乙醇—水溶液精馏塔设计

合集下载

乙醇及水的精馏塔设计

乙醇及水的精馏塔设计

乙醇及水的精馏塔设计
首先,需要确定乙醇和水的混合物的物理性质。

乙醇和水的沸点非常
接近,因此在设计精馏塔时,必须考虑适当的操作条件,以便有效地分离
乙醇和水。

在精馏塔的设计过程中,首先需要选择适当的塔型。

常见的乙醇和水
的分离塔包括简单塔和精馏塔。

简单塔由一个塔板组成,可用于低温分离,而精馏塔则包含多个塔板,可以提供更高的分离效率。

其次,需要考虑精馏塔的高度。

精馏塔的高度决定了分离的效率。


常情况下,精馏塔的高度越高,分离效率越高。

然而,高塔会增加成本和
能耗,因此需要在效率和经济性之间做权衡。

此外,需要选择适当的回流比。

回流比是指流经塔板上部的液体返回
到塔底的比例。

适当的回流比可以提高分离效率,但过高的回流比可能导
致能耗过高。

还需要考虑乙醇和水的进料浓度。

通常情况下,浓度较高的进料可以
提高分离效果,但也会增加能耗。

因此,需要找到一个经济和效率之间的
平衡点。

在设计乙醇和水的精馏塔时,还需要考虑传热和传质方面的问题。


别是在塔内的塔板上,需要考虑适当的传热和传质设备,以确保有效的分离。

最后,需要进行塔的热力学计算和模拟,以评估设计的可行性和最佳
性能。

这可以通过使用软件模拟工具,如Aspen Plus、CHEMCAD等来完成。

综上所述,乙醇及水的精馏塔设计需要考虑塔的类型、高度、回流比、进料浓度等因素。

通过综合考虑这些关键参数,可以设计出经济、高效的
乙醇和水精馏塔,满足工业生产的需求。

乙醇和水的精馏塔设计

乙醇和水的精馏塔设计

乙醇和水的精馏塔设计精馏是一种分离液体混合物中组分的常用方法,可通过蒸馏分离甲醇和水的混合物。

对于乙醇和水的精馏塔设计,需要考虑一系列参数和流程,包括进料组成、操作压力、图形塔塔板、冷凝器设计、降低能量消耗等。

以下是一个基本的乙醇和水的精馏塔设计方案。

1.塔板设计在乙醇和水的精馏塔设计中,决定了塔板数的重要参数是所需的乙醇纯度。

一般来说,纯度要求越高,所需的塔板数就越多。

可使用的常用塔板设计方法有McCabe-Thiele方法和Ponchon-Savarit方法。

2.冷凝器设计冷凝器用于冷凝乙醇蒸汽,使其凝结成液体后下降到下部分的收集器中。

冷凝器设计需要考虑的重要参数包括进料温度、出料温度、乙醇和水的蒸汽压力和流量等。

一般来说,选择多管冷凝器比单管冷凝器更适合于高效的冷凝过程。

3.降低能量消耗乙醇和水的精馏过程中,能量消耗是一个重要的考虑因素。

为了降低能量消耗,可以引入热回收系统,如热交换器,将高温的废气中的热能回收使用。

此外,也可以考虑采用较低的操作压力,通过降低汽化温度来减少所需的加热能量。

4.控制塔板温度在乙醇和水的精馏塔设计中,控制各个塔板的温度非常重要,以确保塔板能够正常工作。

一种常见的温度控制方法是在塔板上设置温度传感器,并通过自动化控制系统调节冷凝器的冷却剂流量来控制塔板温度。

5.回流比的选择回流比是决定乙醇和水精馏塔效率的重要因素。

回流比的选择应根据塔板的数量、损失和乙醇纯度等因素来合理决定。

一般来说,较高的回流比可以提高纯度,但同时也会增加能源消耗。

6.热平衡以上是一个基本的乙醇和水的精馏塔设计方案。

根据实际情况和具体需求,还需要根据实际的进料组成、产量、纯度和环境要求等因素进行调整。

乙醇_水精馏塔设计说明

乙醇_水精馏塔设计说明

乙醇_水精馏塔设计说明
1.设备选型
2.工艺流程
(1)加热阶段:将乙醇_水混合物加热到沸点,使其部分汽化,进入下一个阶段。

(2)蒸馏阶段:乙醇和水在塔内进行汽液两相的分离,高纯度的乙醇向上升腾,低纯度的水向下流动。

(3)冷凝阶段:将高纯度的乙醇气体冷凝成液体,便于收集和储存。

(4)分离阶段:将冷凝后的液体进一步分离,得到纯度较高的乙醇和水。

3.操作参数
(1)温度控制:加热阶段需要将混合物加热到适当的沸点,通常控制在80-100摄氏度。

而在蒸馏阶段,控制塔顶和塔底的温度差异,有助于提高分离效果。

(2)压力控制:塔的进料和出料口通常需要控制一定的压力,以保证流量的稳定。

(3)流量控制:塔内液体的流速对塔的操作效果有较大影响,需保持适当的流速,通常通过调节塔顶和塔底的流量或液位来实现。

4.塔的结构及内件设计
乙醇_水精馏塔的结构包括塔壳、进料装置、分离器、冷凝器、再沸器、集液器等。

其中,塔内需要配置一些内件,如填料和板式塔板等,以
提高传质和传热效果。

填料可采用金属或塑料材料,板式塔板可选用槽式、波纹式等不同形式。

通过合理配置和设计这些内件,提高乙醇_水分离效果。

综上,乙醇_水精馏塔的设计需要综合考虑设备选型、工艺流程、操
作参数以及塔的内部结构等因素。

通过合理的设计和选择,可以实现高效
分离乙醇和水的目的。

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇—水的精馏塔设计设计人员:1所在班级:化学工程与工艺成绩:指导老师:日期:化工原理课程设计任务书一、设计题目:乙醇—-—水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%;(3)塔顶易挥发组分回收率为99%;(4)生产能力为50000吨/年90%的乙醇产品;(5)每年按330天计,每天24小时连续运行。

(6)操作条件a)塔顶压强 4kPa (表压)b)进料热状态自选c)回流比自选d)加热蒸汽压力低压蒸汽(或自选)2e)单板压降 kPa。

三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论;2、设计图纸要求;1)绘制生产工艺流程图(A2 号图纸);2)绘制精馏塔设计条件图(A2 号图纸);3五、设计基础数据:1.常压下乙醇—-—水体系的t—x—y 数据;2.乙醇的密度、粘度、表面张力等物性参数。

一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行.塔顶压强 4kPa(表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。

三、设备形式:筛板塔四、设计内容:1)精馏塔的物料衡算:原料乙醇的组成xF==0。

1740原料乙醇组成 xD0.7788塔顶易挥发组分回收率90%平均摩尔质量 MF =4由于生产能力50000吨/年,。

化工原理 课程设计 精馏塔

化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。

该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。

乙醇的浓度要求为95%(质量分数),水含量要求低于5%。

二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。

同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。

3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。

4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。

三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。

2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。

3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。

4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。

5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。

6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。

乙醇—水溶液精馏塔设计

乙醇—水溶液精馏塔设计

乙醇-水溶液连续精馏塔设计目录1.设计任务书 (3)2.英文摘要前言 (4)3.前言 (4)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.课程设计心得 (23)精馏塔设计任务书一、设计题目乙醇—水溶液连续精馏塔设计二、设计条件1.处理量: 15000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 93 (wt%)4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。

d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。

在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。

精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。

化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。

为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。

可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。

《化工原理》乙醇-水混合液精馏塔设计

《化工原理》乙醇-水混合液精馏塔设计

《化工原理》乙醇-水混合液精馏塔设计一、设计任务:完成精馏塔工艺优化设计、精馏塔结构优化设计以及有关附属设备的设计和选用,绘制精馏塔的工艺条件图及塔板性能负荷图,并编制工艺设计说明书。

二、操作条件:年产量:7500t。

料液初温:30℃料液浓度:43%(含乙醇摩尔分数)塔顶产品浓度:97%(含乙醇摩尔分数)乙醇回收率:99.8%(以摩尔分数计)年工作日:330天(24小时运行)精馏塔塔顶压力:4kPa(表压)冷却水温度:30℃饱和蒸汽压力:2.5kgf/cm2(表压)单板压降:不大于0.7kPa全塔效率:52%回流比是最小回流比的1.8倍进料状况:泡点进料三、设计内容:(1)设计方案简介:对确定的工艺流程及精馏塔型式进行简要论述。

(2)工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

(3)主要设备的工艺尺寸计算板间距,塔径,塔高,溢流装置,塔盘布置等。

(4)主要附属设备设计计算及选型塔顶全凝器设计计算:热负荷,载热体用量。

(5)用坐标纸绘制乙醇-水溶液的y-x图一张,并用图解法求理论塔板数(贴在说明书中对应的地方)。

(6)绘制精馏塔设计条件图。

附:汽液平衡数据表1一、总体设计计算1.1 汽液平衡数据(760mm Hg)1.2塔的物料衡算=43/46.07/(43/46.07+57/18.01)=0.2277XF=97/46.07/(97/46.07+31/18.01)=0.9267XDM=0.2277⨯46.07+(1-0.2277)⨯18.02=24.399kg/kmol F同理可得M=44.013 D,=7.5*106/7920=946.97DD=946.97/44.013=21.516η=0.998=DXD /FXF=21.516*0.9267/0.2277FF=87.742 由 F=D+WFXF =DXD+WXW得:Xw=0.03998W=66.226 Kmol/h1.3塔板计算tF=(0.2277-0.1661/0.2337-0.1661)*(82.7-84.1)+84.1=82.82°CtF=82.82℃乙醇不同温度的饱和蒸气压乙醇的饱和蒸气压o={[(82.82-80)/(90-80)]*(158.27-108.32)}+108.32=122.41 PA水不同温度的饱和蒸气压由图数据通过内插法得P B O =53.0525 α =122.41/53.0525=2.31 泡点进料q=1R min =1/α-1[X D /X F -α(1-X D )/1-X F ]=2.94 R=1.8R min =5.292精馏段操作线方程1111n n D R y x x R R +=+++=0.841x+0.1473提馏段操作线方程W m m x WqF L W x W qF L qF L y -+--++=+''1=1.503x-0.000849实际塔板数N pE T =0.52精馏段Np1=11/0.52=21块提馏段Np2=3/0.52=6块总板数21+6=27块二、塔的工艺条件及物性数据计算2.1精馏段的数据1.平均压力Pm单板降压不大于0.7Kpa所以等于0.7Kpa塔顶:PD=4+101.3=105.3Kpa加料板:PF=105.3+0.7*21=120Kpa平均压力:Pm=(105.3+120)/2=112.65Kpa2.平均温度tD={[(0.9267-0.08943)/(1-0.8943)]*(80.02-78.15)}+78.15=78.72℃tF=82.82℃精馏段tm=(82.82+78.72)/2=80.77℃3.平均分子量塔顶:M VDM = XD×M轻组分+(1-XD)×M重组分=46.07*0.9267+(1-0.9267)*18.01=44.01kg/kmolM LDM = x1×M轻组分+(1-x1)×M重组分=46.07*0.743+(1-0.743)*18.01=38.86kg/kmol进料板的平均分子量:进料板对应的组成Xn 和ynM VFM = yn×M轻组分+(1-yn)×M重组分=46.01*0.512+(1-0.512)*18.01=32.38kg/kmolM LFM = Xn×M轻组分+(1-Xn)×M重组分=46.07*0.2277+(1-0.2277)*18.01=24.4kg/kmol 精馏段:MVm=(44.01+32.38)/2=38.2kg/kmolMLm=(38.36+24.4)/2=31.63kg/kmol4.平均密度塔顶:aA =0.97 aB=0.03查物性数据:易挥发组分密度ρ1= 763.42 Kg/m3难挥发组分密度ρ2= 972.58 Kg/ m3塔顶液相密度:ρLD =1/[a1/ρ1+(1-a1) /ρ2]= 741.84Kg/ m3进料板:aA =0.43 aB=0.53查物性数据:易挥发组分密度ρ1= 733.59 Kg/m3难挥发组分密度ρ2= 969.97 Kg/ m3进料液相密度:ρLF =1/[a2/ρ1+(1-a2) /ρ2]= 851.93Kg/ m3精馏段的平均液相密度:ρLM =(ρLD+ρLF)/2=796.88Kg/ m3精馏段平均汽相密度:TM =(TF+TD)/2=80.77℃ρVM =PM V /RT M =1.463Kg/ m 35. 液体的平均表面张力 (1)塔顶t D =78.72℃ бO =17.26 бW =62.8V O =46.07/737=0.06251m 3/kmol V w =18.01/973=0.01851m 3/kmol X o =X D =0.9267 X W =1-0.9267=0.0733 φo =X o V O /(X W V w +X o V O )=0.977 φW =1-0.977=0.023 B=lg(φW q /φo )=-3.266Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.0007 A=B+Q=-3.266-0.0007=-3.2667lg(φs W q /φso )=-3.2667和φs W +φso =1解得 φs W =0.021 φso =0.979бm 1/4=φs W бW 1/4+φso бO 1/4=2.05 бDm =17.81N/m2. 进料板t F =82.82℃ бO =16.88 бW =62.04V O =46.07/733=0.06285m 3/kmol V w =18.01/969.3=0.01858m 3/kmol X o =X F =0.2277 X W =1-0.2277=0.7723 φo =X o V O /(X W V w +X o V O )=0.499φW =1-0.499=0.501 B=lg(φW q /φo )=-0.298Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.00748A=B+Q=-0.298-0.00748=-0.3055lg(φs W q /φso )=-0.3055和φs W +φso =1解得 φs W =0.498 φso =0.502бm 1/4=φs W бW 1/4+φso бO 1/4=2.415 бFm =34.01N/m(3) 精馏段бm =(17.81+34.01)/2=25.91N/m 6. 液体的平均黏度,L D μ=0.44⨯0.9267+(1-0.9267)⨯0.357=0.434.a mP s,L F μ=0.12⨯0.33+(1-0.12)⨯0.30=0.3904.a mP s,L M μ精=0.435*0.3904+0.357*(1-0.3904)=0.387.a mP s 7. 精馏段的汽液负荷计算V=(R+1)D=(5.292+1)⨯21.516=135.38/kmol hS V =,,3600V V m V M ρ精精=135.38*38.2/(3600*1.463)=0.91m 3/sV h =3600*0.91=3262.96m 3/hL=RD=50292⨯21.516=113.86/kmol h,3600L s L m LM L ρ=精精=113.86*31.63/(3600*796.88)=0.001255L h =3600*0.001255=4.52m 3/h2.2 提馏段的数据1.平均温度t W ={[(0.03998-0.019)/(1-0.019)]*(89-95.5)}+95.5=92.93℃ t F =82.82℃提馏段t m =(82.82+92.93)/2=87.88℃2.平均分子量 塔底:M VWM = X W ×M 轻组分+(1-X W )×M 重组分=46.07*0.414+(1-0.414)*18.01=29.63kg/kmol M LWM = x 1×M 轻组分+(1-x 1)×M 重组分=46.07*0.03998+(1-0.03998)*18.01=19.13kg/kmol 提馏段:M Vm =(29.63+32.38)/2=31kg/kmol M Lm =(19.13+24.4)/2=21.77kg/kmol 3.平均密度塔底:a A =0.64 a B =0.36查物性数据: 易挥发组分密度ρ1= 725.87 Kg/m 3 难挥发组分密度ρ2= 963.23 Kg/ m 3塔底液相密度:ρLD =1/[a 1/ρ1+(1-a 1) /ρ2]= 963.15Kg/ m 3 提馏段的平均液相密度:ρLM =(ρLW +ρLF )/2=907.54Kg/ m 3 提馏段平均汽相密度:T M =(T F +T D )/2=87.88℃ ρVM =PM V /RT M =1.16Kg/ m34.液体的平均表面张力 (1)塔底t W =92.93℃ бO =13.27 бW =60.16V O =46.07/737=0.06251m 3/kmol V w =18.01/973=0.01851m 3/kmol X o =X W =0.03998 X W =1-0.03998=0.96 φo =X o V O /(X W V w +X o V O )=0.123φW =1-0.123=0.877B=lg(φW q /φo )=0.796Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.000163 A=B+Q=0.796-0.000163=0.794lg(φs W q /φso )=0.794和φs W +φso =1解得 φs W =0.634 φso =0.366бm 1/4=φs W бW 1/4+φso бO 1/4=2.46 бWm =36.62N/m提馏段бm =(36.62+34.01)/2=35.32N/m 5.液体的平均黏度μlw =0.03998⨯0.324+(1-0.03998)⨯0.324=0.393.a mP s ,L F μ=0.12⨯0.33+(1-0.12)⨯0.30=0.3904.a mP s μL,M 提=0.393*0.084+0.393*(1-0.084)=0.33.a mP s 6.精馏段的汽液负荷计算V=(R+1)D=(5.292+1)⨯21.516=135.38/kmol hS V ==135.38*31/(3600*1.16)=1m 3/sV h =3600*1=3600m 3/hL=RD=50292⨯21.516=113.86/kmol hL s =113.86*21.77/(3600*907.54)=0.00154L h =3600*0.00154=5.508m 3/h三、塔和塔板主要工艺尺寸计算 3.1 塔径首先考虑精馏段:参考有关资料,初选板音距T H =0.5m 取板上液层高度L h =0.06m 故 T H -L h=0.5-0.06=0.44ms s L V ⎛ ⎝查图可得 20C =0.097校核至物系表面张力为9.0mN/m 时的C ,即C=20C 0.220σ⎛⎫⎪⎝⎭=0.0102max u =CL VVρρρ-可取安全系数0.7,则 u=0.7max u =0.7⨯2.378=1.665m/s故4sV uπ按标准,塔径圆整为1.2m ,则空塔气速为0.805m/s3.2 精馏塔有效高度的计算精馏段有效高度为1Z N =-T 精精()H =(21-1)⨯0.5=10m提馏段有效高度为1Z N =-T 提提()H =(6-1)⨯0.5=2.5mZ 总=10+2.5=12.5m3.3 溢流装置采用单溢流、弓形降液管⑴ 堰长 w l 取堰长 w l =0.6Dw l =0.6⨯1.2=0.72m⑵ 出口堰高w h =L ow h h -选用平直堰,堰上液层高度ow h 由下式计算ow h =2/32.841000h w L E L ⎛⎫ ⎪⎝⎭近似取E=1.03,则ow h =0.00995故 w h =0.06-0.00995=0.05m ⑶ 降液管的宽度d W 与降液管的面积f A 由L D /D T =0.6《化工设计手册》 得dW D =0.1,f TA A =0.053 故 d W =0.12 f A =0.0722()24D π=0.062m留时间 f T sA H L τ==23.9s (>5s 符合要求)提馏段t=A d H T /Ls=33.11=>5s⑷ 降液管底隙高度 h ο u o ,=0.08h ο=L s /w l u o ,=0.022m3.4 塔板布置(1)取边缘区宽度c W =0.06,安定区宽度s W =0.075(2)计算开孔面积212sin 180a x A R R π-⎡⎤=⎢⎥⎣⎦=0.7992m 其中 x=2D-(d s W W +)=0.405m R=2D-c W =0.54m 3.5 筛板数n取筛孔的孔径0d 为39mm,正三角形排列,一般碳钢的板厚δ为3mm,孔中心距t=75.0mm 浮阀数目 取阀动能因数11F =,则由式o υ=o υ=计算塔板上的筛孔数n,即 n=4V s /πd o 2u o =83.75=84提馏段的筛口气速和筛孔数用上述公式计算, 提馏段 u 0=10.21m/s, n=82个取边缘区宽度c W =0.06,安定区宽度s W =0.075,板厚δ为3mm, 做等腰三角形叉排h=Aa/0.075n=0.127m=120mm 阀孔气速μo =4V s /πnd o 2=9.12m/s F 0=10.97四、筛板的流体力学性能 1. 塔板压降校核 h f =h c +h e(1)气体通过干板的降压h c临界孔速 u 0c =(73/ρv )1/1.825=8.52m/s<u 0 所以h c =5.34(ρv /ρL )(u 02/2g)=0.0411m (2)气体通过班上液层的压降h e h e =β(h w +h ow )=0.05*0.06=0.03 (3)h б克服表面张力的压降 h б=0.00034m(4)气体通过筛板压降h f 和∆p f h f =h c +h e +h б=0.07144m∆p f =ρl *g*h f =558.5kpa<0.7kpa 2. 雾沫夹带量校核泛点率1100%F bF =板上液体流经长度 Z L =D T -2W D =0.96m F=40.72%<80%不会发生过量的雾沫夹带 3. 漏液校核=4.134m/s k=u 0/u'0=2.19=>2提馏段用同样的方法得,k=u 0/u'0==>2 4. 降低管液泛校核为防止降液管液泛的发生,应使降液管中清液层高度()d T w H H h ≤Φ+d P L d H h h h =++ 即h d =0.153(L s /L w h o )2=0.00096m取 取校正系数Φ=0.5,H d =0.1324,Φ(H T +h w )=0.275m可见(),d T W H H h φ≤+符合防止淹塔的要求。

乙醇—水混合溶液连续精馏塔设计

乙醇—水混合溶液连续精馏塔设计

乙醇—水混合溶液连续精馏塔设计乙醇-水混合溶液连续精馏塔的设计引言:乙醇-水混合溶液的连续精馏塔在工业生产中有广泛的应用,尤其是在酒精生产、燃料乙醇的提纯等领域。

本文将以设计乙醇-水混合溶液连续精馏塔为主题,对连续操作的工艺参数、设备设计等方面进行详细的探讨。

一、乙醇-水混合溶液的特性乙醇-水混合溶液的特性是设计连续精馏塔的基础,其中最重要的是乙醇和水的气液平衡数据。

通过实验测得的气液平衡数据可以用于计算实际操作中的塔回流比、落液比等重要参数,以保证精馏塔的正常运行。

二、连续操作的工艺参数1.塔回流比:乙醇-水混合溶液的精馏塔中,塔回流比是一个关键的控制参数。

通过控制塔回流比,可以实现对塔内温度和浓度的调节,以保证乙醇和水的分离效果。

一般来说,较高的塔回流比可以提高塔底液的浓度,但会相应地降低塔顶的乙醇含量。

2.塔顶温度:塔顶温度是乙醇-水混合溶液精馏塔操作中另一个重要的工艺参数。

通过调节塔顶温度,可以控制乙醇的纯度,实现乙醇的提纯。

一般来说,较低的塔顶温度可以提高乙醇的纯度,但会增加底液的回流量。

3.塔底液的回流量:塔底液的回流量也是连续精馏塔操作中需要控制的参数之一、通过调节底液的回流量,可以实现对塔底温度和浓度的控制,从而保证乙醇和水的分离效果。

一般来说,增加底液的回流量可以提高底液的浓度,但会相应地降低塔顶温度。

三、设备设计1.乙醇-水混合溶液连续精馏塔的设备包括:塔体、填料、除沫器、塔底液泵、塔顶动力和塔口动力等。

塔体的设计需要考虑到溶液的物理特性,如压力、温度和粘度等。

2.填料是乙醇-水混合溶液连续精馏塔中的关键设备。

填料的选择应考虑到温度、浓度和性质等因素,以满足乙醇和水的分离要求。

3.除沫器在乙醇-水混合溶液连续精馏塔中起到除去塔顶产生的泡沫的作用。

合理的除沫器设计可以提高精馏效果,避免泡沫堵塞导致操作不稳定。

4.塔底液泵是用于控制底液回流量的设备,通过调节泵的转速来实现对回流量的调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乙醇-水溶液连续精馏塔设计目录1.设计任务书 (3)2.英文摘要前言 (4)3.前言 (4)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.课程设计心得 (23)精馏塔设计任务书一、设计题目乙醇—水溶液连续精馏塔设计二、设计条件1.处理量: 15000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 93 (wt%)4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。

d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。

在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。

精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。

化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。

为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。

可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。

浮阀有很多种形式,但最常用的形式是F1型和V-4型。

F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,才用轻阀。

浮阀塔具有下列优点:1、生产能力大。

2、操作弹性大。

3、塔板效率高。

4、气体压强降及液面落差较小。

5、塔的造价低。

浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。

精馏塔优化设计计算在常压连续浮阀精馏塔中精馏乙醇——水溶液,要求料液浓度为35%,产品浓度为93%,易挥发组分回收率99%。

年生产能力15000吨/年操作条件:①间接蒸汽加热②塔顶压强:1.03atm(绝对压强)③进料热状况:泡点进料一精馏流程的确定乙醇——水溶液经预热至泡点后,用泵送入精馏塔。

塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。

塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。

工艺流程图见图二塔的物料衡算1.查阅文献,整理有关物性数据⑵常压下乙醇和水的气液平衡数据,见表常压下乙醇—水系统t—x—y数据如表1—6所示。

乙醇相对分子质量:46;水相对分子质量:1825℃时的乙醇和水的混合液的表面张力与乙醇浓度之间的关系为:58453210314.410348.100163.009604.09726.283364.67x x x x x --⨯-⨯+-+-=σ 式中 σ——25℃时的乙醇和水的混合液的表面张力,N /m ; x ——乙醇质量分数,%。

其他温度下的表面张力可利用下式求得2.11221⎪⎪⎭⎫ ⎝⎛--T T T T C C =σσ式中 σ1——温度为T 1时的表面张力;N /m ;σ2——温度为T 2时的表面张力;N /m ; T C ——混合物的临界温度,T C =∑x i T ci ,K ; x i ——组分i 的摩尔分数; T Ci ——组分i 的临界温度, K 。

2. 料液及塔顶、塔底产品的摩尔分数 X F =0.35/46.070.35/46.070.65/18.02+=0.174X D =0.93/46.070.93/46.070.07/18.02+=0.838X W =0.01/46.070.01/46.070.99/18.02+=0.00393. 平均摩尔质量M F =0.174⨯46.07+(1-0.174)⨯18.02=22.9 kg/kmolM D = 0.838⨯46.07+ (1-0.838) ⨯18.02=41.52kg/kmol M W =0.0039⨯46.07+(1-0.0039)⨯18.02=18.12kg/kmol4. 物料衡算已知:F=31500010720027.84⨯⨯=74.83/kmol h总物料衡算 F=D+W=74.83易挥发组分物料衡算 0.838D+0.0039W=74.83⨯0.174 联立以上二式得:D=15.25kg/kmol W=59.57kg/kmol三 塔板数的确定1. 理论塔板数T N 的求取⑴根据乙醇——水气液平衡表1-6,⑵求最小回流比R min 和操作回流比R 。

因为乙醇-水物系的曲线是不正常的平衡曲线,当操作线与q 线的交点尚未落到平衡线上之前,操作线已经与平衡线相切,如图g 点所示. 此时恒浓区出现在g 点附近, 对应的回流比为最小的回流比. 最小回流比的求法是由点a(D x ,D x )向平衡线作切线,再由切线的斜率或截距求min R 作图可知 b=0.342 b=1Dx R +=0.342 ∴R min =1.45由工艺条件决定 R=1.6R m in 故取操作回流比 R=2.32 ⑶求理论板数T N塔顶,进料,塔底条件下纯组分的饱和蒸气压i p①求平均相对挥发度 塔顶 D α=A B P P =101.344.2=2.29 进料 F α=188.586.1=2.189 塔底 W α=220.0101.33=2.17全塔平均相对挥发度为W α'm α②理论板数T N 由芬斯克方程式可知N m in =1l X X 1X 1X l mg W W D D g -α⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=0.83810.003910.8380.003912.23g g l l ⎡-⎤⎛⎫⎛⎫ ⎪⎪⎢⎥-⎝⎭⎝⎭⎣⎦-=7.96 且min 2.32 1.450.2621 2.321R R R --==++ 由吉利兰图查的min 0.412T T N N N -=+ 即7.970.412T T N N -=+解得 T N =14.2 (不包括再沸器)③进料板min'10.83810.174lg lg 110.8380.17411 2.97lg lg 2.24D F D F m x x x x N α⎡⎤⎛⎫⎛⎫-⎡-⎤⎛⎫⎛⎫⎢⎥ ⎪⎪ ⎪⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=-=-= 前已经查出min 0.412T T N N N -=+ 即 2.970.412T T N N -=+解得 N=6.42故进料板为从塔顶往下的第7层理论板 即F N =7 总理论板层数 T N =14.2 (不包括再沸器) 进料板位置 F N =7 2、全塔效率TE因为T E =0.17-0.616lg m μ根据塔顶、塔釜液组成,求塔的平均温度为,在该温度下进料液相平均粘计划经济为m μ=0.174⨯0.41+(1-0.174)⨯0.3206=0.336T E =0.17-0.616lg0.336=0.4623、实际塔板数精馏段塔板数:613TN E ==精 提馏段塔板数: 9.220TN E ==提 四、塔的工艺条件及物性数据计算 以精馏段为例:1、 操作压力为 Pm塔顶压力:D P =1.04+103.3=104.34若取每层塔板压强 P ∆=0.7则进料板压力: F P =104.34+13⨯0.7=113.4kpa 精馏段平均操作压力 Pm =113.44104.34108.892+=kpa2、温度m t根据操作压力,通过泡点方程及安托因方程可得 塔顶 D t =78.36C 进料板F t =95.5Cm t 精=78.3695.586.932+=C 3、平均摩尔质量M⑴ 塔顶D x =1y =0.838 D y =0.825VD M = 0.838⨯46.07+(1-0.838)⨯18.02=41.52 kg/kmolLD M =0.825⨯46.07+(1-0.825)⨯18.02=41.15 kg/kmol⑵ 进料板: F y = 0.445F x =0.102VF M = 0.445⨯46.07+(1-0.445)⨯18.02=30.50 kg/kmolLF M =0.102⨯46.07+(1-0.102)⨯18.02=20.88 kg/kmol 精馏段的平均摩尔质量,V M 精=41.530.536.012+= kg/kmol ,L M 精=41.1520.8831.002+= kg/kmol 4、平均密度 m ρ⑴液相密度 ,L m ρ,1L mρ=,,ABL AL Bw w ρρ+塔顶:,1L mρ=0.930.075789972.5+,L m ρ=796.73/Kg m 进料板上 由进料板液相组成 A x =0.102A w =0.10246.070.2250.10246.07(10.102)18.02⨯=⨯+-⨯,1LF mρ=796.7924.2860.52+=,LF m ρ=924.23/Kg m故精馏段平均液相密度,L m ρ精=796.7924.2860.52+=3/Kg m⑵气相密度 ,V m ρ ,V m ρ精=PM RT 提108.8936.011.318.314(27386.93)⨯=⨯+3/Kg m5、液体表面张力 m σ m σ=1ni i i x σ=∑.m D σ=0.838⨯17.8+(1-0.838)⨯0.63=15.0/mN m ,m F σ=0.102⨯16.0+(1-0.102)⨯0.62=2.20/mN m,m σ精=15.01 2.208.592+=/mN m 6、液体粘度 ,L m μ,L m μ=1ni i x i μ=∑,L D μ=0.838⨯0.55+(1-0.838)⨯0.37=0.521.a mP s ,L F μ=0.102⨯0.34+(1-0.102)⨯0.29=0.295.a mP s ,L M μ精=0.5210.2950.4082+=.a mP s以提馏段为例1、平均摩尔质量M塔釜 w y = 0.050 w x =0.0039Vw M =0.050⨯46.07+(1-0.050)⨯18.02=19.42 kg/kmol Lw M =0.0039⨯46.07+(1-0.0039)⨯18.02=18.12 kg/kmol 提馏段的平均摩尔质量,V M 提=30.5019.4224.962+= kg/kmol,L M 提=20.8818.1219.52+= kg/kmol2、平均密度,L m ρ,,,1ABL mL AL Bw w ρρρ=+塔釜,由塔釜液相组成 A x =0.0039A w =0.01,1Lw mρ=35.3831.010.000353600860.5⨯=⨯∴ ,Lw m ρ=961.53/Kg m故提馏段平均液相密度 ,L m ρ提=961.5924.2942.852+=3/Kg m ⑵气相密度,V m ρ,L m ρ提=PM RT 提=113.4424.960.928.314(27398.01)⨯=⨯+3/Kg m五 精馏段气液负荷计算V=(R+1)D=(2.32+1)⨯15.25=50.63/kmol hS V =,,3600V V m V M ρ精精=50.6336.010.3753600 1.31⨯=⨯ m s /3L=RD=2.32⨯15.25=35.38/kmol h,3600L s L m LM L ρ=精精=35.3831.010.000353600860.5⨯=⨯ m s /3六 提馏段气液负荷计算V ’=V=50.63/kmol h,''3600V s V m V M V ρ=提提=0.382 m s /3L ’=L+F=35.38+74.83=110.2/kmol h,''3600L s L m L M L ρ=提提=0.0006 m s /3七 塔和塔板主要工艺尺寸计算1塔径首先考虑精馏段:参考有关资料,初选板音距T H =0.45m 取板上液层高度L h =0.07m 故 T H -L h=0.45-0.07=0.38ms s L V ⎛ ⎝0.000350.375⎛ ⎝查图可得 20C =0.075校核至物系表面张力为9.0mN/m 时的C ,即C=20C 0.220σ⎛⎫ ⎪⎝⎭=0.075⨯0.28.5920⎛⎫⎪⎝⎭=0.064max u=Cm/s可取安全系数0.70,则u=0.70max u =0.7⨯1.64=1.148 m/s故m 按标准,塔径圆整为0.7m ,则空塔气速为0.975 m/s2 精馏塔有效高度的计算精馏段有效高度为1Z N =-T 精精()H =(13-1)⨯0.45=5.4m 提馏段有效高度为1Z N =-T 提提()H =(20-1)⨯0.45=8.55m 在进料孔上方在设一人孔,高为0.6m 故精馏塔有效高度为:5.4+8.55+0.6=14.55m3 溢流装置采用单溢流、弓形降液管⑴ 堰长 w l取堰长 w l =0.75Dw l =0.75⨯0.7=0.525m ⑵ 出口堰高w h =L ow h h -选用平直堰,堰上液层高度ow h 由下式计算ow h =2/32.841000h w L E L ⎛⎫ ⎪⎝⎭近似取E=1.03,则 ow h =0.017故 w h =0.07-0.017=0.053m⑶ 降液管的宽度d W 与降液管的面积f A 由0.750wl D=查《化工设计手册》 得 dW D =0.17,f TA A =0.08故 d W =0.17D=0.12 f A =0.08()24D π=0.0312m停留时间 f T sA H L τ==39.9s (>5s 符合要求)⑷ 降液管底隙高度 h οh ο=w h -0.006=0.053-0.006=0.047m 3、塔板布置及浮阀数目击者及排列 取阀孔动能因子 F ο=9 孔速 u ο=8.07m 浮阀数 n=24s V d u οπ=20.3750.0398.074π⨯=39(个)取无效区宽度 c W =0.06m 安定区宽度 s W =0.07m开孔区面积212sin 180a x A R R π-⎡⎤=⎢⎥⎣⎦ R=2c DW -=0.29m x=()2d D W Ws -+=0.16m故 a A=210.1620.29sin 1800.29π-⎡⎤⎢⎥⎣⎦=0.175m 浮阀排列方式采用等腰三角形叉排取同一磺排的孔心距 a=75mm=0.075m 估算排间距hh=a A n a ⨯=0.175390.075⨯=0.06m八 塔板流体力学校核1、气相通过浮塔板的压力降,由下式 p c f h h h h σ=++⑴ 干板阻力 25.342V c L u h gορρ==21.318.075.342860.59.81⨯⨯⨯=0.027m 液柱⑵ 液层阻力x ο 取充气系数数 οε=0.5,有 f h =οεL h =0.5⨯0.07=0.035m 液柱 ⑶ 液体表面张力所造成阻力x ο此项可以忽略不计。

相关文档
最新文档