初二数学秋季学期单元测试题

合集下载

2024-2025学年初中八年级上学期9月数学考试试题及答案

2024-2025学年初中八年级上学期9月数学考试试题及答案

2024-2025学年第一学期9月数学考试试卷八年级(卷面分值:100分考试时间:100分钟)一.选择题(每题4分,共36分)1. 下列长度的三条线段,能组成三角形的是()A. 4cm,5cm,9cmB. 8cm,8cm,15cmC. 5cm,5cm,10cmD. 6cm,7cm,14cm2. 如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A. 三角形具有稳定性B. 直角三角形的两个锐角互余C. 三角形三个内角的和等于180°D. 两点之间,线段最短3. 下列说法①平分三角形内角的射线是三角形的平分线;②三角形的三条中线交于一点,这个交点叫做三角形的重心;③三角形的三条高线交于一点;④直角三角形只有一条高;其中正确的个数有()A. 1个B. 2个C. 3个D. 4个4. 如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()A. 24°B. 59°C. 60°D. 69°5. 若一个凸多边形的内角和为720°,则这个多边形的边数为()A. 4B. 5C. 6D. 76. 下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等7. 如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A .720°B .900°C .1080°D .1440°A. ∠A =∠DB. AB =DCC. ∠ACB =∠DBCD. AC =BD8. 若(a ﹣2)2+|b ﹣3|=0,则以a 、b 为边长等腰三角形的周长为( )A. 6B. 7C. 8D. 7或89. 下列结论错误的是A. 全等三角形对应边上的中线相等B 两个直角三角形中,两个锐角相等,则这两个三角形全等C. 全等三角形对应边上的高相等D. 两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等二、填空题(每空2分,共18分)10. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是____________.(只写一个即可,不需要添加辅助线)11. 如图,E 、B 、F 、C 在同一条直线上,若∠D =∠A =90°,EB =FC ,AB =DF .则ΔABC ≌_____,全等的根据是_____.12. 等腰三角形顶角等于50°,则一个底角的度数为________;等腰三角形的一个底角为50°,则它的顶角为________.13. 四边形的外角和等于_______.的.的14. 如图,将一副三角板叠放在一起,则图中∠α的度数是_____度.15. 如图,∠1、∠2、∠3的大小关系为_____________.16. 如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动_____分钟后CAP PBQ ≌△△.三.解答题(共5题,共4617. 若一个多边形的每一个内角都等于120°,求该多边形的边数.(8分)18. 如图,CA CD =,CE CB =,求证:AB DE =.(8分)19. 如图所示,在△ABC 中,AD ⊥BC 于D ,AE 是角平分线.∠B =65°,∠C =55°,求∠DAE 的度数.(10.分)20. 如图,A 、B 、C 、D 四点在同一条直线上,AB CD =,EC DF =,EC DF ∥.求证:ACE BDF ≌.(10分)21. 如图,在△ABC 中,AC =BC ,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE ,BF ,E ,F 为垂足.AE =CF ,求证:∠ACB =90°.(10分)2024-2025学年第一学期9月考试答案八年级数学 一.选择题(每题4分,共36分)1 2 3 4 5 67 8 9 B A A B C D D D B二、填空题(每空2分,共18分)10、∠ABD=∠CBD 或AD=CD .11、①. △DFE ②. HL12、 ①. 65° ②. 80°13、360°.14、10515、∠1>∠2>∠316、4三.解答题(共5题,共46分)17、解:设这个多边形的边数为n .根据题意,得:()2180120n n −°=°⋅解得:6n =∴这个多边形的边数为6.18、在ACB △和DCE △中,∵AC DC ACB DCE BC CE = ∠=∠ =, ∴()SAS ACB DCE ≌,∴AB DE =.19、解:∵△ABC 中, ∠B +∠C +∠BAC =180°, 又∵∠B =65°,∠C =55°,∴∠BAC =60°,∵AE 平分∠BAC ,∴∠BAE =12∠BAC =30°, ∵AD ⊥BC ,∴90ADB ADC ∠=∠=°, ∴∠BAD +∠B =90°,∵∠B =65° ,∴∠BAD =25°,∴∠DAE =∠BAE -∠BAD =5°.20、证明:∵EC DF ∥,∴ACE BDF ∠=∠, ∵AB CD =,∴AB BC CD BC +=+,∴AC BD =,又∵EC DF =,∴()SAS ACE BDF ≌.21、证明:如图,在Rt △ACE 和Rt △CBF 中, AC BC AE CF = =, ∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.。

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级数学下学期期中复习同步练习(答题时间:60分钟)一、选择题1. 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得三角形的周长可能是()A. 5.5B. 5C. 4.5D. 42. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A. S平行四边形ABCD=4S△AOBB. AC=BDC. AC⊥BDD. 平行四边形ABCD是轴对称图形3. 如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A. 1B. 2C. 3D. 44. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 80*5. 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C. 52D. 2*6. 如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;其中正确的个数是()A. 0B. 1C. 2D. 3*7. 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 53cmB. 25 cmC. 485 cmD. 245cm *8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8**9. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A. 32B. 33C. 4D. 34**10. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( )A. 2B. 3C. 4D. 5二、填空题11. 5082。

八年级数学分式单元测试卷

八年级数学分式单元测试卷

一、选择题(每题4分,共20分)1. 下列分式值为1的是()A. 1/2B. 2/3C. 3/4D. 4/52. 若a、b、c是互不相等的实数,则下列分式中值为0的是()A. a/bB. b/cC. c/aD. a/b + c/c3. 分式2x/(x+1)的定义域为()A. x ≠ 0B. x ≠ -1C. x ≠ 1D. x ≠ 0且x ≠ -14. 若x > 0,则下列分式中值最大的是()A. 1/xB. xC. x^2D. 1/x^25. 分式(2x+3)/(x-1)的增减性为()A. 在x < 1时递增,在x > 1时递减B. 在x < 1时递减,在x > 1时递增C. 在整个定义域内递增D. 在整个定义域内递减二、填空题(每题4分,共16分)6. 分式3/(x-2)的值域为______。

7. 若分式f(x) = (x-1)/(x+2)在x = -1时的值为1,则f(x)的定义域为______。

8. 分式(2x+5)/(x-3)的分子分母同时乘以3后,其值为______。

9. 若a、b是实数,且a+b=0,则分式a/b的值为______。

10. 分式(1/x)的倒数是______。

三、解答题(共64分)11. (12分)已知分式f(x) = (x^2-4)/(x-2),求f(x)的定义域和值域。

12. (12分)若分式g(x) = (2x+3)/(x-1)的值在x=3时为5,求g(x)的表达式。

13. (20分)已知函数f(x) = (x^2+2x+1)/(x+1),求f(x)的定义域、值域和f(-1)的值。

14. (20分)若分式h(x) = (x-1)/(x^2-4)在x=2时的值为-1/3,求h(x)的定义域和h(0)的值。

注意:本试卷满分100分,考试时间为60分钟。

请将答案填写在答题卡上相应的位置。

答案:一、选择题1. B2. D3. B4. D5. A二、填空题6. x ≠ 27. x ≠ -28. 29. 010. x三、解答题11. 解:f(x)的定义域为x ≠ 2,值域为实数集R。

初二第一二单元数学测试卷

初二第一二单元数学测试卷

一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √9B. √-9C. √16D. √-162. 若a,b是实数,且a + b = 0,则a和b的关系是()A. a > bB. a < bC. a = bD. a和b无关系3. 下列各数中,绝对值最大的是()A. -3B. 3C. -2.5D. 2.54. 已知a,b是实数,且a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 05. 下列各式中,能被因式分解的是()A. x^2 + 2x + 1B. x^2 - 2x + 1C. x^2 + 2x - 1D. x^2 - 2x - 16. 下列各式中,最简二次根式是()A. √18B. √32C. √50D. √757. 已知方程x^2 - 5x + 6 = 0,则方程的解是()A. x = 2 或 x = 3B. x = 1 或 x = 4C. x = 2 或 x = 4D. x = 1 或 x = 38. 下列各式中,表示直角三角形斜边长的二次根式是()A. √(3^2 + 4^2)B. √(5^2 - 3^2)C. √(5^2 + 3^2)D. √(3^2 - 4^2)9. 下列各数中,不是有理数的是()A. 1/2B. -3/4C. √2D. 0.333...10. 若a,b是实数,且a < b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0二、填空题(每题2分,共20分)11. 完成下列等式:(1) √(16 + 9) = ______(2) (√2)^2 = ______(3) (√-1)^2 = ______(4) (√9)^3 = ______12. 已知方程2x^2 - 4x + 2 = 0,求x的值。

2019年秋浙教版初中数学八年级下册《图形与证明》单元测试(含答案) (145)

2019年秋浙教版初中数学八年级下册《图形与证明》单元测试(含答案) (145)

八年级数学下册《图形与证明》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)下面四个语句:①内错角相等;②OC是∠AOB的角平分线吗?③π不是有理数.其中是真命题的个数为()A.1个B.2个C.3个D.4个2.(2分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°3.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°4.(2分)下列语句是命题的有()①若两个角都等于50o,则这两个角是对顶角;②直角三角形一定不是轴对称图形;③画线段AB=2㎝;④在同一平面内的两条直线,若不相交,则平行A.1个B.2个C.3个D.4个5.(2分)如图,在△ABC中,∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB 于点D,交AC于点E.若 BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.66.(2分)已知a,b,C是同一平面内三条直线,下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b⊥c,则a⊥cC.若a⊥c,b⊥c,则a∥bD.若a⊥c,b∥a,则b⊥c7.(2分)“a,b,c三数中至少有一个正数”的反面是()A.a,b,c三个都是正数B.a,b,c至少有一个负数C.a,b,c有两个或三个是负数D.a,b,c全都是非正数8.(2分)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360° B.α-β+γ=180°C.α+β+γ=180° D.α+β-γ=180°9.(2分)如图所示,能使BF∥EG的条件是()A.∠l=∠3 B.∠2=∠4 C.∠2=∠3 D.∠l=∠410.(2分)如图,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B. CH=CE=EF C.AC=AF D.CH=HD11.(2分)等腰三角形的一个外角是80°,则其底角是()A.40°B.100°或40°C.100°D.80°12.(2分)如图所示是人字形屋架的设计图,由AB、AC、AD、BC四根钢条焊接而成,其中A、B、C、D均为焊接点,现在焊接所需要的四根钢条已截好,且已标出BC的中点D,如果焊接工身边只有检验直角的角尺,那么为了准确快速度地焊接,他首先应取的两根钢条及焊接点是()A.AB和BC,焊接点B B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A13.(2分)下列命题中,假命题的个数为()①若线段AC,BC满足AC=BC,则点C是线段AB的中点;②若b>0,则a+b>a;③如果一个角的两条边分别平行于另一个角的两条边,那么这丽个角相等;④如果两个数中有一个数是负数,那么这两个数之积是负数.A.4个B.3个C.2个D.1个14.(2分)下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形评卷人得分二、填空题15.(3分)在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D.从这四个条件中选取三个条件能判定△ABC≌△DEF的方法共有种.解答题16.(3分)如图,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数= .17.(3分)如图,点B,D在AN上,点C,E在AG上,且AB=BC=CD,EC=ED=EF,∠A=20°,则∠EG= .18.(3分)天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2 m,其侧面图如图所示,则购买地毯至少需要元.19.(3分)已知:如图所示,直线A8,CD相交.求证:AB,CD只有一个交点.证明:假设AB,CD相交有两个交点0与0′,那么过0,0′两点就有条直线.这与矛盾,所以假设不成立.所以.20.(3分)如图,点A,C在EF上,AD=BC,AD∥BC,AE=CF.求证:BF=DE.分析:要证BF=DE,只要证△≌△,已有条件AD=BC,AE=CF,只需证∠ =∠,只需证∠ =∠,而这可由证得.21.(3分)如图,把△ABC绕点C顺时针旋转35°到△A′B′C的位置,交AC于点D,若∠A′DC=90°,则∠A= .22.(3分)判断线段相等的定理(写出2个);.23.(3分)下面的判断是否正确:(1)我从书架上取出了5本书,5本书都是数学书.因此书架上的书都是数学书. ( )(2)有一条线段AB长3 cm.另一条线段BC长2 cm,那么AC长5cm ( )(3)直线AB,CD相交于O,∠AOC=30°,那么∠BOD=30°. ( )评卷人得分三、解答题24.(6分)判断命题“等腰三角形的角平分线平分对边”的真假,并给出证明.25.(6分)判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.26.(6分)如图,△ABC 中,AC ⊥BC ,CE ⊥AB 于点E ,AF 平分∠CAB 交CE 于点F ,过点F 作FD ∥BC 交AB 于点D ,求证:AC=AD .27.(6分)一个零件的形状如图所示,按规定∠A 应等于90°,∠B 和∠C 分别是32°和21°,检验工人量得∠BDC =148°,就断定这个零件不合格,你能否运用三角形的有关知识说明这个零件不合格的理由?28.(6分)阅读理解题:(1)如图,在△ABC 中,AD 是BC 边上的中线,且AD=21BC . 求证:∠BAC=90°. 证明:∵AD=12BC ,BD=CD=12BC ,∴AD=BD=DC , ∴∠B=∠BAD ,∠C=∠CAD , ∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直线运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为3,求这个三角形的面积.AB CD29.(6分)下列语句中,哪些是命题,哪些不是命题?若是命题,指出它的题设和结论.(1)立方等于本身的数是0或1;(2)画线段AB=3 cm.30.(6分)观察如图所示的四个图形,找出它们的共同特征并给以名称,再作出定义.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.B3.A4.C5.A6.A7.D8.D9.A10.D11.A12.C13.B14.D二、填空题15.216.36°17.100°18.480°19.两;两点确定一条直线;AB,CD只有一个交点20.DEA,BFC,EAD,FCB,DAF,BCE,AD∥BC21.55°22.全等三角形的对应边相等;在一个三角形中,等角对等边23.(1)× (2)× (3)√三、解答题24.假命题.若这条角平分线是底角的平分线,则不一定平分对边25.假命题,证明略26.利用“ASA”证△ACF≌△ADF,得AC=AD27.连结BC,则∠DBC+∠DCB=180°-148°=32°,∴∠ABC+∠ACB=32°+32°+21°=85°,∴∠A=95°>90°所以这个零件不合格.28.如果三角形一边上的中线等于这边的一半,则这个三角形是直角三角形,S=3 2.29.(1)是;题设:一个数的立方等于它本身;结论:这个数是0或1;(2)不是30.轴对称图形:把一个图形沿着一条直线对折,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形.。

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。

初二一到二单元数学测试卷

初二一到二单元数学测试卷

一、选择题(每题2分,共20分)1. 下列各数中,最小的整数是()A. -2.5B. -2C. 2.5D. 22. 如果一个数的倒数是3,那么这个数是()A. 1/3B. 3C. 1D. 93. 下列各式中,正确的是()A. 2.5×3.6=9B. 2.5×3.6=9.2C. 2.5×3.6=7.8D. 2.5×3.6=10.24. 下列各数中,是负数的是()A. 2.5B. -2.5C. 0D. 25. 下列各式中,正确的是()A. 5-3=2B. 5-3=8C. 5-3=7D. 5-3=66. 下列各数中,是质数的是()A. 4B. 6C. 7D. 87. 下列各式中,正确的是()A. 2×3=6B. 2×3=9C. 2×3=7D. 2×3=58. 下列各数中,是偶数的是()A. 2.5B. -2.5C. 0D. 29. 下列各式中,正确的是()A. 3+2=5B. 3+2=7C. 3+2=6D. 3+2=810. 下列各数中,是奇数的是()A. 2.5B. -2.5C. 0D. 2二、填空题(每题2分,共20分)11. 2.5×4=________12. 3.6÷2=________13. 5-3=________14. 7×2=________15. 3+2=________16. 2.5×3.6=________17. 5-3.5=________18. 2.5×2=________19. 3+3.5=________20. 7×2.5=________三、解答题(每题5分,共20分)21. 计算下列各题:(1)2.5×4.5(2)3.6÷0.9(3)5-3.2(4)7×2.522. 解下列方程:(1)2.5x=6(2)3.6÷x=2(3)5-x=2(4)7×x=14四、应用题(每题10分,共20分)23. 小明家有一块长方形菜地,长是12米,宽是8米。

初二数学第二章单元测试卷

初二数学第二章单元测试卷

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √2B. πC. -1/3D. √92. 已知x是有理数,且x²=1,则x的值为()A. 1B. -1C. 1或-1D. 无法确定3. 下列分式中有意义的是()A. 1/(x-1)B. 1/(x²-1)C. 1/(x²-x)D. 1/(x²+x)4. 下列函数中,自变量x的取值范围是全体实数的是()A. y=2x+1B. y=x²C. y=√xD. y=1/x5. 下列图形中,属于平行四边形的是()A. 矩形B. 正方形C. 菱形D. 以上都是6. 已知等腰三角形ABC中,AB=AC,BC=6cm,则腰长AC的长度为()A. 3cmB. 4cmC. 5cmD. 6cm7. 在直角三角形ABC中,∠C=90°,AB=5cm,BC=12cm,则AC的长度为()A. 13cmB. 15cmC. 17cmD. 19cm8. 下列方程中,解为整数的是()A. x²-4x+3=0B. x²-4x+4=0C. x²-4x-3=0D. x²-4x+5=09. 下列不等式中,正确的是()A. -3 < 0B. -3 > 0C. -3 ≤ 0D. -3 ≥ 010. 已知a、b、c是等差数列,且a+b+c=9,a+c=5,则b的值为()A. 2B. 3C. 4D. 5二、填空题(每题3分,共30分)11. 2的平方根是______,-2的平方根是______。

12. 已知x²=4,则x的值为______。

13. 分式1/(x-1)的增根是______。

14. 函数y=√x的定义域是______。

15. 在直角三角形中,如果∠A=30°,∠B=60°,则∠C=______。

16. 等腰三角形的底边长为6cm,腰长为8cm,则高为______cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学秋季学期单元测试题
八年级数学
(测试内容:第六章数据的集中程度)
班别座号姓名成绩___________
说明:1.能够使用运算器,但未注明精确度的运算问题不得采取近似运算,建议依照题型特点把握好使用运算器的时机.
2.本试卷满分100分,在90分钟内完成.相信你一定会有杰出的表现!
一、填空题:本大题共10小题;每空3分,共30分.请将答案填写在题中的横线上.1.已知一组数据:6,3,4,7,6,3,5,6,这组数据的平均数、中位数和众数分别是___________________________.
2.某风景区在国庆节前后的10天里,每天参观的人数统计结果为:有3天是每天2400人,有2天是每天3200人,有3天是3800人,有2天是3500人.这10天平均每天的参观人数是__________人.
3.某同学参加跳远测试,共须跳五次,他的目标是五次的平均成绩为1.72米,结果前四次的成绩分别为:1.70米, 1.71米, 1.72米, 1.71米,第五次他至少要跳_______米,才能达到预定的目标.
4.一组数据5,7,7,x的中位数与平均数相等,则x的值为___________.
5.某商场进了一批苹果,每箱苹果的质量约5千克.进入仓库前,从中随机抽出10 箱检查,称得10箱苹果的质量如下(单位:千克):4.8,5.0,5.1,4.8,4.9,5.1,4.9,4.7,4.7,4.7,则这10箱苹果质量的平均数是_________,中位数是________,众数是__________.6.在某地区的一次人口抽样统计中,各年龄段(年龄为整数)的人数如下表所示:
这次抽样的样本容量是_________;样本中年龄的中位数位于________年龄段.
7.电视台某日公布的天气预报,我国内地31个直辖市和省会都市在次日的最高气温(℃)
那么这些都市次日最高气温的中位数和众数分别是_____________________.
二、解答题:本大题共7小题,每小题10分,共70分.解承诺写出文字说明或演算步骤.8.小亮想估量自己家暑假期间用电量是多少,在7月初的几天观看电表的度数如下:
依照这8天的数据你帮小亮估量,7月份他家大约需用多少度电?
9.在相同条件下,对A、B两种型号的电池各随机抽取10只进行测试,其有效使用时刻如下(单位:小时)
A型:4.5,5,6,5,4, 6.5,5,4,4.5, 5.5
B型:5, 4.5,3,6,5.5,8,4,4,4.5, 4.5
你认为哪种型号的电池好一些?
10.某家电商场的一个柜组出售同一品牌、容积分别为268L、228L、185L、182L的四种型号的电冰箱.每售出一台冰箱,售货员就在一张纸上记下这台电冰箱的容积作为原始数据.到月底,柜长清点这些原始记录,得到一组由10个182,18个185,66个228,16个268组成的数据.
(1)这组数据的平均数有实际意义吗?
(2)这组数据的中位数、众数分别是多少?
(3)商场总经理关怀的是中位数依旧众数?
11.某学校要聘请一名广播员,对来应聘的甲、乙、丙三位同学进行了三项素养考核,考核结果如下:
(1)假如依照平均成绩,哪位同学会被录用?
(2)假如依照实际需要,学校广播室将一般话水平、综合知识、语言表达能力三项测试按4:2:3的比例确定每个人的测试成绩,如此谁将被录用.
12.某地区为爱护森林资源,建筑了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共约有多少棵树,从中选出10块(每块长1千米,宽0.5千米)进行统计,每块树木数量如下(单位:棵):6510063200646006470067300
6330065100666006280065500
请你依照以上数据运算那个防护林共约有多少棵树(结果保留3个有效数字).
13.小明家是养鸡专业户.一天,小明从预备出售的一批鸡蛋中随意抽取30个称重量,结果如下:
这30个鸡蛋的平均重量是多少?假如预备出售的这一批鸡蛋共有400个,那么你估量鸡蛋的总重量约多少千克?
14.某学校规定学生的体育成绩由三部分组成:早锤炼及课外体育活动表现占20%,体育理论知识测试占30%,体育技能测试占50%.小亮的上述三项成绩依次是92分、80分、84分,问小亮这学期的体育成绩是多少分?
钦州市2006年秋季学期单元测试题(六)
八年级数学参考答案
一、填空题:(每小题3分,共30分)
1.5、5.5、6;2.3200;3.1.76;4.5或9;5.4.87,4.85,4.7;
6.100,30~39;7.28,28
二、解答题:
8.解:因为平均每天用4度,估量7月份需用电124度.
9.解:A型平均有效使用时刻是5小时,B型的平均有效使用时刻是4.9小时,A型的中位数为5,B型的中位数为4.5,A型的众数为5,B型的众数为4.5,比较上述数值,能够认为A型电池好些.
10.解:(1)没有意义;(2)差不多上228;(3)众数.
11.解:(1)乙被录用;(2)丙被录用.
12.解:6.48×106(棵).
13.解:平均每个鸡蛋重53.3克,400个鸡蛋约重21.3千克.
14.解:84.4分.。

相关文档
最新文档