八年级数学下第二章单元测试试题及答案
(北师大版)初中数学八年级下册第二章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二章综合测试一、单选题(每小题3分,共30分) 1.下列式子中,是不等式的有( )①27x =;②34x y +;③32−<;④230a −≥;⑤1x >;⑥1a b −>. A .5个B .4个C .3个D .1个2.已知a b <,下列式子不成立的是( ) A .55a b −−<B .33a b <C .1122a b −−>D .11a b −+−+<3.下列说法中,错误的是( ) A .不等式5x <的整数解有无数多个 B .不等式5x −>的负整数解集有有限个 C .不等式28x −<的解集是4x −<D .40−是不等式28x −<的一个解4.不等式组31220x x −⎧⎨−⎩>≥的解集在数轴上表示为( )A .B .C .D .5.不等式111246x x +−−>的解是( ) A .5x −<B .10x −>C .10x −<D .8x −<6.如下图,直线y k x b =+交坐标轴于A B 、两点,则不等式0k x b +<的解集是( )A .2x −<B .2x <C .3x −>D .3x −<7.已知函数()1y a x =−的图象过一、三象限,那么a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <8.若不等式13x a x −⎧⎨⎩><恰有3个整数解,那么a 取值范围是( )A .1a ≤B .01a <≤C .01a ≤<D .0a >9.不等式组211420x x −⎧⎨−⎩≥≤的解集在数轴上表示为( )A .AB .BC .CD .D10.若x y >,且()()33a x a y −−<,则a 的值可能是( ) A .0B .3C .4D .5二、填空题(每小题4分,共28分)11.用不等号“>、<、≥、≤”填空:21a +________0. 12.若26m n−−<,则3m ________n .(填“<、>或=”号) 13.不等式组8x x m ⎧⎨⎩<>有解,m 的取值范围是________.14.不等式:2603x −−>的解集________.15.如下图,一次函数2y x =−−与2y x m =+的图象相交于点()4P n −,,则关于x 的不等式220x m x +−−<<的解集为________.16.不等式组1274xx ⎧−⎪⎨⎪−+⎩≤≥的解集是________.17.不等式组()3225123x x x x ⎧++⎪⎨−⎪⎩>≤的最小整数解是________.三、解答题一(每小题6分,共18分)18.解不等式()21132x x +−+≥,并把它的解集在数轴上表示出来.19.解不等式组:()152437x x x +⎧⎨++⎩<>.20.解不等式组:()23423x xxx⎧−−⎪⎨−⎪⎩≤<,并求非负整数解.四、解答题二(每小题8分,共24分)21.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?22.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?23.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.五、解答题三(每小题10分,共20分)24.某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?25.某茶叶销售商计划将m罐茶叶按甲、乙两种礼品盒包装出售,其中甲种礼品盒每盒装4罐,每盒售价240元;乙种礼品盒每盒装6罐,每盒售价300元,恰好全部装完.已知每罐茶叶的成本价为30元,设甲种礼品盒的数量为x盒,乙种礼品盒的数量为y盒.(1)当120m=时.①求y关于x的函数关系式.②若120罐茶叶全部售出后的总利润不低于3 000元,则甲种礼品盒的数量至少要多少盒?(2)若m罐茶叶全部售出后平均每罐的利润恰好为24元,且甲、乙两种礼品盒的数量和不超过69盒,求m的最大值.第二章综合测试答案解析一、 1.【答案】B【解析】解:不等式有:③32−<;④230a −≥;⑤1x >;⑥1a b −>,共4个.故选B . 2.【答案】D【解析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.A .不等式两边同时减5,不等号方向不变,故本选项正确,不符合题意;B .不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C .不等式两边同时乘以12−,不等号方向改变,故本选项正确,不符合题意; D .不等式两边同时乘以1−加1,不等号方向改变,故本选项错误,符合题意。
北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。
八年级下册数学第二章练习题及答案

八年级下册数学第二章练习题及答案八年级下册数学第二章练习题及答案一、填空题1.用不等式表示:x与5的差不小于x的2倍:;a与b两数和的平方不可能大于3:.2.请写出解集为x?3的不等式:.3.不等式9?3x?0的非负整数解是4.已知点P在第一象限,则m的取值范围是5.如果1 6.将–x4–3x2+x提取公因式–x后,剩下的因式是7.因式分解:a2b–4b8.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每本笔记本2元,那么小明最多能买支钢笔.9.若4a4–ka2b+25b2是一个完全平方式,则k= .10.若一个正方形的面积是9m2+24mn+16n2,则这个正方形的边长是.111.已知x–3y=3,则x2?2xy?3y2?.12.已知2k-x2+2k>1是关于x的一元一次不等式,那么,不等式的解集是13.函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为二、选择题14.已知x?y,则下列不等式不成立的是.A.x?6?y?B.3x?3yC.?2x??2y D.?3x?6??3y?615.将不等式组的解集在数轴上表示出来,应是.A {x?1x? A B C D16.下列从左到右的变形中,是因式分解的是A.a2–4a+5=a+5B.=x2+5x+6C.a2–9b2= D.+1=x2+2x+217.下列各组代数式中没有公因式的是A.4abc与8abc B.ab+1与ab–1C. b2与a2D. x+1与x2–118.下列因式分解正确的是A.–4a2+4b2=–4=–4B.m3–12m=3mC.4x4y–12x2y2+7=4x2y+D.4–9m2= 19.22006+3×22005–5×22007的值不能被下列哪个数整除 A. B.C.22006D.2200520.若x+y=2,xy=3,则x2+y2的值是A.2B.10 C.– D.x2+y2的值不存在三、解答题21.解下列不等式,并把它们的解集在数轴上表示出来232231-x?21?3xa4–8a2b2+16b–4+4223.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元.请用含x的代数式分别表示顾客在两家超市购物所付的费用;顾客到哪家超市购物更优惠?说明你的理由.24.有一个长方形足球场的长为x m,宽为70m.如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛.25.已知多项式–b2,在给定k的值的条件下可以因式分解.写出常数k可能给定的值;针对其中一个给定的k值,写出因式分解的过程.参考答案一、填空题1.x?5?2x ?a?b?2?32.略.0、1、2;.m>35. 10.m+4n;11.3; 12. -31,x 二、选择题14.D15.A 16.C 1.B 18.D 19.C20.D三、解答题10 在数轴上表示解集略。
完整版)北师大版八年级数学下册第二单元试题与答案

完整版)北师大版八年级数学下册第二单元试题与答案北师大版八年级数学下册第二章测试题试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)1.当x=2时,多项式x+kx-1的值小于0,那么k的值为[。
].A.k<-2 B.k<2 C.k>-2 D.k>22.同时满足不等式-2<1-x和6x-1≥3x-3的整数x是[。
].A.1,2,3 B.2,3 C.1,2,3,4 D.2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有[。
].A.3组 B.4组 C.5组 D.6组4.如果b>a>0,那么[。
].A.a-b<0 B.a-b>0 C.-a<b<-b/2 D.-b/2<b<a5.把不等式组{x≤2,x>-1}的解集表示在数轴上,正确的是(。
)A.-1<x≤2 B.x≥2 C.x≤-1或x≥2 D.-1≤x<26.不等式组{3x+1>2x,2x<7}的正整数解的个数是[。
].A.1 B.2 C.3 D.47.关于x的不等式组{2x<3(x-3)+1,x+a>4}有四个整数解,则a的取值范围是[。
].A.-15<a≤-1 B.-1<a≤3 C.3<a≤15 D.-15≤a<-1或3<a≤158.在数轴上与原点的距离小于8的点对应的x满足(。
)A、-8<x<8B、x>8C、x<-8或x>8D、-8≤x≤89.不等式组{-x+2<x-6,x>m}的解集是x>4,那么m的取值范围是[。
].A.m≥4 B.m≤4 C.m<4 D.m=410.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排[。
].A.4辆 B.5辆 C.6辆 D.7辆二、填空题(每小题3分,共30分)1.若代数式t+1/t-1的值不小于-3,则t的取值范围是(-∞,-2]∪[2,∞).2.不等式3x-k≤0的正数解是1,2,3,那么k的取值范围是[1,9].3.若(x+2)(x-3)>5,则x的取值范围是(-∞,-2)∪(3,∞).4.若a<b,用“<”或“>”号填空:2a<a+b。
八年级(下)数学第二章测试卷+答案

第 1 页共 3 页八年级(下)数学第二章测试卷班级姓名学号成绩一、选择题:(每题3分,共24分)1.下列方程中,是一元二次方程的有()①223xxx②270x③21252xx④22(12)2x x x ⑤2250xy A.1个 B.2个 C.3个 D.4个2.关于x 的一元二次方程22(1)10a x x a的一个根是0,则a 的值为()A.1B.-1C.1或-1D.123.已知整式2x 与5x的积为2310x x ,则一元二次方程23100xx 的根是()A.122,5x x B.122,5x x C.122,5x x D.122,5x x 4.用配方法解方程2210xx 时,配方结果正确的是()A.213()24xB.213()44xC.2117()416xD.219()416x5.方程22320xx 的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.只有一个实数根6.若关于x 的方程220xkx有实数根,则k 的取值范围是()A.8kB.8kC.0kD.k7.使用墙的一边,再用13m 长得铁丝,围成一个面积为20m 2的长方形,求这个长方形的两边长。
设墙的对边长为xm ,可得方程()A.1320x x B.13202xxC.113202x x D.132202x x8.在一幅长40cm 、宽30cm 的长方形风景画四周镶一条金色纸边,制成一幅长方形挂图。
如果要使整幅挂图的的面积为2000cm 2,设金色纸边的宽为xcm ,那么可列方程()A.2352000xxB.2352000xxC.270800xx D.270800x x 二、提空题:(每题4分,共32分)9.若关于x 的方程22(2)30mm xx 是一元二次方程,则m。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)(4)

一、选择题1.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到450m 以外的安全区域.已知导火线的燃烧速度是12cm/s .,操作人员跑步的速度是6m/s .为了保证操作人员的安全,导火线的长度要超过( )A .90cmB .80cmC .70cmD .60cm 2.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .2 3.不等式323x x +-≤的非负整数解有( ) A .3个 B .4个 C .5个 D .无数个 4.已知a b >,下列不等式中,不成立的是( )A .44a b +>+B .33a b ->-C .22a b > D .22a b ->- 5.若点(,)A n m 在第二象限,则点()2,B m n -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点P 坐标为(m +1,m -2),则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 8.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 9.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 10.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤ 11.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 12.下列各数是不等式271x -≥的解的是( ).A .4B .3C .2D .1二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.已知a 340218a <+<a 的值为____________.15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.已知关于x 的不等式0123x a x ->⎧⎨->-⎩只有五个整数解,则实数a 的取值范围是__________.17.不等式组()2231117232x x x x ⎧+>-⎪⎨-≤-⎪⎩的解为_____.18.若方程组3133x y a x y +=+⎧⎨+=⎩的解x 、y 满足 3y x -<,则a 的取值范围为_________. 19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______.三、解答题21.如图,ABC 中,8,6AC BC AB ===,现有两点,M N 分别从点A 点B 同时出发,沿三角形的边运动,已知点M 的速度为每秒1个单位长度,点N 的运度为每秒2个单位长度,当点M 到达B 点时,,M N 同时停止运动,设运动时间为t 秒.(1)当03t ≤≤时,AM = ,AN = ;(用含t 的代数式表示)(2)当点,M N 在边BC 上运动时,是否存在某个时刻,使得12AMN ABC S S =△△成立,若成立,请求出此时点M 运动的时间;若不成立请说明理由.(3)当点,M N 在同一直线上运动时,求运动时间t 的取值范围.22.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题: (1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.23.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A ,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A 种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.24.某县在创建省文明卫生城市中,绿化档次不断提升.某校计划购进A 、B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元(1)求A 种、B 种树木每棵各多少元?(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价八折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.解下列不等式组()220463x x x ⎧-<⎨+≥⎩26.为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A ,B 两种蔬菜,若种植20亩A 种蔬菜和30亩B 种蔬菜,共需投入36万元;若种植30亩A 种蔬菜和20亩B 种蔬菜,共需投入34万元.(1)种植A ,B 两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A 种蔬菜每亩可获利0.8万元,种植B 种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w 万元.设种植A 种蔬菜m 亩,请直接写出w 关于m 的函数关系式;(3)在(2)的条件下,若要求A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意可知:操作人员点燃导火线后,要在炸药爆炸前跑到450米以外的安全区域,列出不等式,解不等式即可.【详解】解:设导火线长度为x cm ,根据题意得,1.2x >4506, 解得x >90,故选:A .【点睛】本题考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式. 2.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53,所以53<k <3. 只有2符合.故选:D .【点睛】 利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.3.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x -2)≤x +3,去括号,得3 x -6≤x +3,移项、合并同类项,得2x ≤9,系数化为1,得x ≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C .【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.4.D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b >,原变形成立,故此选项不符合题意; D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.5.A解析:A【分析】根据第二象限的点的横坐标是负数,纵坐标是正数,表示出m、n,再根据各象限内的点的坐标特征解答即可;【详解】∵点A(n,m)在第二象限,∴m>0,n<0,∴m2>0,-n>0,∴点B(m2,-n)在第一象限,故选:A.【点睛】本题考查了各象限内点的坐标的特征以及解不等式,记住各象限内点的坐标的符号是解决问题的关键.6.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解.【详解】解:A、当m>2时,m+1与m-2都大于0,P在第一象限,所以A不符合题意;B、若P在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.7.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y(x,y均是非负整数),则有y=5-3x,且0≤y≤3,由此即可求得x、y的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y,∵该球队小组赛共积5分,∴y=5-3x,又∵0≤y≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.8.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.9.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.10.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.11.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键. 12.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.271x -≥,217x +≥,28x ≥解得,4x ≥.故选:A .【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.【分析】此题需要首先解不等式根据解的情况确定a 的取值范围特别是要注意不等号中等号的取舍【详解】解不等式x-a >0得:x >a 解不等式1-2x >-3得:x <2∴不等式组的解集是a <x <2∵只有五个整数解解析:43a -≤<-【分析】此题需要首先解不等式,根据解的情况确定a 的取值范围.特别是要注意不等号中等号的取舍.【详解】解不等式x -a >0,得:x >a ,解不等式1-2x >-3,得:x <2,∴不等式组的解集是a < x <2,∵只有五个整数解,∴整数解是1,0,-1,-2,-3∴-4≤a <-3,故答案为:-4≤a <-3.【点睛】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定,含参数问题需要特别注意取等号时的情况.17.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x <5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:()2231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①② 解不等式①得,x <5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.18.a >-4【分析】先把两式相减求出y−x 的值再代入中得到关于a 的不等式进而求出a 的取值范围即可【详解】由②-①得:2y−2x =2−a ∵则∴2−a <6∴a >-4故答案是:a >-4【点睛】本题考查的是解二解析:a >-4【分析】先把两式相减求出y−x 的值,再代入 3y x -<中得到关于a 的不等式,进而求出a 的取值范围,即可.【详解】3133x y a x y +=+⎧⎨+=⎩①②, 由②-①得:2y−2x =2−a ,∵ 3y x -<,则2 26y x -<,∴2−a <6,∴a >-4,故答案是:a >-4.【点睛】本题考查的是解二元一次方程组及一元一次不等式,解答此题的关键是把a 当作常数表示出y−x 的值,再得到关于a 的不等式.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)t ,62t -;(2)存在,10秒;(3)37t ≤≤或811t ≤≤【分析】(1)先由运动得出AM=t ,BN=2t ,继而得出AN ,即可得出结论;(2)当点M ,N 在边BC 上运动时,AM=t-8,CN=2t-6-8,即可得到MN=t-6,根据题意知12MN BC =,列出方程即可求解; (3)根据运动的时间、速度和距离即可求得运动时间t 的取值范围.【详解】(1)∵6÷2=3,∴当 0≤t≤3 时,点N 在AB 上运动(包括端点),∵运动时间为t 秒.∴AM=t ,BN=2t ,∴AN=6-2t ,故答案为:t ,6-2t ;(2)存在.理由如下:当M N 、在边BC 上运动时,8672t +>=,点N 在边BC 上,881t >=,点M 在边BC 上, ∴点N 在点M 前面,此时,CM=t-8,CN=2t-14, ∵12AMN ABC S S ∆∆=, ∴12MN BC =, 则1(214)(8)82t t ---=⨯, 解得:10t = 所以,当点M N 、在边BC 上运动,10t =秒时,12AMN ABC S S ∆∆=; (3)①当点M N 、同在AC 上时,∵68AB AC ==,,点N 的速度为2, ∴当66822t +≤≤即37t ≤≤时,点N 在AC 上, 又∵点M 的速度为1,∴当18t ≤≤时,点M 在AC 上, ∴当37t ≤≤时,点M N 、同在AC 上;②当点M N 、同在BC 上时,∵68AB AC ==,,点N 的速度为2,∴当6868822t +++≤≤即711t ≤≤时,点N 在BC 上, 又∵点M 的速度为1. ∴当88811t +≤≤即816t ≤≤时,点M 在BC 上, ∴当811t ≤≤时,点M N 、同在AC 上; 综上所述,当37t ≤≤与811t ≤≤时,点M N 、在同一直线上运动.【点睛】本题考查了一元一次方程在几何中的应用,一元一次不等式在几何中的应用等,解题的关键是理解题意,学会用方程的思想思考问题.22.(1)33x y =⎧⎨=⎩;(2)B ;(3)三种,方案见解析 【分析】(1)求方程3x-y=6的正整数解,可给定x 一个正整数值,计算y 的值,如果y 的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支;或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.23.(1)共有3种方案;(2)当A种园艺造型32个,B种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A种园艺造型x个,B种园艺造型(50)x-个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.24.(1)A 种树每棵100元,B 种树每棵80元;(2)当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.8×(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树每棵x 元,B 种树每棵y 元依题意得:256003380x y x y +=⎧⎨+=⎩解得10080x y =⎧⎨=⎩ 答:A 种树每棵100元,B 种树每棵80元(2)设购买A 种树木为a 棵,则购买B 种树木为()100a -棵则()3100a a ≥-解得75a ≥设实际付款总金额是w 元,则()0.810080100w a a =+-⎡⎤⎣⎦即166400w a =+∵160>,w 随a 的增大而增大∴当75a =时,w 最小即当75a =时,167564007600w =⨯+=最小值(元)答:当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.25.62x -≤<【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()220463x x x ⎧-<⎨+≥⎩①②由①得:2x <由②得:6x ≥-∴62x -≤<【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)w =−0.1m +150;(3)当种A 蔬菜100亩,B 种蔬菜50亩时,获得最大利润为140万元.【分析】(1)根据题意列二元一次方程组,问题即可求解;(2)用w 表示种植两种蔬菜的利润,即可得到w 与m 之间函数关系式;(3)根据A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍得到m 的取值范围,结合一次函数的性质,即可求出w 最大值.【详解】(1)设种植A ,B 两种蔬菜,每亩各需分别投入x ,y 万元,根据题意得:203036302034x y x y ⎧⎨⎩+=+=, 解得:0.60.8x y ⎧⎨⎩==, 答:种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)由题意得:w =0.8m +1.2×1000.60.8m -=−0.1m +150, 即:w =−0.1m +150;(3)由(2)得:m≥2×1000.60.8m-,解得:m≥100,∵w=−0.1m+150,k=−0.1<0,∴w随m的增大而减小,∴当m=100时,w最大=140,此时,1000.60.8m-=50,∴当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.【点睛】本题主要考查一次函数实际应用问题,二元一次方程组、不等式、列一次函数关系式和根据自变量取值范围求一次函数的最值.根据题意,列出方程和一次函数解析式,掌握一次函数的性质,是解题的关键.。
数学八下第二章试题及答案
数学八下第二章试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14B. πC. 0.33333…(3无限循环)D. √42. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 43. 根据勾股定理,直角三角形的斜边长度为:A. 两直角边长度之和B. 两直角边长度之差C. 两直角边长度之积D. 两直角边长度平方和的平方根4. 以下哪个表达式是二次根式的最简形式?A. √12B. √75C. √48D. √645. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是二、填空题(每题2分,共10分)6. 一个数的平方根是2,那么这个数是______。
7. 如果一个三角形的三边长分别为3、4、5,那么这是一个______三角形。
8. √16的值是______。
9. 一个数的立方根是-2,那么这个数是______。
10. 根据勾股定理,如果直角三角形的两直角边长分别为6和8,那么斜边的长度是______。
三、解答题(共80分)11. 计算下列各题,并写出计算过程。
(每题10分,共20分)a. √81b. (-2)^312. 解下列方程,并写出解题步骤。
(每题15分,共30分)a. x^2 - 4x = 0b. √x - 2 = 313. 证明勾股定理,并给出一个具体的例子。
(每题30分,共30分)四、附加题(10分)14. 一个直角三角形的两直角边长分别为a和b,斜边长为c。
如果a和b的比值为黄金分割比,求c的值。
答案:一、选择题1. B2. A3. D4. D5. D二、填空题6. 47. 直角8. 49. -810. 10三、解答题11. a. √81 = 9b. (-2)^3 = -812. a. x^2 - 4x = 0x(x - 4) = 0x = 0 或 x = 4b. √x - 2 = 3√x = 5x = 2513. 证明:设直角三角形的两直角边长分别为a和b,斜边长为c。
八年级数学下册第二章单元测试卷及答案
八年级数学下册第二章《一元一次不等式与一元一次不等式组》单元测试卷满分:150分考试时间:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.下列叙述:①若a是非正数,则a≤0;②“a2减去10不大于2”可表示为a2−10<2;③“x的倒数超过10”可表示为1x>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的有()A. 1个B. 2个C. 3个D. 4个2.如果0<x<1,那么下列不等式成立的是()A. x<x2<1x B. x2<x<1xC. 1x<x<x2 D. 1x<x2<x3.已知关于x的不等式x−a<1的解如图所示,则a的取值是()A. 0B. 1C. 2D. 34.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A. 2种B. 3种C. 4种D. 5种5.有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A. x=1,y=3B. x=4,y=1C. x=3,y=2D. x=2,y=36.有不足30个苹果分给若干个小朋友,若每个小朋友分3个,则剩2个苹果;若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个.已知小朋友人数是偶数个,那么苹果的个数是()A. 25B. 26C. 28D. 297.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.4]=1.若[x+23]=5,则x的取值范围是()A. x≥13B. x≤16C. 13≤x<16D. 13<x≤168. 对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作.如果操作恰好进行两次停止,那么x 的取值范围是( )A. 8<x ≤22B. 8≤x <22C. 22<x ≤64D. 8<x ≤649. 已知关于x 的不等式3x −m +1>0的最小整数解为2,则实数m 的取值范围是( )A. 4≤m <7B. 4<m <7C. 4≤m ≤7D. 4<m ≤710. 某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加,检票速度一定,当开放一个大门时,需用40分钟待检观众全部进入大厅,同时开放两个大门,只需10分钟,现在想提前开演,必须在5分钟内全部检完票,则音乐厅应同时开放的大门数是( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共5小题,共20.0分)11. 某次知识竞赛共有20道题,每答对一题得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式为 . 12. 如果不等式组{x <3a +2,x <a −4的解集是x <a −4,那么a 的取值范围是 .13. 已知不等式组{x >2x <a 的解集中共有5个整数,则a 的取值范围为______.14. 学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有______人. 15. 若正数a ,b ,c 满足不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b ac b a c b a c 4112535232611,则a ,b ,c 的大小关系为_______________(用<连接).三、解答题(本大题共10小题,共100.0分)16. (8分)某种导火绳燃烧的速度是0.8cm/s.一位工人点燃导火绳后以6m/s 的速度跑到距爆破点120m 以外的安全区,问导火绳的长至少要多少cm ?17.(10分)已知关于x的不等式2m−mx2>12x−1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.18.(10分)(1)A、B、C三人去公园玩跷跷板,由下面的示意图(1),你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,由下面的示意图(2),你该如何判断这四人的轻重呢?19.(10分)日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x吨(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?20.(10分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)某小区超市老板购进A,B两种香油,其进价和售价如表:(1)若两种香油共140瓶,花去了1000元,求A,B两种香油各多少瓶.(2)若两种香油共140瓶,B香油数量不超过A香油数量的4倍且不低于A香油数量的3倍.所获利润y元,求y的最大值.22.(10分)是否存在整数m,使关于x的不等式1+3xm >x+9m与关于x的不等式x+1>x−2+m3的解集相同?若存在,求出整数m和不等式的解集;若不存在,请说明理由.23.(10分)有一片牧场,牧草每天都在匀速生长(即牧草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)阅读下列材料:数学问题:已知:x−y=2,且x>1,y<0,试确定x+y的取值范围.问题解法:∵x−y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>−1又∵y<0,∴−1<y<0.…………①同理得:1<x<2.…………②由②+①得−1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2完成任务:(1)直接写出数学问题中2x+3y的取值范围:_____.(2)已知:x+y=3,且x>2,y>0,试确定x−y的取值范围;(3)已知:y>1,x<−1,若x−y=a成立,试确定x+y的取值范围(结果用含a的式子表示).答案1.C2.B3.B4.B5.C6.B7.C8.C9.A10.B11.10n−5(20−n)>9012.a≥−313.7<a≤814.4415.b<c<a16.解:设导火线的长度为x,0.8cm=0.008m由题意得,6×x0.008≥120,解得:x≥0.16,答:导火绳的长至少要0.16cm.17.解:(1)当m=1时,不等式为2−x2>x2−1,去分母得:2−x>x−2,解得:x<2;(2)不等式去分母得:2m−mx>x−2,移项合并得:(m+1)x<2(m+1),当m≠−1时,不等式有解,当m>−1时,不等式解集为x<2;当m<−1时,不等式的解集为x>2.18.解:(1)根据题意可得,A <B ,A <C ,∴无法判断B ,C 的大小;(2)根据题意可得,{S >PR +P >Q +S R +Q =S +P,由R +Q =S +P ,可得R =S +P −Q ,然后把R =S +P −Q 代入R +P >Q +S 中, 可得P >Q , ∵R +Q =S +P , ∴S −R =Q −P <0, ∴S <R , ∴R >S >P >Q .19.解:(1)设西施舌的投放量为x 吨,则对虾的投放量为(50−x)吨,根据题意得{9x +4(50−x)≤3603x +10(50−x)≤290, 解之得{x ≤32x ≥30;∴30≤x ≤32.(2)y =30x +20(50−x)=10x +1000; ∵30≤x ≤32, ∴1300≤y ≤1320, ∴y 的最大值是1320,因此当x =32时,y 有最大值,且最大值是1320千元.20.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元,根据题意,得:{20x +15y +7000=2400010x −5y +1000=2000,解得:{x =400y =600,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a 张,则购买乙种办公桌(40−a)张,购买的总费用为y , 则y =400a +600(40−a)+2×40×100 =−200a +32000, ∵a ≤3(40−a), ∴a ≤30,∵−200<0,∴y 随a 的增大而减小,∴当a =30时,y 取得最小值,最小值为26000元.21.解:(1)设A 种香油m 瓶,B 种香油n 瓶,依题意有{m +n =406.5m +8n =1000, 解得{m =80n =60.故A 种香油80瓶,B 种香油60瓶.(2)设A 香油数量为x 瓶,则B 香油数量为(140−x)瓶,依题意有 3x ≤140−x ≤4x , 解得28≤x ≤35,y =(8−6.5)x +(10−8)(140−x)=280−0.5x , 故当x =28时,y 的最大值为266元.22.解:存在。
浙教版八年级下册数学第二章测试题及答案
浙教版八年级下册数学第二章测试题及答案第2章检测卷一、选择题(本题有10小题,每小题3分,共30分)1.一元二次方程x2+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.若代数式x2+5x+6与-x+1的值相等,则x的值为()A.-1或-5 B.-6或1C.-2或-3 D.-13.两个实根之和为3的一元二次方程是()A.2x2-3x+1=0 B.x2+1=3xC.x2-3x+4=0 D.3x2+9x-1=04.关于x的一元二次方程(a-4)x2+x+a2-16=0的一个根是0,则a的值是() A.-4 B.4 C.4或-4 D.-4或05.将一元二次方程x2-2x-5=0化为(x+a)2=b的形式,则b=() A.3 B.4 C.6 D.136.已知关于x的方程x2-kx-6=0的一个根是x=3,则实数k的值为() A.1 B.-1 C.2 D.-27.把方程x2-4x-7=0化成(x-m)2=n的形式,则m,n的值是() A.2,7 B.-2,11 C.-2,7 D.2,118.关于x的一元二次方程x2-3x+m=0没有实数根,则实数m的取值范围为()A.m>94B.m<94C.m=94D.m<-949.若关于x的一元二次方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k的值是() A.3或-2 B.-3或2 C.3 D.-210.下面结论错误的是()A.方程x2+4x+5=0,则x1+x2=-4,x1x2=5B.方程2x2-3x+m=0有实数根,则m≤9 8C.方程x2-8x+1=0可配方得(x-4)2=15D.方程x2+x-1=0的两根为x1=-1+52,x2=-1-52二、填空题(本题有6小题,每小题4分,共24分)11.写出二次项系数为5,以x1=1,x2=2为根的一元二次方程:______________________.12.一元二次方程x(x-1)=x-1的解是________________.13.已知关于x的方程mx2+2x-4=0是一元二次方程,则m的取值范围是____________.14.已知方程x2-3x-4=0的两个根为x1和x2,则x21+x22=____________.15.学校课外生物小组的试验园地是长35米、宽20米的长方形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),并使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为__________________.(第15题)16.方程x2-2x-3=0的一个实数根为m,则m2-2m+2 017=________.三、解答题(本题有7小题,共66分)17.(8分)用适当的方法解下列方程:(1)x2+3x-4=0;(2)(x+1)2=4x;(3)(x+4)2=5(x+4); (4)(x-3)(x-1)=3.18.(8分)关于x的方程x2-(k+1)x-6=0的一个根是2,求k的值和方程的另一个根.19.(8分)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50个学生纪念品和10个教师纪念品,其中每个教师纪念品的成本比每个学生纪念品的成本多8元.(1)这两种不同纪念品每个的成本分别是多少?(2)如果商店购进1 200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余的学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2 500元,第二周每个纪念品的销售价格为多少元?20.(10分)关于x的方程(k2+2k-2)x2+(k+1)x-3=0(k为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k的值.(2)求k=1时方程的解.(3)求出一个k(k≠1)的值,使这个k的值代入原方程后,所得的方程有一个解与(2)中方程的其中一个解相同.(本小题只需要求出一个k的值即可)21.(10分)已知a,b,c为一个三角形的三边长,且方程b (x2-1)-2ax+c (x2+1)=0有两个相等的实数根.试判断此三角形的形状,并说明理由.22.(10分)如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的长和宽各为多少米.设与墙平行的一边长为x米.(第22题)(1)填空:与墙垂直的一边长为________米;(用含x的代数式表示)(2)列出方程,并求出问题的解.23.(12分)杭州湾跨海大桥通车后,A地经杭州湾跨海大桥到宁波港的路程比原来缩短了120 km.已知运输车速度不变时,行驶时间将从原来的103h缩短到2 h.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地运到B地的运输费用为8 320元,其中从A地经杭州湾跨海大桥到宁波港每车的运输费用与(2)中相同,从宁波港到B地的海上运费计费方式是:若货物不超过10车,1车800元,货物每增加1车,每车的海上运费就减少20元,问这批货物有几车?答案一、1.D 2.A 3.B 4.A 5.C 6.A7.D8.A9.C10.A二、11.5x2-15x+10=012.x1=x2=113.m≠014.1715.(35-2x)(20-x)=600(或2x2-75x+100=0)16.2 020三、17.解:(1)x2+3x-4=0,x=-3±9+4×42×1=-3±52.∴x1=1,x2=-4.(2)(x+1)2=4x,整理得x2-2x+1=0,即(x-1)2=0,∴x1=x2=1.(3)(x+4)2=5(x+4),整理得(x+4)(x+4-5)=0,即(x+4)(x-1)=0,∴x1=-4,x2=1.(4)(x-3)(x-1)=3,化成一般形式为x2-4x=0,即x(x-4)=0.∴x1=0,x2=4.18.解:把x=2代入x2-(k+1)x-6=0,得4-2(k+1)-6=0,解得k=-2,则原方程为x2+x-6=0,解得x1=2,x2=-3.所以方程的另一个根为-3.19.解:(1)设每个学生纪念品的成本为x元,根据题意得50x+10(x+8)=440,解得x=6,∴x+8=6+8=14.答:每个学生纪念品的成本为6元,每个教师纪念品的成本为14元.(2)第二周单价降低x元后,这周的销售量为(400+100x)个,由题意得400×(10-6)+(10-x-6)(400+100x)+(4-6)[1 200-400-(400+100x)]=2500,即1 600+(4-x)(400+100x)-2(400-100x)=2 500,整理得x2-2x+1=0,解得x1=x2=1,则10-1=9(元).答:第二周每个纪念品的销售价格为9元.20.解:(1)不一定是.当k2+2k-2=0时该方程不是一元二次方程,解得k1=-1+3,k2=-1- 3.(2)把k=1代入原方程得x2+2x-3=0,解得x1=1,x2=-3.(3)把x=1代入原方程得k2+2k-2+k+1-3=0,整理得k2+3k-4=0,(k+4)(k-1)=0,解得k=-4,或k=1(舍去).所以求出的k值为-4.点拨:(3)题答案不唯一,也可以把x=-3代入原方程解得k=-83或k=1(舍去).21.解:此三角形是直角三角形.理由如下:原方程整理得,(b+c)x2-2ax+c-b=0.则(-2a)2-4(b+c)(c-b)=0,整理得a2+b2=c2.∴此三角形是直角三角形.22.解:(1)40-x 2(2)根据题意得x·40-x2=180,整理得x2-40x+360=0,解得x1=20+210,x2=20-210.∵墙长25米,20+210>25,∴x=20+210不合题意,应舍去.∵0<20-210<25,∴x=20-210符合题意,此时40-x2=10+10.答:养鸡场的长是(20-210)米,宽是(10+10)米. 23.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km ,由题意得x +120103=x2,解得x =180.∴A 地经杭州湾跨海大桥到宁波港的路程为180 km. (2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y [800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去), ∴这批货物有8车.。
湘教版2019-2020学年八年级数学下册 第2章 四边形 单元测试题及答案
第2章四边形测试题总分数 100分时长:90分钟一、选择题(共10题 ,总计30分)1.(3分)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A. 20B. 24C. 28D. 402.(3分)平行四边形一边长为12 cm,那么它的两条对角线的长度可能是()A. 10 cm和34 cmB. 18 cm和20 cmC. 10 cm和14 cmD. 8 cm和14 cm3.(3分)当一个n边形的边数增加1时,它的外角和增加()A. 180°B. 0°C. n·180°D. 360°4.(3分)将一张长方形纸片按如图所示的方式折叠,则∠CBD的度数为()A. 60°B. 75°C. 90°D. 95°5.(3分)菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为()A.B.C.D.6.(3分)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形,其中正确的是()A. ①②B. ①③C. ②③D. ①②③7.(3分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A. 53°B. 37°C. 47°D. 123°8.(3分)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A. 1B. 2C.D.9.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD10.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A. 10°B. 15°C. 20°D. 25°二、填空题(共8题 ,总计24分)11.(3分)若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是____1____度.12.(3分)如图,在▱ABCD中,BD为对角线,E,F分别是AD,BD的中点,连接EF.若EF=3,则CD的长为____1____.13.(3分)已知菱形两条对角线的长分别为5 cm和8 cm,则这个菱形的面积是____1____cm2.14.(3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____1____.15.(3分)若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____1____.16.(3分)平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长大2 cm,则CD=____1____cm.17.(3分)如图所示,菱形ABCD的边长为4,∠B=60°,则菱形的面积为____1____.18.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=____1____度.三、解答题(共5题 ,总计46分)19.(8分)如图,AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20.(8分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.21.(10分)如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.22.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACD的平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.23.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A. 20B. 24C. 28D. 40【解析】略【答案】A2.(3分)平行四边形一边长为12 cm,那么它的两条对角线的长度可能是()A. 10 cm和34 cmB. 18 cm和20 cmC. 10 cm和14 cmD. 8 cm和14 cm【解析】略【答案】B3.(3分)当一个n边形的边数增加1时,它的外角和增加()A. 180°B. 0°C. n·180°D. 360°【解析】略【答案】B4.(3分)将一张长方形纸片按如图所示的方式折叠,则∠CBD的度数为()A. 60°B. 75°C. 90°D. 95°【解析】略【答案】C5.(3分)菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为()A.B.C.D.【解析】略【答案】D6.(3分)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形,其中正确的是()A. ①②B. ①③C. ②③D. ①②③【解析】略【答案】C7.(3分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A. 53°B. 37°C. 47°D. 123°【解析】略【答案】B8.(3分)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A. 1B. 2C.D.【解析】略【答案】D9.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD【解析】略【答案】D10.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A. 10°B. 15°C. 20°D. 25°【解析】略【答案】B二、填空题(共8题 ,总计24分)11.(3分)若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是____1____度.【解析】【答案】3012.(3分)如图,在▱ABCD中,BD为对角线,E,F分别是AD,BD的中点,连接EF.若EF=3,则CD的长为____1____.【解析】略【答案】613.(3分)已知菱形两条对角线的长分别为5 cm和8 cm,则这个菱形的面积是____1____cm2.【解析】【答案】2014.(3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____1____.【解析】略【答案】2815.(3分)若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____1____.【解析】【答案】16.(3分)平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长大2 cm,则CD=____1____cm.【解析】略【答案】417.(3分)如图所示,菱形ABCD的边长为4,∠B=60°,则菱形的面积为____1____.【解析】略【答案】18.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=____1____度.【解析】略【答案】22.5三、解答题(共5题 ,总计46分)19.(8分)如图,AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【解析】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,BE∥CF.∵AB∥CD,∴∠A=∠D.又∵AE=DF,∴△AEB≌△DFC.∴BE=CF.∴四边形BECF是平行四边形【答案】见解析20.(8分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.【解析】证明:(1)∵AB=AC,∴∠B=∠ACB.∵∠FAC=∠B+∠ACB=2∠ACB,AD平分∠FAC,∴∠FAC=2∠CAD.∴∠CAD=∠ACB.在△ABC和△CDA中,∴△ABC≌△CDA.(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB.∴AD∥BC.∵∠BAC=∠ACD,∴AB∥CD.∴四边形ABCD是平行四边形.∵∠B=60°,AB=AC,∴△ABC是等边三角形.∴AB=BC.∴平行四边形ABCD是菱形【答案】见解析21.(10分)如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【解析】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.由(1)知△BED≌△CFD,∴DE=DF,∴四边形DFAE为正方形.【答案】见解析22.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACD的平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.【解析】解:(1)OE=OF.理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE,CF分别平分∠BCA,∠ACD,∴∠BCE=∠OCE,∠DCF=∠OCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形.由(1)知,OE=OC=OF.∵O是AC的中点,∴OA=OC.∴OE=OC=OF=OA,∴四边形AECF是矩形.【答案】见解析23.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【解析】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°.又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD【答案】见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第二章单元测试试题(自我综合评价)
第I卷(选择题)
一、选择题(每小题3分,共36分)
1.若a<b,则下列不等式中一定成立的是()A.a-3>b-3 B.a-3<b-3 C.3-a<3-b D.3ac<3bc
2下面给出的不等式组中①②③④⑤
其中是一元一次不等式组的个数是()
A.2个B.3个C.4个D.5个
3.不等式组整数解的个数是()
A.个 B.个 C.个 D.个
4.不等式组的解集在数轴上可表示为
5.若方程组有2个整数解,则的取值范围为…………………() A. B. C. D.
6.不等式组的解集是()
A.x>3 ;
B.x<6;
C.3<x<6 ;
D.x>6.
7.不等式的解集为( )
A. x>2
B. x>1
C. x<1
D. x<2 8.代数式的值小于0,则可列不等式………………………………()
A. B. C. D.
9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为,则可以列得不等式组为:( )
A、 B、
C、 D、
10.如果关于的方程的解不是负值,那么与的关系是()
A. B. C. D.
11.不等式组的所有整数解的和是()
A.2 B.3 C.5 D.6
12.已知,如果,则的取值范围是()
A. B. C. D.
第II卷(非选择题)
二、填空题(每小题3分,共12分)
13.不等式的解集为.
14.不等式组的整数解为________.
15.如图,已知函数与函数的图象交于点P,则不等式的解是 .
16.小亮准备用元钱买笔和练习本,已知每去笔元,每本练习本元.他买了本
练习本,最多还可以买_________去笔.
三、解答题:(共52分)
17.(6分)解不等式:
18.(6分)解不等式,并把解集表示在数轴上.
19.(6分)解不等式组:
20、(9分)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图像.根据图像解答下列问题:
(1)在轮船快艇中,哪一个的速度较大
(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时,快艇在轮船的前面?
(3)问快艇出发多长时间赶上轮船?
21.(8分)(本题满分6分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用1000元为全班40位同学没认购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
22、(8分)深圳中学为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
23.(9分)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量
小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C 两地运往D、E两地哪几种方案?
(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:
在(2)的条件下,请说明哪种方案的总费用最少?
参考答案
一、选择题:
1.B 2.B 3.C 4.D. 5.B 6.C 7.B 8.A 9.D 10.C 11.D 12.B
二、填空题:
13.x<2.14.0,1 15.x<4.16.6
三、解答题:
17.解:3(3+x)-6≤4x+3 ;9+3x-6≤4x+3 ;3x-4x≤3-9+6 ;-x≤0;x≥0
18.解:
19.解不等式,得;解不等式,得,即,所以,这个不等式组的解集是.
20、解:(1)轮船的速度为:v1=160÷8=20km/h;
快艇的速度为:v2=160÷4=40km/h;
v1<v2,所以快艇的速度较大.
(2)设在t时刻轮船和快艇的路程相等则:20t=40(t-2),
解得:t=4,
则当0<x<4时,快艇在轮船的后面;
当4<x<8时,快艇在轮船的前面.
(3)由(2)知,在4小时轮船和快艇的路程相等.
4-2=2小时.
故快艇出发2小时赶上轮船.
21.解:(1)设每个书包的价格为x元,则每本词典的价格为(x-8)元。
根据题意,得3x+2(x-8)=124,
解得:x=28。
∴x-8=20。
答:每个书包的价格为28元,每本词典的价格为20元。
(2)设购买书包y个,则购买词典(40-y)本.
根据题意得:1000−[28y+20(40−y)]≥100;1000−[28y+20(40−y)]≤120 解得:10≤y≤12.5。
因为y取整数,所以y的值为10或11或12,
所以有三种购买方案,分别是:
①购买书包10个,词典30本;
②购买书包11个,词典29本;
③购买书包12个,词典28本。
22、设有x间住房,则学生有5x+12人
列式8x>5x+12
8(x-1)<5x+12
解得4<x<20/3
所以x可以取5或者6,即有5间或者6间,住宿学生可能有37人或者42人
23.解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,
解得:x=50,
∴2x﹣10=90.
答:共运往D地90立方米,运往E地50立方米;
(2)由题意可得,
,
解得:20<a≤22,
∵a是整数,
∴a=21或22,
∴有如下两种方案:
第一种:A地运往D地21立方米,运往E地29立方米;
C地运往D地39立方米,运往E地11立方米;
第二种:A地运往D地22立方米,运往E地28立方米;
C地运往D地38立方米,运往E地12立方米;
(3)第一种方案共需费用:
22×21+20×29+39×20+11×21=2053(元),
第二种方案共需费用:
22×22+28×20+38×20+12×21=2056(元),
所以,第一种方案的总费用最少.
考点:一元一次不等式组的应用;一元一次方程的应用.。