(完整版)六年级圆柱和圆锥题型归纳
六年级下学期数学 圆锥的体积 完整版题型总结 带详细答案

圆锥的体积重要题型同步巩固及提升圆锥的体积公式是:(V=1/3Sh )知识点强化:1、判断:(1)、圆锥的体积是圆柱的体积的1/3(×)(2)、一个圆锥的底面半径扩大3倍,它的体积也扩大3倍。
(×)(3)、一个正方体与一个圆锥的底面积和高都相等,这个正方体的体积是圆锥的体积的1/3。
(×)(4)、把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的1/3. (×)(5)、圆锥的体积比与他等底等高的圆柱的体积小2/3。
(√)2、填空(1)等底等高的圆柱和圆锥的体积相差16立方分米,这个圆柱的体积是(24)立方分米,这个圆锥的体积是(8 )立方分米。
(2)等底等高的圆柱和圆锥的体积的和是96立方分米,这个圆柱的体积是(72)立方分米,这个圆锥的体积是(24 )立方分米。
(3)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是(36)立方厘米,圆锥的体积是(12 )立方厘米。
例题强化拔高:例题1、在一个底面直径是20cm的圆柱形玻璃杯中放着一个底面直径为6cm,高20cm的圆锥形铁锤,铅锤没入水中,当铅锤从水中取出后,杯中的水将下降多少?(π取3.14.)铁锤的体积:3.14×(6÷2)×(6÷2)×20÷3=188.4(立方厘米)玻璃杯的底面积:3.14×(20÷2)×(20÷2)=314(平方厘米)水下降的高度:188.4÷314=0.6(厘米)例2、一个圆柱体形状的木棒,沿着底面直径竖直切成两部分,已知这两部分的表面积之和比圆柱体的表面积大2000cm2,则这个圆柱体木棒的侧面积是多少?dh=2000÷2=1000(平方厘米)侧面积=πdh=1000×3.14=3140(平方厘米)例3、一个底面直径是12cm的圆锥形木块,把它分成形状大小完全相同的两个木块后,表面积比原来增加了120cm2,这个圆锥形木块的体积是多少?增加的面积是两个三角形一个三角形的面积:120÷2=60(平方厘米)高:60×2÷12=10(厘米)半径:12÷2=6(厘米)体积::1/3×3.14×6×6×10=376.8(立方厘米)例4、把一个底面直径是20cm的装有一些水的圆柱形玻璃杯,已知杯中水面距离杯口3cm,若将一个圆锥形铅垂完全浸入杯中,水会溢出20ml,求铅垂的体积。
北师大版数学六年级(下册)圆柱与圆锥经典易错题型

北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.将一根长16分米的圆柱形钢材截成三段较短的圆柱形,其表面积增加了24 平方分米,这根钢材原来的体积是多少?【答案】解:24÷4=6(平方分米)16×6=96(立方分米)答:这根钢材原来的体积是96立方分米。
【解析】【分析】将一根圆柱形钢材截成三段,增加了四个底面积,据此求出圆柱形钢材的底面积,再用底面积乘高即可求出这根钢材的体积。
2.一个圆锥形沙堆,底面周长是31.4米,高是1.2米.每立方米黄沙重2吨,这堆黄沙重多少吨?【答案】解:底面半径:31.4÷(2×3.14)=31.4÷6.28=5(米)这堆沙子的总重量: ×3.14×52×1.2×2=3.14×25×0.4×2=78.5×0.4×2=31.4×2=62.8(吨)答:这堆黄沙重62.8吨。
【解析】【分析】用底面周长除以圆周率的2倍即可求出底面半径。
根据圆锥的体积公式计算出沙子的体积,再乘每立方米沙子的重量即可求出总重量。
3.如图,一个内直径是20cm的纯净水水桶里装有纯净水,水的高度是22cm.将水桶倒放时,空余部分的高度是3cm,无水部分是圆柱形.这个纯净水水桶的容积是多少升?【答案】解:3.14×(20÷2)2×22+3.14×(20÷2)2×3=3.14×100×(22+3)=3.14×100×25=7850(立方厘米)7850立方厘米=7.85升答:这个纯净水水桶的容积是7.85升。
【解析】【分析】水桶的容积包括水的体积和空余部分的体积,根据圆柱的体积公式分别计算后再相加即可求出水桶的容积。
4.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
六年级数学圆柱和圆锥各种类型训练题(含图形公式)

六年级数学圆柱和圆锥各种类型训练题(含图形公式)题型一:圆柱和圆锥的体积1.一个圆锥的体积是76立方厘米,底面积是19平方厘米,求这个圆锥的高。
2.一个圆锥体的体积是12立方分米,底面积是3平方分米,求它的高。
3.一个圆锥的体积是40立方米,高是6米,底面积是多少平方米?4.一个圆锥体的底面半径是2米,体积是25.12立方米,求这个圆锥的高。
5.一种压路机滚筒是圆柱体,它的底面直径1米,长1.5米,如果它转5圈,一共压路多少平方米?6.制作一节圆柱形通风管,长50厘米,底面直径是20厘米,至少需要铁皮多少平方厘米?7.已知一个圆锥体的底面周长是18.84厘米,高是3厘米,求它的体积。
8.一个圆锥体底面周长是12.56厘米,体积是37.68立方厘米,求它的高。
9.一个圆柱的侧面积是37.68平方厘米,底面半径是2厘米,求它的体积。
10.一个圆柱形水池,它的容积是64立方米,底面积是12平方米,当水面高1/8米时,水池中放了多少水?11.如图,这个杯子能否装下500毫升的牛奶?12.一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米,如果把它捏成同样高的圆锥,求这个圆锥的底面积。
13.一个圆锥形沙堆,高是1.5米,底面半径是4米,每立方米沙约重1.7吨,求这堆沙的重量。
14.一个圆锥形谷堆的底面周长是12.56米,高是3米,每立方米稻谷重500千克,求这堆稻谷的重量。
15.一个圆锥体建筑物,高120分米,体积是94.2立方米,求这个建筑物的底面积。
16.学校门口一个圆锥形沙堆,底面周长是6.28米,高是10米,求这堆沙的体积。
个高度为10厘米的圆锥形木块,剩下的部分是一个长方体,长和宽分别为(。
)厘米和(。
)厘米,求这个长方体的高。
12.题目:一段直径为20cm的圆柱形钢材,截下一段制成底面直径为60cm,高为120cm的圆锥形零件,问要截下多长的钢材?解析:根据圆锥的体积公式,$V=\frac{1}{3}\pi r^2h$,代入已知条件,$V=\frac{1}{3}\pi 30^2\times 120=.73$,再根据圆柱的体积公式,$V=\pi r^2h$,代入已知条件,$V=\pi10^2\times h=100\pi h$,两式相减得到截下的长度为$113.1$厘米。
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
完整版圆柱和圆锥难题

圆柱和圆锥1、你玩过零散吗?它上面是圆柱,下面是圆锥。
经过测试,当圆锥的高是圆柱高的75%时,陀螺才能旋转的又稳又快。
俏皮照这个标准做了一个陀螺,圆柱的底面直径是 6 厘米,高是 6 厘米。
这个陀螺的体积有多大?2、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是500毫升。
现在瓶中装有一些饮料,正放时饮料高度为20 厘米,倒放时空余部分的高度为 5 厘米,瓶内现有饮料多少毫升?3、一个内直径是 10cm 的瓶子里,水的高度是24 厘米,若是把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是 6 厘米。
现将一个底面半径 3 厘米的圆柱形零件完好淹没在水中,这时水面正好上升至瓶口。
这个圆柱形零件的高是()厘米。
3、有A、B 两个容器,原来容器 A 中装有4800 毫升的水,容器 B 是空的。
现在以400 毫升每分钟的流速往两个容器里注入水, 4 分钟后,两个容器的水面高度相等,已知容器的地面半径是 2 厘米。
求容器 A 的地面直径。
B3、一个底面半径 6 厘米,高 12 厘米的圆锥体容器里盛满了水,将这些水全部倒入一个底面半径 4 厘米的圆柱体容器,这时圆柱体容器的水深10 厘米,求原来圆柱体容器中水深多少厘米?4、底面半径是4cm 的圆柱体容器盛有3cm 高的水,在杯中竖直放入一个底面半径是2cm高6cm 圆柱体铅块,两地面接触但水没有完好淹没圆柱体,此时水面高度比原来上升了多少厘米?5、甲乙两个圆柱体容器,底面积之比是5:4,甲容器水深 12 厘米,乙容器水深 8 厘米,再往两个容器注入同样多的水,直到水深相等,甲的水面上升了多少厘米?6、一只装水的圆柱形玻璃杯,底面积是16 平方厘米的长方体铁块竖放在水中后,80 平方分米,水深8 厘米,现将一个底面积是仍有一部分铁块露在外面。
现在水深()厘米。
1、 一个底面半径是 4 分米,高 6 分米的圆柱体零件熔铸成一个底面直径为形零件,求圆锥零件的高是多少分米?4 分米的圆锥1、段圆柱形木材,若是截成 3 个小圆柱,表面积就增加了78.5 平方分米,若是沿着底面直径切成两个半圆柱, 表面积增加了 70 平方分米。
最完整、最全的圆柱与圆锥题型、考点归纳

圆柱圆锥常考题型归纳一、圆柱1. 圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。
3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22S R π=增。
b.竖切(过直径):切面是长方形(如果h=2R ,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4Rh4. 圆柱的侧面展开图:a. 沿着高展开,展开图形是长方形,如果2h R π=,展开图形为正方形。
b. 不沿着高展开,展开图形是平行四边形或不规则图形。
c.无论如何展开都得不到梯形5、圆柱的相关计算公式:a .底面积:2=S R π底b .底面周长:2C d r ππ==c .侧面积:2S Rh π=侧d .表面积 :S=2S 底+S 侧 =222R Rh ππ+e .体积 : 2V R h π=考试常见题型:a. 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b. 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c. 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d. 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,e. 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的切割:a.横切:切面是圆b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S 增=2Rh4、圆锥的相关计算公式a. 底面积:2=S Rπ底b. 底面周长:2C d r ππ==c. 体积: 2/3V R h π=考试常见题型:a. 已知圆锥的底面积和高,求体积,底面周长b. 已知圆锥的底面周长和高,求圆锥的体积,底面积c. 已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。
小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。
练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。
A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。
1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。
(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。
(六年级下册)圆柱与圆锥详细题型分类与答案 最终版

一、圆柱的表面积1.例题12.巩固3.拓展4.巩固圆柱与圆锥(一)本节课学习圆柱体表面积的一些运用.解决这些问题,有时需要结合实际,明确所求圆柱体的表面积有几个面;有时需要灵活地利用条件,间接得出所需要的数据进行计算;有时还需要观察图形,在观察与比较中搜索需要的信息.某化工厂有一个烟面,形状为圆柱形,底面半径是厘米,高是米,现在 要将烟囱增高到米.每增加平方米材料需要费用元,一共需要多少费用?808251120一个圆柱体的有盖油桶高分米,它的侧面展开后得到一个长分米的长方形.这个油桶共享了多少平方分米的铁皮?1025.12如图所示,有一块长方形铁皮,把其中的阴影部分剪下制成一个圆柱形油桶,求圆柱形油桶的表面积.如图所示,有一张长方体铁皮,剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为厘米,那么原来长方形铁皮的面积是多少平方厘米(取).10π 3.142.巩固3.拓展4.巩固把一个正方体削成一个体积最大的圆柱,如果圆柱的侧面积是平方厘米.求正方体的表面积.314把一个横截面是正方形的长方体术料削剪成一个最大的圆柱体,圆柱体的表面积为平方厘米.底面直径与高的比是,原来长方体的表面积是多少?32.971:3已知一个圆柱的底面半径等于一个正方体棱长的一半,高等于这个正方体的棱长,这个正方体的底面积是平方分米.求这个圆柱的表面积.25五、“整体代换”法在求圆柱体表面积或体积时的应用在分数的计算和圆的面积计算中,我们曾经学过“整体代换”的方法,例如:计算一个圆的面积,将圆周率乘半径的平方即可,但是,有的时候我们不知道这个圆的半径是多少,只告诉你,这时就可以直接用乘求得圆的面积.今天,我们学习“整体代换”法在求圆柱体表面积或体积时的应用.=8r 2 3.148圆柱与圆锥(一)(课后作业)圆柱与圆锥(课后作业)1.六年级上学期其它圆柱与圆锥一个圆柱体高厘米,侧面积平方分米,它的底面积是多少平方厘米?8025.122.六年级上学期其它圆柱与圆锥一个圆柱体的侧面展开是一个正方形,圆柱的底面直径是厘米,这个 圆柱体的表面积是多少平方厘米?203.六年级上学期其它圆柱与圆锥一个圆柱体木块,底面直径是分米,高是米,现在将它截成两个圆柱体小木块,那么,表面积增加多少平方分米?107.54.六年级上学期其它圆柱与圆锥一个圆柱体木块,底面周长是厘米,高是厘米,现在将它截成四个圆柱体小木块.那么,这四个圆柱体小木块的表面积为多少平方厘米?25.1265.六年级上学期其它圆柱与圆锥一个圆柱体的表面积和一个长方形的面积相等,长方形的长等于圆柱体的底面周长,已知长方形的面积为平方厘米,圆柱体的高是厘米,圆柱体的底面半径是多少?131.884如图所示,有一个立体图形.下部是一个棱长为厘米的正方体,上部是一个半圆柱体.求这个立体图形的表面积.409.六年级上学期其它圆柱与圆锥将一个正方体木块切削成一个最大的圆柱体,这个圆柱体的体积是立方厘米,问:原来正方体的体积有多大?125610.六年级上学期其它圆柱与圆锥如图所示,一个圆柱体的侧面展开图为正方形,已知它的一个底面面积是平方厘米.求这个圆柱体的表面积.108.六年级上学期其它圆柱与圆锥14.六年级上学期其它圆柱与圆锥如图所示.这是一个底面半径为厘米,高为厘米的圆柱,在它的中间依次向下挖去半径分别为厘米、厘米、厘米,高分别为厘米、厘米、厘米的圆柱.最后得到的立体图形表面积是多少?44321210.515.六年级上学期其它圆柱与圆锥如图所示,在长为厘米的圆筒形管子的横截面上,量出的最长线段为厘米,管子的体积是多少?201013.六年级上学期其它圆柱与圆锥有大、小两种不带盖的圆柱形水桶,它们的表面积的和是平方分米,小桶和大桶的用料面积的比是,小桶的底面周长是分米,大桶的底面周长是分米.求大、小两个桶的侧面积各是多少?54331:262.894.2圆柱与圆锥(奥赛训练)11.六年级上学期其它圆柱与圆锥工人师傅将一张铁皮按图裁剪后,做成一个圆柱形铁皮罐,求这个铁皮罐的表面积(单位:分米).12.六年级上学期其它圆柱与圆锥圆柱形的售报亭的高和底面直径相等,如图所示,开一个边长等于底面半径的正方形售报窗口.窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?所示.表面积增加了多少平方厘米?厘米.那么,它的体积是多少平方二、圆柱的表面积和体积(二)1.例题22.巩固3.巩固4.拓展5.巩固根据圆柱体底面、侧面和表面积的特征,以及它们之间的关系可以解决一些求体积的趣题.下面,我们就开始学习这方面的知识.一个圆柱体的高是厘米,它的侧面展开是一个正方形,求这个圆柱体的体积是多少立方厘米?12.56一个圆柱体的高是厘米,它的侧面展开是一个正方形.求这个圆柱体的体积.31.4一个侧柱体,它的侧面展开是一个长方形(宽为圆柱体的高).已知展开后的长方形的长是宽的倍,且宽是厘米.求这个圆柱体的体积.215.7如图所示,一个圆柱形木块高厘米,若被锯掉厘米后,则表面积减少了平方厘米.求原来圆柱的体积.1208251.2一个圆柱体的高是厘米,若高减少厘米,则表面积比原来减少平方厘米.求原来圆柱体的体积.10394.2平方厘米;如果按如图所示切成24平方厘米;如果按如图所示切成43五、水中浸物1.例题52.巩固3.拓展4.巩固我们知道,酒瓶或饮料瓶的瓶颈处一般都不是规则的圆柱体,如果要求体积等问题,这时该怎么办呢?把一根圆柱体钢材等物体放入一个长方体或圆柱体的容器内,要求水面的高度,必须先判断物体是否全部浸没.通过今天的学习,大家就会明白了.如图所示,有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是毫升.现在瓶中装有一些饮料,正放时饮料高度为厘米,倒放时空余部分的高度为厘米.瓶内现有饮料多少毫升?1500205如图所示,某种酒瓶的瓶身呈圆柱形(不包括瓶颈),瓶身内直径为厘米.现在瓶中装有一些酒,正放时酒的高度是厘米,倒放时空余部分的高度是厘米.求这个酒瓶的容积.48123在一个底面积是平方厘米的玻璃杯中装入高厘米的水.现把一个底面半径是厘米、高厘米的圆柱形铁块垂直放入玻璃杯水中,问水面升高了多少厘米?(取)15315π3如图所示,有一个高厘米,容积是毫升的圆柱形容器,里面装满了水.现在把长厘米的圆柱垂直放入,使的底面与的底面接触,这时一部分水从容器中溢出.当把从中拿出来后,中的水高度为厘米.求圆柱的体积.5850A 16B B A B A A 6B 5.巩固一个盛有水的圆柱形容器,底面内半径为厘米,深厘米,水深厘米.现在将一个底面半径为厘米、高为厘米的铁圆柱垂直放入容器中,求这时容器的水深是多少厘米?520152176.小学高年级六年级下学期其它把一个高为分米的圆柱形木块沿底面直径竖直切成相同的两块,表面积增加了平方分米.求这个圆柱体的体积.7.5757.小学高年级六年级下学期其它一个底面半径为厘米的圆柱体容器,放入一个石块后,浸没在水中,水面上升了厘米.求这个石块的体积.528.小学高年级六年级下学期其它在一只底面半径为厘米的圆柱形水桶里有一个直径为厘米的圆柱形钢材浸没在水中,当钢材取出后,桶里的水面下降了厘米,这段钢材长多少厘米?151029.小学高年级六年级下学期其它某种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是升.现在瓶中有一些饮料,正放时饮料高度为厘米,倒放时空余部分的高度为厘米,如图所示,瓶内现在有饮料多少升?21052五、专题演练1.例题52.巩固3.巩固4.拓展已知一个圆锥的底面半径和高都等于一个正方体的棱长.这个正方体的体积是立方分米.求这个圆锥的体积.216一个圆柱体,底面积是平方分米,把它削成一个最大的圆锥,削去部分的体积是立方分米.求这个圆柱体的高.56两个正方体的体积之差是立方厘米,如果以每个正方体的一面为底,加工成最大的圆锥,加工成的两个圆锥的体积之差是多少立方厘米?1200一个边长是厘米的正方体玻璃缸中装着水,水中浸没了一个底面直径为厘米、高为厘米的铁质圆锥体和一个底面直径为厘米、高为厘米的铁质圆柱体.当圆锥体、圆柱体都从桶中取出后,桶内水将下降多少厘米?20125855.拓展圆柱与圆锥(三)(课后作业)1.小学高年级六年级下学期其它张大爷去年用长米、宽米的长方体苇席围成容积最大的圆柱形粮囤.今年改用长米、宽米的长方形苇席围成容积最大2132的圆柱形的粮囤.问今年粮囤的容积是去年粮囤容积的多少倍?2.小学高年级六年级下学期其它一个圆柱形的铁块厚厘米,如果把它锻造成底面直径相同的圆锥体,这个圆锥体的高是多少厘米?103.小学高年级六年级下学期其它优秀生培养教程12级第2讲圆柱与圆锥本讲巩固第4题这里有一个圆柱和一个圆锥(如图下图所示),它们的高和底面直径都标在图上,单位是厘米.请问:圆锥体积与圆柱体积的比是多少?4.小学高年级六年级下学期其它把一个长、宽、高分别是厘米、厘米、厘米的铁块和一个棱长为厘米的正方体铁块,熔铸成一个底面直径为厘米的973510圆锥形铁块.求这个圆锥的高是多少厘米?5.小学高年级六年级下学期其它一个立体图形由一个圆柱和一个圆锥组成,如图所示,它们的底面直径都是厘米,高都是厘米.这个立体图形的体积是612圆柱与圆锥(一)答案一、圆柱的表面积1、10248.96元2、351.68平方分米3、131.88平方分米4、828平方厘米二、圆柱的表面积(二)1、401.92平方厘米2、452.16平方厘米3、12.56平方厘米4、12.56平方厘米三、圆柱的表面积(三)1、18cm2、3.5cm3、166.42平方厘米4、124.03平方厘米四、圆柱的表面积(四)1、1331.36平方厘米2、7536平方厘米3、2081.4平方厘米4、385.4平方厘米五、四圆柱的表面积(四)1、8立方厘米2、600平方厘米3、18平方厘米4、117.75平方分米圆柱与圆锥(一)(课后作业)圆柱与圆锥(课后作业)1.【答案】平方厘米78.52.【答案】平方厘米4571.843.【答案】平方分米1574.【答案】平方厘米552.645.【答案】厘米36.【答案】平方厘米251.27.【答案】平方分米94.28.【答案】平方厘米117689.【答案】立方厘米160010.【答案】平方厘米145.614.【答案】平方厘米254.3415.【答案】平方厘米1570圆柱与圆锥(二)答案一、圆柱的表面积和体积(一)1、16平方厘米2、30平方厘米3、75.36平方分米4、62.8立方厘米5、21.98平方分米二、圆柱的表面积和体积(二)1、157.7536cm 32、246.49cm 33、1232.45cm 34、1570cm 35、7.85cm 3三、圆柱的表面积和体积(三)1、314cm 32、351.68cm 33、339.12cm 34、25.12cm 35、54cm 四、圆柱的表面积和体积(四)1、113.04cm 32、56.52cm 33、1413cm 34、32cm5、21.98cm 3五、水中浸物1、400ml2、753.6ml3、0.75cm4、25cm 35、17.72cm 圆柱与圆锥(二)(课后作业)1.【答案】52.【答案】立方厘米197.823.【答案】立方厘米19719.2 4.【答案】升37.68圆柱与圆锥(三)答案一、圆柱的表面积和体积(五)1、1.57m2、 2.5dm3、0.998m 34、339.12cm 3二、圆锥的表面积和体积(一)1、16cm 32、6cm3、64、35、(π≈3)108cm 3135cm 3三、圆锥的表面积和体积(二)1、2.52、72四、圆锥的表面积和体积(三)1、227cm2、4273、225cm4、2升5、32五、专题演练1、216π2、59dm 3、314cm 34、1.256cm 5、112cm 2圆柱与圆锥(三)(课后作业)1.【答案】922.【答案】303.【答案】1/244.【答案】125.【答案】452.166.【答案】平方厘米727.【答案】98.【答案】圆柱:,圆锥:40329.【答案】2410.【答案】3611.【答案】厘米7.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级圆柱和圆锥的体积训练题型一:圆柱的体积:圆柱所占空间的大小把圆柱切开拼成一个长方体(如图),长方体的长= 圆柱底面周长的一半长方体的宽= 圆柱的半径长方体的高= 圆柱的高长方体的底面积= 圆柱的底面积圆柱切开拼成一个长方体后,增加的面积是长方体的两个侧面积(宽×高/ 半径×高)公式:圆柱的体积(容积)= 底面积×高,(V = Sh 或者V = лr²h )正方体、长方体、圆柱,半圆柱、底面是环形的柱体都通用的体积公式是:底面积×高体积和容积的区别:1. 求物体的体积是从该物体的外部来测量,而求容积却是从物体的内部来测量。
2. 一种物体有体积,可不一定有容积。
如果一种既有体积又有容积的物体,它的体积一定大于它的容积。
3. 体积的单位和容积的单位不同:1 立方米= 1000 立方分米= 1000000 立方厘米 1 立方米= 1000 立方分米 1 立方分米= 1000 立方厘米1 立方米=1000 升 1 立方分米=1 升 1 立方厘米=1 毫升练习:1.等底等高的圆柱体、正方体、长方体的体积相比较,()。
①正方体体积大②长方体体积大③圆柱体体积大④一样大2.圆柱体的底面半径扩大2 倍,它的侧面积扩大()倍,体积扩大()倍。
3.圆柱体的底面半径和高都扩大3 倍,它的侧面积扩大()倍,体积扩大()倍。
4.圆柱的高扩大4 倍,底面半径缩小4 倍,它的体积()。
5.如果圆柱体的侧面展开是一个边长为3. 14 分米的正方形,圆柱的体积是()立方分米。
6.0. 08 平方米=()平方分米 3 立方米5 立方分米=()立方米2. 6 立方分米=()升= ()毫升7.一个圆柱体的底面半径是4 米,高6 米,它的侧面积是()平方米,体积是()立方米。
8.一个圆柱的底面周长是31. 4 厘米,高10 厘米,它的表面积是()平方厘米,体积是()立方厘米。
9.一个圆柱体容器中盛满12. 56 升水,从容器里面量得高是4 分米,那么容器的底面积是()。
10.一个圆柱形水桶的体积是24 立方分米,底面积是6 平方分米,桶的装满了水,水面高是()分米。
11.量得一个圆柱体饮料罐底面半径是3 厘米,高是半径的4 倍,这个饮料罐的底面积是()平方厘米,侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
12.有两个高相等的圆柱,第一个圆柱的底面半径和第二个底面半径的比是2:3。
第一个圆柱的体积是16 立方厘米,第二个圆柱的体积是()立方厘米。
13.一个圆柱的底面周长是31. 4 米,体积是785 立方米,它的高是()米,表面积是()平方米。
14.一块长方体木料,长、宽、高分别是8、6、4cm,把它加工成一个最大的圆柱体,体积是()立方厘米。
15.计算圆柱的体积。
1.右面是一个圆柱的展开图。
算一算这个圆柱的体积是多少?(单位:厘米)2.一个圆柱形奶粉盒的谋面半径是5 厘米,高是20 厘米,它的容积是多少立方厘米?3.一个圆柱形粮囤,从里面量底面半径是4 米,高是2 米,每立方米粮食约重500 千克,这个粮囤大约能盛多少千克粮食?4.把一个直径4 厘米的圆柱切开拼成一个与它等底等高的长方体。
这个长方体的表面积比圆柱的表面积增加了40平方厘米,长方体的体积是多少立方厘米?5.把圆柱切开拼成一个长方体,已知长方体的长是3. 14 米,高是2 米。
这个圆柱体的体积是多少?6.有一个高为6.28 分米的圆柱体机件,它的侧面展开正好是一个正方形,这个机件的体积是多少立方分米?7.把一个高3 分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120 平方厘米,求圆柱体的体积。
8.用一块长6. 28 厘米、宽3. 14 厘米的铁皮做圆柱形水桶的侧面。
这样做成的铁桶的容积最大是多少?9.一口周长是6.28 米的圆柱形水井,它的深是10 米,平时蓄水深度是井深的0.8 倍,这口井平时的水量是多少立方米?10.在直径0. 8 米的水管中,水流速度是每秒2 米,那么5 分钟流过的水有多少立方米?11.一个圆柱形铁皮油桶,体积是4. 2 立方米,底面积是1. 4 平方米,桶内装油的高度是桶高的3/4, 油高多少米?12.将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。
13.下图是一个长15 厘米,宽6 厘米、高15 厘米的长方体钢制机器零件,中间有一个底面半径为5 厘米的圆柱形空洞,求这个零件的体积。
14.把一种空心混凝土管道,内直径是40 厘米,外直径是80 厘米,长300 厘米,求浇制100 节这种管道需要多少混凝土?Π题型二: 圆锥的体积1、 圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、 圆锥的高是两个顶点与底面之间的距离, 与圆柱不同, 圆锥只有一条高3、 圆锥的切割: a. 横切: 切面是圆b. 竖切(过顶点和直径直径): 切面是等腰三角形, 该等腰三角形的高是圆锥的高, 底是圆锥的底面直径, 表面积增加两个等腰三角形的面积, 即 S 增 =2Rh4. 圆锥的体积是与它等底等高的圆柱体积的三分之一。
即 h r 31V Sh 31V 2π==或者 5. 圆锥和圆柱的关系: (1) 圆柱与圆锥等底等高, 圆柱的体积是圆锥的 3 倍。
(2) 圆柱与圆锥等底等高, 圆锥的体积比圆柱的体积少32。
(3) 圆柱与圆锥等底等高, 圆柱的体积比圆锥的体积多 2 倍(4) 圆柱与圆锥等高等体积, 圆锥的底面积是圆柱的 3 倍。
(5) 圆柱与圆锥等底等体积, 圆锥的高时圆柱的 3 倍。
练习:1. 一个圆柱和一个圆锥等底等高, 如果圆锥的体积是 24 立方分米, 则圆柱的体积是( ) 立方分米。
2. 一个底面周长是 9. 42 米的圆堆体, 高 2 米, 它的体积是( ) 立方米。
3. 一个体积是 90 立方厘米的圆柱, 削成一个最大的圆锥, 圆锥体积是( ) 立方厘米。
4. 一个圆柱和一个圆锥的等底等体积, 这个圆锥体的高是圆柱体的高的( )。
5. 一个圆柱和一个圆锥的等高等体积, 如果圆柱的底面积是 9 平方米, 那么圆锥的底面积是( ) 平方米。
6. 一个圆锥的体积是 75. 36 立方厘米。
它的底面直径是 4 厘米, 这个圆柱的高是( ) 厘米。
7. 一个圆柱体容器盛满 14. 13 升水。
把它倒满一个与它等底等高的圆锥体容器, 圆柱体容器中还有( ) 升水。
8. 一个圆柱的体积是 24 立方米, 把它削成一个最大的圆锥, 削去部分的体积是( ) 立方米。
9. 一个圆柱和一个圆锥的底面积和体积相等, 如果这个圆柱的高是 2 分米, 这个圆锥的高应是( ) 分米。
10. 一个圆柱比与它等底等高的圆锥的体积多 40 立方分米, 则这个圆锥的体积是( ) 立方分米。
11. 等底等高的圆柱和圆锥的体积和是 96dm 3 , 圆柱的体积是( ) dm 3 , 圆锥的体积是( ) dm 3 。
1. 一个直角三角形的两条直角边分别是 4 厘米和 3 厘米。
如果以长为 4 厘米的直角边为旋转轴一周, 可以得到一个什么形状, 它的体积是多少立方厘米?2. 一个圆柱底面直径 4 厘米, 高 5 厘米, 和它等底等高的圆锥体积是多少?3. 一块圆柱形铁件, 底面半径是 4 分米, 高是4.5 分米, 将它熔成底面半径是 6 分米的圆锥, 圆锥高多少分米?4. 一个圆锥形沙堆,高是1. 8 米,底面半径是5 米,每立方米沙重1. 7 吨。
这堆沙约重多少吨?5. 把一个体积是282. 6 立方厘米的铁块熔铸成一个底面半径是6 厘米的圆锥形机器零件,求圆锥零件的高?6. 一个圆锥体积是12. 6 立方分米,高是6 分米,底面积是多少平方分米?7. 把一个棱长9 分米的正方体木块,加工成一个最大的圆锥体,圆锥体的体积是多少立方厘米?8. 一个圆柱底面周长是25. 12 厘米,高24 厘米,把它切削成一个最大的圆锥体,切削去的体积是多少立方厘米?9. 计算右面图形的体积。
16圆柱圆锥常见题型归纳训练题一、公式转换圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。
2. 等底等高的情况下,圆锥体积是圆柱体积的。
3. 等底等高的情况下,圆锥体积比圆柱体积少。
4. 等底等高的情况下,圆柱体积比圆锥体积多倍。
5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。
6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。
基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。
二,切割拼接问题,表面积增加或减少1.基本公式:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?5、把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?6、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?三.放入或拿出物体,水面上升或下降。
①基本公式:水面上升(下降)的高度×容器的底面积=物体的体积溢出的水的体积=物体的体积②基本题型:1.一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?2.一圆柱容器,半径20平方厘米,放入铁块后,水面上升2厘米,求铁块体积?3.在直径为20厘米的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?4把高为3分米米的圆锥铁块放入装满水的容器中,溢出了3升水,求该圆锥的底面积是多少?四.高增加或减少,侧面积增加或减少问题1.关键点:A.画出展开图B.圆柱底面周长=长方形的长圆柱高=长方形的宽C.当圆柱底面周长=圆柱高时,圆柱展开是一个正方形2.基本题型:1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?3、一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?五:加工圆柱1、关键点:找出加工后的圆柱的直径(或半径)和高。