认知无线电技术
认知无线电技术

认知无线电技术什么是认知无线电技术?认知无线电技术,又称为认知无线电系统,是一种通过利用电磁波的传播特性,对无线电频率进行智能管理和利用的技术。
它通过对周围无线电频谱的监测、识别和分析,实现了无线电频谱的高效利用。
与传统的固定频率使用方式不同,认知无线电技术可以动态地调整无线电频率以避免和其他无线电设备的干扰,从而提高了频谱的利用效率。
认知无线电技术的应用可以涵盖通信、雷达、导航和遥感等领域。
认知无线电技术的发展历程认知无线电技术的发展可以追溯到20世纪90年代初期,当时,波束赋形和频率聚焦技术逐渐成熟,很多无线电设备都已经实现了数字化处理。
在这样的背景下,研究人员开始寻求一种新的方式来提高频谱利用率,避免信号干扰现象的发生。
2002年,美国电子电气工程师学会( IEEE)提出了认知无线电技术的概念。
2003年,美国国防部开始为研究该技术的应用和发展提供资金支持。
此后,越来越多的研究机构和企业开始加入到认知无线电技术的研究和应用之中。
近年来,认知无线电技术在国内外的研究和应用得到了广泛关注和推广。
认知无线电技术的特点1.智能管理认知无线电技术可以自主地对无线电频率进行管理和利用,通过智能的处理能力,动态地调整无线电的频率范围、幅度和波形等,适应不同的环境和需求。
2.高效利用认知无线电技术可以避免固定频率使用方式下的频谱浪费和干扰问题,提高了频谱的利用效率。
通过对周围无线电环境的优化感知和调节,可以实现更多无线电设备的共存,满足满足不同的通信需求。
3.低成本与固定频率使用方式相比,认知无线电技术可以减少硬件设备的需要,降低成本和能耗。
4.安全可靠认知无线电技术可以减少不必要的信号干扰和频谱浪费,提高了无线电设备的安全性和可靠性,避免了频繁的通信中断和信息传输错误。
认知无线电技术的应用认知无线电技术已经应用在多个领域中,下面列举几个具体的应用:1. 通信认知无线电技术可以大大提高无线电频谱的利用效率,支持更多的数据传输和接受,同时减少了传输中的干扰和浪费,提高了通信的速度和可靠性。
浅谈认知无线电技术

汇报人:文小库2023-11-17•认知无线电技术概述•认知无线电技术的原理与技术•认知无线电技术的优势与挑战•认知无线电技术的发展趋势与展望•认知无线电技术的实际应用案例认知无线电技术概述01认知无线电(Cognitive Radio, CR)是一种智能无线电通信技术,能够感知并理解周围的无线电环境,动态地调整其传输参数,如频率、功率等,以提高无线频谱的利用效率。
认知无线电的特点主要包括灵活性、自适应性、智能性和环保性。
它能够根据无线电环境的实时变化来动态调整传输参数,以适应不同的通信需求和保障通信质量。
此外,认知无线电还具有节能环保的优势,能够有效地利用无线频谱资源,缓解频谱资源紧张的问题。
定义和特点VS认知无线电技术的研究始于20世纪90年代,随着无线通信技术的快速发展和频谱资源的日益紧张,认知无线电技术逐渐成为研究的热点。
各国政府和企业纷纷投入大量的人力和物力资源进行认知无线电技术的研究和开发。
目前,认知无线电技术已经取得了显著的进展,各种先进的认知无线电技术和系统不断涌现。
未来,认知无线电技术将继续朝着智能化、自适应性和节能环保等方向发展,为无线通信技术的发展带来更多的创新和突破。
认知无线电技术的历史与发展认知无线电技术可以应用于各种无线通信系统,如移动通信、卫星通信、物联网、智能家居等。
在这些系统中,认知无线电技术可以通过感知周围无线电环境的变化,动态地调整传输参数,提高频谱利用效率,保障通信质量。
例如,在移动通信系统中,认知无线电技术可以感知并避免干扰,提高频谱利用效率,增加网络容量和覆盖范围。
在卫星通信系统中,认知无线电技术可以通过动态地调整传输参数,适应不同卫星的运动轨迹和通信需求,保障通信质量。
认知无线电技术的应用场景认知无线电技术的原理与技术02认知无线电技术通过感知无线电环境,理解信号传播特性,从而获取空闲频谱的机会。
通过构建频谱地图,对频谱使用情况进行记录和分析,为后续的频谱管理和优化提供数据支持。
认知无线电技术在通信领域中的应用

认知无线电技术在通信领域中的应用随着无线电技术的发展,认知无线电技术备受关注。
这种技术通过对频谱的分析和利用,能够在频段上实现更加高效的通信。
在当今社会,通信已经成为人们日常生活中不可缺少的一部分。
因此,认知无线电技术能够在通信领域中发挥重要的作用。
一、认知无线电技术的基本原理认知无线电技术是一种基于认知能力的无线通信技术,其核心是通过实时的频谱感知和整个频段的动态管理来实现无线电效率的提升。
具体而言,认知无线电技术旨在通过利用频段的空闲资源,实现更高的频谱利用率。
它需要对周围的无线信道进行感知,从而决定最合适的频段进行通信。
该技术能够不断对周围的环境进行监测,以获取更加灵活的信道分配方式。
同时,认知无线电技术也面临一些挑战,比如频带资源的管理和频道选择等。
二、在通信领域中,认知无线电技术主要应用于以下几个方面:1、高效频谱利用通过认知无线电技术,可以实现更加高效的频谱利用。
它可以对周围的信道进行感知,并根据实际情况进行调整。
这意味着,认知无线电技术能够更加准确地确定可用的频段,并利用它们进行通信。
这种技术可以充分利用频谱,提升通信的效率和质量。
2、减少干扰通信中经常会遇到干扰的问题,这是由于信道的带宽或功率不足而引起的。
通过认知无线电技术,我们可以实时地感知无线信道,从而更加精准地确定信道的有效带宽或功率。
这样一来,我们可以使用更少的带宽或功率来实现相同的通信效果,从而减少干扰的产生。
3、降低通信成本通过认知无线电技术,我们可以更加精准地确定可用的信道。
这样一来,我们可以在不必增加频带投入的情况下,提升通信质量。
同时,在节约带宽资源的同时,认知无线电技术也可以降低通信成本。
这对于一些需要频繁通信的企业或组织来说,是非常有益的。
三、讨论与展望认知无线电技术的应用在未来还有很大的发展空间。
尽管有些技术上的问题还需要解决,但认知无线电技术仍有着广阔的应用前景。
未来,认知无线电技术将通过嵌入式系统、云计算和大数据等技术的支持,实现更加高效的通信。
认知无线电安全关键技术研究

认知无线电安全关键技术研究一、综述随着无线通信技术的快速发展,认知无线电技术应运而生。
认知无线电是一种能够在动态环境中感知并利用空闲频谱的智能无线通信技术,它能够提高频谱利用率,减少干扰和节约成本。
认知无线电技术在提高频谱利用率的也带来了许多安全问题。
本文将对认知无线电安全的关键技术进行综述,包括频谱感知、频谱分配、接入控制、隐私保护等方面。
在频谱感知方面,认知无线电需要能够准确地检测和识别主用户信号和其他非授权用户的信号。
常用的频谱感知方法有匹配滤波器、循环平稳特征分析、小波变换等。
这些方法在复杂多变的无线环境中,往往会出现误判或漏检的情况,影响认知无线电的安全性能。
频谱分配是认知无线电系统的核心任务之一,其目标是在保证主用户服务质量的前提下,最大化非授权用户的收益。
频谱分配策略的选择直接影响到认知无线电系统的性能。
常见的频谱分配方法有固定频率分配、动态频率分配、比例公平分配等。
这些方法在面对快速变化的网络环境和用户需求时,往往难以实现最优的频谱分配。
接入控制是认知无线电系统中保证主用户权益的重要手段。
接入控制策略的选择直接影响到认知无线电系统的稳定性和可靠性。
常见的接入控制方法有基于规则的方法、基于博弈论的方法、基于机器学习的方法等。
这些方法在面对复杂的无线环境和用户行为时,往往难以实现有效的接入控制。
隐私保护是认知无线电技术中亟待解决的问题之一。
由于认知无线电系统需要收集和处理大量的用户信息,因此存在泄漏用户隐私的风险。
常用的隐私保护方法有匿名化技术、加密技术、差分隐私等。
这些方法在面对复杂多变的无线环境和用户需求时,往往难以实现完全的隐私保护。
认知无线电安全关键技术的研究仍然面临着许多挑战。
未来的研究需要综合考虑频谱感知、频谱分配、接入控制、隐私保护等多个方面,以实现更高性能、更可靠、更安全的认知无线电系统。
1. 认知无线电技术的快速发展及其在军事和民用领域的广泛应用随着无线通信技术的不断进步,认知无线电技术(Cognitive Radio Technology)应运而生。
认知无线电技术的研究与优化

认知无线电技术的研究与优化认知无线电技术是近年来发展最为迅速的无线电技术之一。
其核心思想是通过对无线电频谱的实时监测和分析,实现对无线电频道的自适应管理和智能分配。
因此,它被广泛应用于无线电资源共享和频谱利用效率提高的领域。
本文将从认知无线电技术的原理、应用领域以及研究与优化方向三个方面,为读者详细介绍认知无线电技术。
一、认知无线电技术的原理认知无线电技术的核心是通过实时监测和分析无线电频谱,获取频道的使用状况、空余容量等信息,从而实现对频谱的自适应管理和智能分配。
其优点是可以最大程度地提高频谱的利用效率,避免频谱的浪费和瓶颈发生。
认知无线电技术通常由以下五个主要模块组成:1.感知模块:监测和获取频谱信息。
2.推理模块:处理并分析感知模块采集的频谱信息,识别出当前频率和频道的使用情况,以及可用频道的数量和容量等相关信息。
3.规划模块:根据推理模块的结果,制定出合理的频道分配方案。
4.执行模块:根据规划模块的方案,执行相应的频道分配和调度操作。
5.反馈模块:监测和评估执行模块的操作效果,从而不断优化系统的性能和效率。
二、认知无线电技术的应用领域认知无线电技术可以应用于多个领域,如无线电资源共享、物联网通信、移动通信等。
下面将分别阐述其在这些领域中的应用场景和具体实现方式。
1.无线电资源共享。
传统的无线电频谱管理方式是采用独占或分段的方式,导致频谱利用效率低下和频谱浪费。
而认知无线电技术可以通过对频谱进行智能识别和分配,实现多用户共享同一频谱,从而最大化地提高了频谱利用效率。
例如,无线电电视的频谱资源一般处于一种相对稳定的状态,而认知无线电技术可以将这些空闲的频率分配给无线局域网或蜂窝通信等其他应用,以增强频谱利用效率。
2.物联网通信。
随着物联网智能家居、智能医疗等应用的快速发展,对于频谱的需求也在不断增长。
而传统的物联网无线通信方式存在频谱资源有限、信道干扰严重等问题。
而认知无线电技术则可以通过对频率的实时检测和分析,选择最优的频谱资源和信道,从而实现物联网通信的高效性和可靠性。
面向移动互联网的认知无线电技术研究

面向移动互联网的认知无线电技术研究随着移动互联网的快速发展,人们对通信技术和通信网络的需求不断增加。
在这种情况下,认知无线电技术应运而生。
认知无线电技术可以让无线电频谱得到更好的利用,提高频率利用率,从而满足了人们对无线通信的需求。
一、认知无线电技术概述认知无线电技术是指通过无线电频谱的感知、理解和应用来实现认知和控制的高科技无线通信技术。
它可以在不干扰其他频率的条件下,有效的使用无线电频谱。
与传统的固定频率和时间分配的无线电通信方式不同,它能够自动感知和监视无线电频谱,并从中选择未被占用的频率,在合适的时候调整发送和接收参数。
二、认知无线电技术的特点1.自适应性:认知无线电技术可以根据环境的变化自适应的改变通信的参数,从而达到最优状态,提高频率利用率,降低通信成本。
2.感知性:认知无线电技术可以感知无线电频谱的使用情况及其变化,能够实现无线网络资源的动态分配。
3.智能性:认知无线电技术可以智能的选择最佳的无线电资源,实现无线电资源的最优化分配和使用。
三、认知无线电技术的应用1.无线电节能:在认知无线电技术的支持下,可以实现静态和动态无线电节能,从而提高终端设备电池的寿命。
2.无线电频谱管理:认知无线电技术可以感知到无线电频谱的使用情况,从而合理的管理和分配频谱资源,缓解无线电频谱紧缺的问题。
3.智能交通:认知无线电技术可以对交通信息进行感知、处理和传输,在交通管理中起到重要的作用。
4.物联网与5G技术:认知无线电技术可以在物联网和5G技术中实现频谱的高效使用,提高无线通信质量和覆盖范围。
四、认知无线电技术的研究方向1.认知无线电技术的智能化研究:如何将人工智能技术应用到认知无线电技术中,提高认知无线电的自适应性和智能化水平。
2.认知无线电的安全性研究:认知无线电技术的发展离不开安全保密。
如何保证认知无线电技术的安全性、可靠性和防抵抗性,是目前亟待解决的问题。
3.认知无线电的无线接入研究:如何提高认知无线电的无线接入能力,实现多设备无线接入,提高通信效率和用户体验。
认知无线电体系结构分析

认知无线电体系结构分析认知无线电是一种新生的无线通信技术,它在频谱管理、网络优化等方面有着广泛的应用。
为了更好地实现认知无线电通信,需要建立合理的认知无线电体系结构。
本文将从多个方面进行分析,为读者呈现认知无线电体系结构。
一、认知无线电的定义和特点认知无线电是指一类能够自主建立模型、利用地理信息和环境关键指标,自动或半自动感知和操作无线电频谱的系统的技术。
它具有动态频谱分配和利用的能力,能够有效地提高无线电频谱利用率、提升通信性能,优化用户体验,是无线电通信的一种重要技术。
二、认知无线电的体系结构认知无线电体系结构主要分为网络体系结构、射频体系结构、通信协议体系结构。
1. 网络体系结构认知无线电网络体系结构是指由认知无线电通信设备、认知控制器、认知网关节点和认知管理服务器等组成的网络结构。
其主要功能是通过自主感知、分析和决策无线电环境,实现频谱监测、动态频谱分配和网络管理等任务。
2. 射频体系结构认知无线电射频系统主要包括软件定义的无线电设备、DAA-PCB电路板和射频前端等元件。
这些元件协调工作,使得无线电设备具有高度的智能化完成频谱感知、数据处理、通信控制。
3. 通信协议体系结构认知无线电通信协议体系结构是实现认知无线电通信所必需的协议总称,本质上是在数据链路层之上,对认知无线电设备所提供的通信服务的控制,使用其设备优化频谱利用。
该部分主要涉及到物理层、数据链路层、网络层,需要确保不同节点间的信息交流顺畅、安全可靠。
三、认知无线电体系结构分析认知无线电体系结构是一种比较复杂的分布式结构体系,其设计需要考虑众多因素,一些主要方面如下:1.取决于射频前端设计的电路过程,越复杂有更好的效果,同时需要考虑成本限制。
2. 系统中大量节点间的互相操作请求,数据必须很好地调配以提高信道使用率。
3. 必须要有高精度的感知与反应,以满足对频谱使用状态的无缝控制。
4. 系统需要优化节点的选择算法以实现快速定位,这对连通性和频谱效果有很大的影响。
认知无线电技术发展趋势和应用场景

认知无线电技术发展趋势和应用场景认知无线电技术是一种基于智能软件和智能算法的无线电技术,该技术通过对无线电频谱的高效和准确的感知,可以在不干扰主要用户的前提下利用可用频谱完成数据传输或其他应用。
认知无线电技术发展趋势和应用场景受到越来越多的关注,以下是本文对其进行的分析。
一、发展趋势1.1 频谱利用率提高传统无线电通讯方式对频谱的利用率并不高,需要占用大量的频率资源,但是认知无线电技术可以利用空闲频谱资源,提高频谱利用效率,减少无效传输,从而提高频谱利用效率,为未来无线通讯的快速发展提供有力支持。
1.2 现代智能化和基于互联网的应用推动由于认知无线电技术有助于提高通讯效率和频率利用率,因此其应用场景非常广泛,尤其是在物联网、智能城市、车联网和无人机等现代智能化和基于互联网的应用中,认知无线电技术具有重要的作用。
1.3 应用场景不断拓展认知无线电技术应用场景不断拓展,目前已经涉及到的应用领域包括军事通讯、物联网通讯、无人机和航空通讯、电视广播和移动通讯等,这些应用的需求要求工程师设计出更为高效、可持续和具有智能化的系统。
二、应用场景2.1 物联网通讯物联网是指将设备、传感器和物品等连接到互联网上的网络。
物联网通讯,要求设备具有长时间的低功耗和更高的频谱利用效率,因此认知无线电技术在物联网通讯中具有重要的应用场景。
2.2 无人机通讯无人机是指一种没有驾驶员的飞行器,它使用了视觉传感器、GPS、立体摄像和认知无线电等技术,完成无人机的航行、测量和观察等任务。
认知无线电技术可以用于无线电通讯,减轻人为干扰,增强通讯安全性,提高航空的安全性和容错性。
2.3 物理安全认知无线电技术有助于增强物理安全的管理和控制。
在工业生产和监控安全中,往往需要实现对无线电频谱资源的有效利用,以防止一些安全隐患和偷窃等情况的发生。
认知无线电技术通过对无线电频谱的探测和诊断实现对安全隐患的有效识别和监控。
三、结论认知无线电技术发展趋势和应用场景的分析表明,在物联网、智能城市、车联网和无人机等现代智能化和基于互联网的应用中,认知无线电技术具有重要的作用,凭借其高效率、可持续性和智能化等特点,在未来无线通讯的发展中将会得到越来越多的应用和推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代通信系统论文题目:认知无线电技术姓名:朱雪峰学院:潇湘学院专业:通信工程班级: 001学号: 1254040121 指导教师:钟斌2015年11月1日目录一、引言 (2)二、认知无线电的基本概念 (2)三、认知无线电的功能与实现 (4)1.认知无线电的主要功能 (4)2.认知无线电的实现关键 (5)四、认知无线电的标准化 (7)五、认知无线电的管制与应用情况 (8)六、未来发展与展望 (9)认知无线电技术的研究及发展【摘要】认知无线电技术作为软件无线电技术的一个特殊扩展,受到日益广泛的关注。
由于该技术能够自动检测无线电环境,调整传输参数,从空间、时间、频率、调制方式等多维度共享无线频谱,可以大幅度提高频谱利用效率。
本文首先从认知无线电技术的定义入手,分别讨论了认知无线电的基本概念、功能与实现、标准化的进程。
然后介绍了当前应用状况,最后分析了未来的发展及面临的挑战。
一、引言随着无线通信技术的发展,人们可以获得的带宽不断地增加,移动通信的数据速率从10 kbit/s增长到2 Mbit/s,在不久的将来还可能提高到上百兆比特每秒。
但即使如此,也无法满足人们日益增长的无线接入需求。
为了缓解这一矛盾,一方面,人们不断开发新的无线接入技术,利用新的频段来提供各种业务;另一方面,不断改进各种编码调制方式,提高频谱效率。
但由于移动终端天线尺寸和功率的限制,可以用于无线接入的频段很有限。
在提高频谱效率方面,目前较为先进的CDMA空中接口技术,如HSDPA可以达到1 bit/(s·Hz)的频谱效率,将来OFDM和MIMO技术的应用也只能达到3-4 bit/(s·Hz)的频谱效率。
3-4倍的频谱效率的提高对于人们成百上千倍的带宽需求增长是微不足道的。
认知无线电技术的出现,为解决频谱资源不足、实现频谱动态管理及提高频谱利用率开创了崭新的局面。
二、认知无线电的基本概念认知无线电(cognitive radio,CR)的概念是由Joseph Mitola博士提出的,他在1999年发表的一篇学术论文[1]中描述了认知无线电如何通过一种“无线电知识表示语言(RKRL)”的新语言提高个人无线业务的灵活性。
随后在2000年瑞典皇家科学院举行的博士论文答辩中详细探讨了这一理论[2]。
认知无线电也被称为智能无线电。
从广义上来说是指无线终端具备足够的智能或者认知能力,通过对周围无线环境的历史和当前状况进行检测、分析、学习、推理和规划,利用相应结果调整自己的传输参数,使用最适合的无线资源(包括频率、调制方式、发射功率等)完成无线传输。
认知无线电能够帮助用户自动选择最好的、最廉价的服务进行无线传输。
甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。
由定义可以看出。
认知无线电的一个最大优势就是无线用户可以通过该技术实现“频谱共享”。
目前大多数频谱已经被划分给不同的许可持有者(又称为首要用户),包括移动通信、应急通信、广播电视等。
但是随着用户需求的增长,简单地通过开发新的无线接入技术和使用新的频点已经无法充分满足市场需求。
近年来,很多学者通过监测分析当前无线频谱使用状况发现,虽然大部分频谱已经被分配给不同的用户,但是在相同时间、相同地点频谱的使用却非常有限。
常常是大部分频点未被使用,而某些热点频率又处于超负荷运行。
美国联邦通信管理委员会(FCC)充分注意到了这一点,于2002年11月出版了频谱政策任务组撰写的一份报告[3],该报告指出,当前分配的绝大多数频谱的利用率为15%-85%。
因此FCC认为当前存在的最主要问题并不是没有频谱可用,而是现有的频谱分配方式导致资源没有被充分利用。
只有彻底改变当前固定频谱分配政策,部分甚至全部采用动态频谱分配政策,使多种技术可以实现“频谱共享”,才能彻底改变频谱缺乏的问题。
如果采用频谱共享技术,允许部分免许可用户在不影响首要用户的前提下动态共享部分频点可以极大地缓解目前频谱资源紧张的问题。
与学术研究给出的定义略有不同,FCC的定义相对狭义一些:认知无线电技术是无线终端利用与周围无线环境进行交互所获取的无线背景知识,调整传输参数,实现无线传输的能力。
即只要具备环境探测,并且能够调整传输频点和相关传输参数的设备就是认知无线电设备。
实际上,认知无线电技术是对频谱资源从时间、空间和频率等多维度的重复利用和共享。
认知无线电在特定频段上进行探测,如果发现该频段当前未被使用,可以在不影响首要用户的前提下使用该频段。
如果该频段的首要用户恢复无线传输,那么认知无线电设备就跳转到其他频段或者通过改变传输功率、调制方式等手段来避免对首要用户产生干扰。
三、认知无线电的功能与实现从认知无线电的概念我们可以看到,与传统的以发射机为中心的设计思想所不同,认知无线电是以接收机为中心的以目标为驱动的框架;与传统的通信系统结构不同的是,仅仅实现底层的功能是远远不够的,如果要确保大量认知无线电设备正常工作必然要涉及到更高层次的协议设计。
1.认知无线电的主要功能由于认知无线电技术尚处于起步阶段,对于该技术的主要功能还处于讨论过程中。
Mitola博士提出的认知循环过程相对比较复杂,包括一系列认知学习步骤[4]。
当前,不同组织机构在设计实现认知无线电的总体框架中所涉及的具体内容也有所不同。
从比较完整的意义上一般认为,认知无线电系统应该具备检测、分析、调整、推理、学习等能力。
事实上,这些具体功能就是一个认知循环的主要组成部分。
1)检测由特殊应用环境所决定,认知无线电必须具备精确的无线频谱检测能力,必须在可使用的全频段范围内多维度进行频谱检测,从而发现可使用的频段。
由于是免许可使用,认知无线电必须具备迅速发现首要用户的能力,在工作过程中时刻检测首要用户是否处于活动状态,从而确保不对其产生干扰。
更为困难的一点是,由于广播电视用户多为哑终端,即仅仅完成接收功能。
而作为认知无线电用户又必须能够发现他们的存在,从而避免对其产生干扰,这就为频谱检测提出了更为艰巨的要求。
目前有些研发人员提出通过检测接收机本振的频谱泄漏来完成对哑终端的定位,但是仍处于研究阶段。
2)分析认知分析包括对自身性能、网络内部状态、外部相关数据(包括频谱使用、策略使用等)和用户自身需求等相关知识的分析。
如果说检测是信息的获取,那么分析就是对相关信息的初步处理。
认知无线电设备通过所获取的频谱检测结果分析首要用户的位置、使用的频点和发射时间,同时分析可用频点位置、可用带宽、信道状况、自身传输可能会对其他用户产生的影响以及完成业务传输所需的带宽和时间。
3)调整调整能力是完成传输的关键,根据检测和分析的相关结果,认知无线电设备通过先进的功率控制技术、不同的编解码以及调制技术,选择合适的频点和发射时机,从而成功地完成传输。
这就要求认知无线电设备具备较强的性能,能够在较宽的频段内实现不同传输方案之间的切换,并且在突发事件发生后能够及时暂停或恢复传输,确保在不干扰首要用户的情况下获取最大限度的传输能力。
4)推理和学习由于当前无线频谱环境的复杂性,简单的检测、推理和分析可能无法获得较好的传输性能。
如何根据无线背景环境的相关数据进行分析预测是一个非常重要的课题。
根据历史数据进行推理,获得一定的参考信息,在此基础上进行调整是一个较好的解决方案。
一般来讲,这种推理和学习分为三种:第一种是基于简单固定规则,即输入、输出可以预测;第二种是基于较为复杂的模型,运用一些模糊规则,输出结果不可完全预测;第三种是基于学习型的模型,系统运行过程中能够不断调整模型及其参数,从而获得较好的预测结果。
当前这一部分研究相对来讲更为滞后。
2.认知无线电的实现关键1)高灵敏度接收机认知无线电在开始使用之前必须先对频谱功率密度进行估计,以确定哪些频点正在使用。
为了精确测量频谱,需要有高灵敏度的接收机来测定小区边缘的信号功率。
以一个位于小区边缘的数字电视机为例,接收到的信号可能刚刚超过接收机的灵敏度要求。
为了能够检测出这一信号,认知无线电需要具有比数字电视机更高的灵敏度。
如果认知无线电不能检测到数字电视信号,就会错误地认为该频点未被使用,从而对数字电视机的解码产生干扰,这种情况被称作“隐藏节点问题”。
同时,这一技术也是对首要用户发射状态的检测、首要用户定位和可用频谱资源检测的关键所在。
2)智能处理平台高速智能处理平台是认知无线电设备根据无线检测结果分析无线传输背景,包括首要用户的存在、定位、频谱空穴的发现、信道状况估计和传输带宽选择等多方面参数确定的基础。
当频谱被分配后,认知无线电必须还能够估计首要用户的干扰容限,从而确定自身的传输功率。
很多情况下,这个限定的量为0.5-1dB,但还要取决于首要用户接收机的链路余量。
干扰程度至少可以通过两个信息来确定:首要用户信号带宽的估计,认知无线电和被干扰设备之间的距离。
信号带宽可以用来确定被干扰设备的噪声门限,距离可以用来确定被干扰设备接收到的认知无线电信号功率强度。
假设被干扰设备的噪声门限可以允许提高一个预先设定的量值,可以很容易计算出认知无线电最大允许发射功率。
当然,这种分析过于简单,可以进一步细化,如果认知无线电能够对首要用户的信号类型和对应的数据速率进行盲识别,这些额外的知识可以确定被干扰设备灵敏度的具体数值。
3)可重配置的无线电设备根据无线背景分析所获得的可用频谱空穴、干扰强度以及先验知识,认知无线电通过调整传输功率和其他主要参数从而保证在不干扰首要用户的前提下获得最大的传输速率。
因为认知无线电设备工作频带较宽,可采取的传输方案、可选择的传输参数较多,要求的切换时间较短,因此必须具备高性能的、可重配置的无线电平台。
从无线电发展的历程上看,认知无线电可以看作是软件无线电技术在环境探测能力方面的扩展。
从未来的发展趋势也可以看出,未来的大部分认知无线电设备可能是基于软件无线电的,但这并不表明认知无线电设备必须具备软件或现场可编程器件,软件无线电技术只不过是认知无线电技术的一种实现方案。
4)组网应用从前面的讨论可以看出,认知无线电是一个非常复杂的系统。
当多个认知无线电系统共同工作时,问题就变得更加棘手了。
当各个认知无线电设备独立工作的时候就不可避免地产生冲突。
而且由于各个设备都具有一定的“智能”,这种相互之间的躲避往往会产生一连串的碰撞。
目前针对这个问题有人采用分组策略,即将某一地区的认知无线电分为不同的组,组内共享某些必要信息,每一个新加入的成员可以选择加入这个组或者单独成立一个新组,从而避免冲突。
也有人应用博弈理论,提高系统智能避免冲突。
四、认知无线电的标准化随着认知无线电技术的发展,各标准化组织和行业联盟也纷纷开展相关的研究,并且开始着手制定认知无线电的标准和协议。
下面主要介绍ITU、软件无线电论坛(software defined radio forum)和IEEE相关工作的进展。