中考复习之分式方程及其应用
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

4.(2021·广元第 17 题 6 分)解方程:x-2 3+x-3 1=4. 解:去分母,得 3(x-3)+2(x-1)=24, 去括号,得 3x-9+2x-2=24, 移项,得 3x+2x=24+9+2,
合并同类项,得 5x=35, 系数化为 1,得 x=7.
命题点 2:由分式方程的解的情况求字母的值(范围)(近 3 年考查 12 次)
则列方程正确的是
A.1x5-0800=12
000 x
15 000 12 000 C. x = x-8
B.1x5+0800=12
000 x
15 000 12 000 D. x = x +8
( B)
9.(2021·广安第 22 题 8 分)国庆节前,某超市为了满足人们的购物需
求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
其大意为:现请人代买一批椽,这批椽的价钱为 6 210 文.如果每株椽
的运费是 3 文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的
价钱.试问 6 210 文能买多少株椽?设这批椽的数量为 x 株,则符合题
意的方程是
( A)
A.3(x-1)=6
210 x
B.6x-2110=3
C.3x-1=6
210 x
(3)由(2)可知,按相同金额加油更合算, 故答案为:金额.
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

13.(2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅 力的茶文化.2020 年 5 月 21 日以“茶和世界 共品共享”为主题的第一届 国际茶日在中国召开.某茶店用 4 000 元购进了 A 种茶叶若干盒,用 8 400 元购进 B 种茶叶若干盒,所购 B 种茶叶比 A 种茶叶多 10 盒,且 B 种茶叶 每盒进价是 A 种茶叶每盒进价的 1.4 倍.
D.无解
( A)
3. (2021·巴中)关于 x 的分式方程2m-+xx-3=0 有解,则实数 m 应满足的
条件是
( B)
A.m=-2 B.m≠-2 C.m=2 D.m≠2
4. (2021·鄂尔多斯)2020 年疫情防控期间,鄂尔多斯市某电信公司为了
满足全体员工的需要,花 1 万元购买了一批口罩,随着 2021 年疫情的缓
D.10 x000-100=6x-00100
5.(2020·自贡)某工程队承接了 80 万平方米的荒山绿化任务,为了迎
接雨季的到来,实际工作时每天的工作效率比原计划提高了 35%,结果提
前 40 天完成了这一任务.设实际工作时每天绿化的面积为 x 万平方米,
则下面所列方程中正确的是
( A)
A.80(1+x 35%)-8x0=40
10.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单
已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)
甲
7 200
乙
3 200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高 50%. 王师傅:甲商品比乙商品的数量多 40 件. 请你求出乙商品的进价,并帮助他们补全进货单.
中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。
初中化学中考复习之第7讲 分式方程及其应用

基本数量关系:总价 =数量,总价 =单价
单价
数量
常见应用题中的相等关系:
商品总售价 .±数量差= 商品总售价 .
变化后商品单价
商品单价
上一页 下一页
上一页 下一页
考点1 分式方程的解法 考点精讲 1.(2020·兰州模拟)解分式方程: 3 1 1 .
x3 3x
解:去分母,得3-(x-3)=-1. 去括号、移项、合并同类项,得-x=-7. 系数化为1,得x=7. 经检验,x=7是原方程的解,∴原方程的解为x=7.
(1)解的正负符号问题:①求出方程的解x(此时方程的解是含待定字母的代数
式);②使所求得的未知数x满足所给出的范围,且x满足分式方程中分母
不为零,即不能为增根;③解不等式求出待定字母的取值范围.
(2)无解问题:①将分式方程去分母化为整式方程(形如ax=b);②第一种情
况:令最简公分母为0,求出x的值(即增根),再代入ax=b,求出待定字母
中考先锋数学甘肃专版
第二章 方程(组)与一元一次不等式(组)
第7讲 分式方程及其应用
上一页 下一页
上一页 下一页
知识点1 分式方程及解法 1.概念:分母中含①__未__知__数____的方程叫做分式方程.
上一页 下一页
2.分式方程的解法: (1)基本思想:将分式方程化为②__整__式______方程. (2)解分式方程的一般步骤
上一页 下一页
解分式方程时注意以下几点: 1.将分式方程转化为整式方程时,常数项不要漏乘最小公分母,并注意括
号应用; 2.勿忘检验,此点最容易遗漏.
上一页 下一页
对点训练
1.(甘肃中考)方程
x2 1 =0的解是(
x 1
考点05 分式、分式方程及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点05 分式、分式方程及其应用分式在中考中的考察难度不大,考点多在于分式有意义的条件,以及分式的化简求值。
浙江中考中,分式这个考点的占比并不太大,其中分式的化简求值问题为主要出题类型,出题多以简答题为主;个别城市会同步考察分式方程的简单应用,多以选择填空题为主,有些城市甚至不会出分式的单独考题;而分式方程的应用也和分式方程一样,较少出题,出题也基本是以选择题或者填空题的形式考察,整体难度较小。
但是,分式的化简方法以及分式方程的解法的全面复习对后期辅助几何综合问题中的计算非常重要!考向一、分式有意义的条件考向二、分式的运算法则考向三、分式方程的解法考向四、分式方程的应用考向一:分式有意义的条件1.分式:一般地,如果A,B 表示两个整式,并且B中含有分母,那么式子叫做分式,分式中A叫做分子,B 叫做分母。
最简分式:分子分母中不含有公因式的分式2.分式有意义的条件3.分式值=0需满足的条件【易错警示】1.下列四个式子:,x 2+x ,m ,,其中分式的个数有( )A .1个B .2个C .3个D .4个【分析】根据分式的定义可得.【解答】解:分母上含有字母的式子是分式,题目中所给的式子中只有,两个分母中都含有字母,所以这两个是分式,故选:B .2.若分式无意义,则x 的取值范围是( )A .B .C .D .【分析】根据分式无意义的条件可得2x ﹣1=0,再解即可.【解答】解:由题意得:2x ﹣1=0,解得:x =,若 <故选:C .3.若分式的值为零,则x 的值为( )A .2或﹣2B .2C .﹣2D .1【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:依题意,得x 2﹣4=0,且x +2≠0,解得,x =2.故选:B .4.已知=,则的值为( )A .﹣B .﹣C .D .【分析】先化简,代入数值计算即可.【解答】解:∵,===.故选:C .考向二:分式的运算法则1.分式的基本性质:分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。
2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用

耽搁,故李老师骑自行车先行出发,20 min后,张老师乘坐汽车出发,结果
两人同时到达①.已知汽车的平均速度是自行车平均速度的2倍,求李老师骑自
行车的平均速度;
2025版
数学
甘肃专版
解:设自行车的平均速度为x km/h,则汽车的平均速度为2x km/h,根据题意,
2025版
第三节
数学
甘肃专版
分式方程及其应用
2025版
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
相
关
概
念
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
分
式
方
程
的
实
际
应
用
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
分
式
方
程
的
实
际
应
用
数学
甘肃专版
2025版
数学
甘肃专版
2025版
得
- = ,解得x=15,
经检验,x=15是原分式方程的解,且符合题意.
答:李老师骑自行车的平均速度为15 km/h.
2025版
数学
甘肃专版
【分层分析】
第一步:设自行车的平均速度为x km/h;
中考数学复习---分式方程的应用考点归纳与典型例题讲解PPT课件

根据等量关系,列出分式方程,再解即可.
【解析】设该地 4G 的下载速度是每秒 x 兆,则该地 5G 的下载速度是每秒 15x 兆,
600 600 由题意得: x − 15x =140,
解得:x=4, 经检验:x=4 是原分式方程的解,且符合题意, 15×4=60,
答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是 每秒60兆.
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出 5 个书包赠送给某希望 小学,剩余的书包全部售出,其中两种书包共有 4 个样品,每种样品都打五折,商场仍获 利 1370 元.请直接写出赠送的书包和样品中,B 种书包各有几个? 【分析】 (1)设每个 A 种书包的进价为 x 元,则每个 B 种书包的进价为(x+20)元,根据数量= 总价÷单价结合用 700 元购进 A 种书包的个数是用 450 元购进 B 种书包个数的 2 倍,即可 得出关于 x 的分式方程,解之经检验后即可得出结论;
3
求购买 A 种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元? 【答案】(1)A 种花弃每盆 1 元,B 种花卉每盆 1.5 元;(2)购买 A 种花卉 1500 盆时 购买这批花卉总费用最低,最低费用为 8250 元
【分析】 (1)设 A 种花弃每盆 x 元,B 种花卉每盆(x+0.5)元,根据题意列分式方程,解出方 程并检验;
4.(2020•广东)某社区拟建 A,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面 积比每个 B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类 摊位每平方米的费用为 30 元.用 60 平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊
3
初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。
验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。
4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。
6. 分式方程的解法有 和 。
(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲┃ 回归教材
2.据媒体报道,我国 2009 年公民出境旅游总人数约 5000 万人次,2011 年公民出境旅游总人数约 7200 万人次, 若 2010 年、2011 年公民出境旅游总人数逐年递增,请解答 下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率; (2)如果 2012 年仍保持相同的年平均增长率,请你预测 2012 年我国公民出境旅游总人数约多少万1.分式方程的概念; 2.分式方程的增根.
1-kx 1 [2012· 攀枝花 ] 若分式方程 2 + = 无 x-2 2-x
1或2 解,则 k=________.
第8讲┃ 归类示例
1- kx 1 [解析 ] ∵分式方程 2+ = 有增根, x- 2 2- x 去分母得 2(x- 2)+ 1- kx=- 1, 整理得 (2- k)x= 2, 2 当 2- k≠ 0 时, x= . 2- k 当 2- k= 0 时,此方程无解,即 k= 2 时,原方程无解. 1- kx 1 ∵分式方程 2+ = 有增根, x- 2 2 - x ∴ x- 2= 0, 2- x= 0, 解得 x= 2, 2 即 = 2,解得 k= 1. 2- k
检验 增根 的方法
第8讲┃ 考点聚焦 考点2 分式方程的解法
分式方 程的解 直接去 方程两边同乘各分式的 法 公分母 ,约去分母,化为整 分母法 ________ 式方程,再求根,验根
基本 思想
把分式方程转化为整式方程, 去分母 即分式方程――→ 换元 整式方程
第8讲┃ 考点聚焦 考点3 分式方程的应用
第8讲┃ 回归教材
解:(1)设这两年我国公民出境旅游总人数的年平均增 长率为x,根据题意,得: 5000(1+x)2=7200, 解得:x1=0.2,x2=-2.2(不合题意,舍去). 即年平均增长率为20%. (2)7200×(1+20%)=8640. 答:(1)这两年我国公民出境旅游总人数的年平均增长 率为20%;(2)2012年我国公民出境旅游总人数约8640万人 次.
第8讲┃ 归类示例 ► 类型之二 分式方程的解法
命题角度: 1.去分母法; 2.换元法.
x+2 4 解方程: 2 + =-1. x -1 1-x
解:方程两边都乘 (x+1)(x-1),得 4-(x+ 1)(x+2)=- (x2-1), 1 1 整理得 3x= 1,解得 x= . 经检验, x= 是原方程的解. 3 3 1 故原方程的解是 x= . 3
第8讲┃ 回归教材
回归教材
变化率问题巧把握
教材母题 华东师大版九上P30T1
某工厂1月份的产值是50000元,3月份的产值达到 60000元,这两个月的产值平均月增长的百分率是多少? (精确到0.1%)
第8讲┃ 回归教材
解:设平均每月增长的百分率为x,根据题意得, 50000(1+x)2=60000, 解方程,1+x=± 1.2 ,x=-1± 1.2 ,x1=-1- 1.2 (舍去),x2=-1+ 1.2≈0.095,所以增长率为9.5%.
1.审 2.设 3.列 4.解 5.验 6.答
列分式方程解应用题的一般步骤 审清题意, 分清题中的已知量、 未知量 设适当的未知数,可以直接设未知数, 有的题目需要间接设未知数 用含未知数的代数式表示相等关系列 出方程 解分式方程 检验是否是增根,是否符合题意 写出答案(包括单位)
第8讲┃ 归类示例
第8讲┃ 归类示例
解分式方程常见的误区: (1)忘记验根; (2)去分母时漏乘整式的项; (3)去分母时,没有注意符号的变化.
第8讲┃ 归类示例 ► 类型之三 分式方程的应用
命题角度: 1.利用分式方程解决生活实际问题; 2.注意分式方程要对方程和实际意义双检验.
第8讲┃ 归类示例
[2012· 厦门 ] 工厂加工某种零件,经测试,单独加 工完成这种零件,甲车床需用 x 小时,乙车床需用 (x2- 1)小 时,丙车床需用 (2x- 2)小时. (1)单独加工完成这种零件,若甲车床所用的时间是丙车 2 床的 ,求乙车床单独加工完成这种零件所需的时间; 3 (2)加工这种零件,乙车床的工作效率与丙车床的工作效 率能否相同?请说明理由.
第8讲┃ 分式方程及其应用
第8讲┃ 考点聚焦
考点聚焦
考点1 分式方程
概念 分 式 方 程 增根 分母里含有 ________ 未知数 的方程叫 做分式方程 在方程去分母时,有时可能产 生不适合原方程的根,它使方 零 ,这个 程中的分母为 ________ 根就叫做增根 将分式方程得到的根代入最简 公分母中看分母是不是为 ________ ,为零的就是增根 零
[点析] 变化率问题弄清楚变化前的数量a和变化后的数 量b,然后根据公式a(1+x)2=b或a(1-x)2=b列方程求解.
第8讲┃ 回归教材
中考变式
1.为落实“两免一补”政策,某市 2011 年投入教育 经费 2500 万元,预计 2013 年要投入教育经费 3600 万元, 已知 2011 年至 2013 年的教育经费投入以相同的百分率逐 年增长, 则 2012 年该市要投入的教育经费为________万元. 3000
第8讲┃ 归类示例
2 解: (1)由题意得 x= (2x- 2), x= 4,∴乙车床单独 3 加工完成这种零件所需的时间为 42- 1=15(小时). (2)若乙车床的工作效率与丙车床的工作效率相同,则 1 1 2 2 = , x - 1 = 2 x - 2 , ( x - 1) = 0, x= 1,经检验 x 2 x - 1 2x- 2 = 1是增根,舍去,∴乙车床的工作效率与丙车床的工作效 率不能相同.