/ PPESK/ PES
63
图3 连续SiC纤维增强Ti基复合材料横截面的金相照片
64
图4 C/ SiC复合材料及其制造的火箭“Uncooled”同轴双壁燃烧室
65
图5 火箭及其结构示意图
66
图6 火箭发动机及待组装零件
35
实际上,有许多方法可观察到位错:透射电镜、浸
蚀法、缀饰法、X射线衍射法、场离子显微镜等。
36
位错分为两类:刃型位错和螺型位错,由滑移区 与未滑移区的分界线来确定类型。
37
刃型位错
如图:上半部分相对下半部分沿ABCD滑移 了一个原子间距,多余的半原子面与滑移 面交线即为刃型位错。
多余的半原子面不一定是平面,可以是见 曲面。但位错线是一定垂直于滑移方向的,
58
小颗粒:尺寸上有优势,但体积分数难以提 高,且在基体上分散困难。
大颗粒:体积分数高,但尺寸、性能上没有 优势。
59
锆刚玉颗粒增强铁基表面复合材料
60
2.3 单向连续纤维增强原理
单向连续纤维增强复合材料
纵向强度和刚度
横向刚度和强度
61
图1 玻璃纤维增强复合材料制品及其原料
62
图2 不同复合材料的SEM断口形貌
5
一、材料组元的选择
挑选最合适的材料组元尤为重要。 在选择材料组元时,首先应明确各组元在使用中所应承担的
功能,也就是说,必须明确对材料性能的要求。
对材料组元进行复合,既可能要求复合后材料达到如下性能,
如高强度、高刚度、高耐蚀、耐磨、耐热或导电、传热等性
能,也可能是要求某些综合性能如既高强又耐蚀、耐热。
24
弥散强化
奥罗万机制(位错绕过机制):
使位错线弯曲到曲率半径为 R 时,所需的切应力为 τ=Gb/(2R)。 设颗粒间距为D,则τ=Gb/D,所以Rmin=D/2。 只有当外力大于Gb/D时,位错线才能绕过颗粒。
25
位错绕过第二相粒子的机制
D
26
27
颗粒尺寸越小,体积分数越高,强化效果 越好。
这是刃型位错的特征之一。
38
刃型位错示意图(可分为正负刃型位错)
39
位错滑移过程示意图
40
刃型位错正负的判定
刃型位错中柏氏矢量与位错线垂直。正刃型位错:出纸
面的方向为位错线的正向,用右手螺旋法则确定回路方 向,拇指——位错线方向;四指——柏氏矢量回路方向。
向 方 线 错 位
柏氏回路的确定
柏氏矢量回路方向
一般颗粒的体积分数为1%~15%,颗粒直径 为0.001~0.1μm。
28
位错概念引入及位错观察
30年代,在研究晶体滑移时,发现理论屈服强度和实 际强度间有巨大差异,为了解释这种差异,人们设想 晶体中存在某种缺陷。形变就在这种局部缺陷处发生。
晶体结构——规则的完整排列是主要的,非完整排列 则是次要的。 晶体力学性能——晶体的非完整性是主要的,完整性
67
复合材料要解决涉及工程应用的关键技术,为连续
纤维增强复合材料的实际应用奠定基础。
出明显的增强效果。
17
二、制备方法的选择
材料组元选择后,就要考虑所采用的
复合工艺路线,即具体的制备方法。 制备方法的选择主要应考虑以下四个 方面:
18பைடு நூலகம்
(1)所选的工艺方法对材料组元的损伤最小,尤其是
纤维或晶须掺入基体之中时,一些机械混合方法往往造
成纤维或晶须的损伤;
(2)能使任何形式的增强材料(纤维、颗粒、晶须)均匀 分布或按预设计要求规则排列; (3)使最终形成的复合材料在性能上达到充分发挥各组 元的作用,即达到扬长避短,且各组元仍保留着固有的特 性。
制造工艺十分复杂,且无法保证颗粒或晶须均匀分散。
21
氧化铝纤维形貌
采用挤压铸造法制备活塞用氧 化铝短纤维增强铝基复合材料
22
a) 铸态
b) 时效后
压铸浸渗法制备的SiC 颗粒增强铝基复合材料(颗粒体积分数为50%)
23
2.2 弥散增强及颗粒增强原理
弥散增强原理(弥散颗粒与基体复合) 颗粒增强原理(较大颗粒与基体复合)
6
必须根据复合材料所需的性能来选择组成复合材料的 基体材料和增强材料。 如所设计的复合材料是用作结构件,则复合的目的就 是要使复合后材料具有最佳的强度、刚度和韧性等。
7
设计结构件复合材料时,首先必须明确其中一种组
元主要起承受载荷的作用,它必须具有高强度和高模量。
这种组元就是所要选择的增强材料;
而其它组元应起传递载荷及协同的作用,而且要把
12
1)颗粒增强复合材料的原则
(1)颗粒应高度弥散均匀分散在基体中 阻碍导致塑性变形的位错运动(金属、陶瓷基体) 或分子链的运动(聚合物基体)。 (2)颗粒的直径大小要合适 因为颗粒直径过大,会引起应力集中或颗粒本身破 碎,从而导致材料强度降低; 颗粒直径太小,则起不到大的强化作用。因此,一
般粒径为几微米到几十微米。
13
(3)颗粒需要有足够的数量。数量太少,达 不到最佳的强化效果。 (4)颗粒与基体之间应有一定的粘结作用。
14
2)纤维增强复合材料的原则
(1)纤维的强度和模量都要高于基体,即纤维
应具有高模量和高强度。因为除个别情况外,在多 数情况下承载主要是靠增强纤维。 (2)纤维与基体之间要有一定的粘结作用,两者 之间结合要保证所受的力通过界面传递给纤维。
53
第二章 复合材料的复合原理及界面
2.1 复合原则 2.2 弥散增强及颗粒增强原理 2.3 单向连续纤维增强原理 2.4 短纤维增强原理 2.5 混杂增强原理 2.6 复合材料界面及其改性 2.7 复合材料界面表征
54
思考题:
1、复合材料制备方法的选择要遵循哪些原则?
(增强材料损伤小、分布可控、发挥性能优势、性能/ 价格比低)
增强材料粘结在一起,这类组元就是要选的基体材料。
8
其次,除考虑性能要求外,还应考虑组成复合材料 的各组元之间的相容性,这包括物理、化学、力学等性
能的相容,使材料各组元彼此和谐地共同发挥作用。
在任何使用环境中,复合材料的各组元之间的伸长、
弯曲、应变等都应相互或彼此协调一致。
9
第三,要考虑复合材料各组元之间的浸润性,使增强 材料与基体之间形成比较理想的具有一定结合强度的界面。 适当的界面结合强度不仅有利于提高材料的整体强度, 更便于将基体所承受的载荷通过界面传递给增强材料,以 充分发挥其增强作用。
x x m sin 2 G a a x x G G G m 2 m a a 2 6
33
矛盾之三:
若假定原子不是刚性的,而是可压缩的,则
1 m 10
1 G 50
34
引入位错概念
由上面的理论和实际的差别,可见规则整体刚性滑移模 型是不切合实际的。 设想晶体具有不完整性,则可以引入位错概念: 1)缺陷运动符合滑移特征。 2)缺陷是易动的,但不如点缺陷那样易热激活。 3)说明这种缺陷的来源和增殖。
2.1 复合原则 2.2 弥散增强及颗粒增强原理 2.3 单向连续纤维增强原理 2.4 短纤维增强原理 2.5 混杂增强原理 2.6 复合材料界面及其改性 2.7 复合材料界面表征
4
2.1 复合原则
要想制备一种好的复合材料,首先应根据所要求 的性能进行设计。复合材料设计应遵循的原则如下: 一、材料组元的选择 二、制备方法的选择
10
若结合强度太低,界面很难传递载荷,不能起潜在材