平面直角坐标系---坐标方法的简单应用(含答案)
数学六年级下册第七章-用坐标表示平移-课件与答案

7.2
2.用坐标表示图形的平移:
一般地,在平面直角坐标系内,如果把一个图形各个点
的横坐标都加(或减去)一个正数a,相应的新图形就是把原图
形向右(或左)平移a个单位长度;如果把它各个点的纵坐标都
加(或减去)一个正数a,相应的新图形就是把原图形向上(或
下)平移a个单位长度.
数学
七年级 下册
配RJ版
第七章
点为C(1,1),则点B(3,2)的对应点D的坐标是 (6,2)
.
数学
七年级 下册
配RJ版
第七章
7.2
【变式1】如图,A和B的坐标为(2,0),(0,1),若将线段AB平移
1
至A1B1,则ab的值为
.
数学
知识点2
七年级 下册
配RJ版
第七章
7.2
坐标系中的平移作图
【例题2】如图,将三角形ABC向右平移5个单位长度,再向下
数学
配RJ版
七年级 下册
数学
CONTENTS
目
录
七年级 下册
配RJ版
第七章
第七章 平面直角坐标系
7.2
坐标方法的简单应用
第2课时 用坐标表示平移
01
课标要求
02
基础梳理
03
典例探究
04
课时训练
7.2
数学
七年级 下册
配RJ版
第七章
7.2
在平面直角坐标系中,能写出一个已知顶点坐标的多边
形沿坐标轴方向平移一定距离后图形的顶点坐标,知道对应
第七章
7.2
(3)①如解图1,当点P在线段BD上时,∠APC=∠PCD+∠PAB.
数学
坐标方法的简单应用

第2节坐标方法的简单应用第一课时用坐标表示地理位置要点突破一、建立平面直角坐标系表示地理位置的过程:(1)选择一个适当的参照点为原点,确定x轴、y轴的正方向,一般以向东方向为x轴正方向,向北方向为y轴正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度,比例尺的选择必须恰当,既不为过大,也不能过小,以画出的图形的大小恰当为好;(3)在坐标平面内画出这些点,写出各个地点的名称。
注意:①要说清楚坐标系的建立方法;②根据比例尺确定单位长度。
典例剖析:例1:(2007年泸州)如图是某市市区四个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系(保留坐标系的痕迹),并用坐标表示下列景点的位置:①动物园_____________________②烈士陵园____________________思路探索:本题答案不唯一,可以以任意一个旅游景点为原点,一般以水平方向为x轴,竖直方向为y轴建立平面直角坐标系,如以金凤广场为原点,则动物园(1,2),烈士陵园(-2,-3)。
解析:以金凤广场为原点,水平方向为x 轴,竖直方向为y 轴建立平面直角坐标系,则动物园(1,2),烈士陵园(-2,-3)规律总结:利用平面直角坐标系可以绘制区域内一些地点分布情况的平面图。
其过程分为以下三步:(1)建立适当的直角坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)在坐标轴上标出单位长度;(3)在坐标平面内描出各点,写出它们的坐标。
例2:某城市A 地和B 地之间经常有车辆来往,H 地和D 地间也经常有车辆来往.四地的坐标为:A(-3,2),D(1,1),H(-5,-3),B(-1,-4),拟建一座加油站,那么加油站建立在哪里对大家都方便,是给出具体的位置.-3234-2o-11234-3-4xy-2-1-4-515思路探索:加油站建在两条公路相交的位置对两大家都方便,因此我们可以描出这四地位置的坐标,连结AB ,HD ,求出交点坐标。
坐标方法的简单应用

(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度.
(3)在坐标平面内画出这些点.
(4)写出各点的坐标和各个地点的名称.
2.用坐标表示图形的平移
在平面直角坐标系中,将点(x0,y0)向右(或左)平移a个单位长度,可以得到对应点(x0+a,y0)或(x0-a,y0);将点(x0,y0)向上(或下)平移b个单位长度,可以得到对应点(x0,y0+b)或(x0,y0-b).
年级
初一
学科
数学内容标题Fra bibliotek坐标方法的简单应用
编稿老师
巩建兵
一、学习目标:
1.能够用坐标表示地理位置.
2.能在直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的平移实质上就是点坐标的对应变换.
二、重点、难点:
重点:掌握用坐标的变化规律来描述平移的过程.
小结:用坐标表示地理位置时,选择一个适当的参照点为原点尤为重要.原点的选择、x轴、y轴的确定,直接影响着计算的繁简程度,所以建立直角坐标系时,千万不要盲目行事,要以能简捷地确定平面内点的坐标为原则.
知识点二:用坐标表示图形的平移
例4.如图所示,小丽想把直角坐标系中的房子图案向左平移10个单位长度,已知房子图案的几个顶点坐标为(2,0)、(8,0)、(8,3)、(9,3)、(5,5)、(1,3)、(2,3),请你帮她作出相应的图案,并写出平移后上述7个点的坐标.
(2)建立适当的平面坐标来描述各处的地理位置.
(3)拟将花坛迁移到升旗台与校门的正中间,按照问题(2)中确定的坐标平面,花坛新址的坐标是多少?
思路分析:
坐标方法的简单应用

【本讲主要内容】坐标方法的简单应用举例说明坐标方法在实际中的简单应用【知识掌握】【知识点精析】1. 用坐标表示地理位置2. 用坐标表示平移3. 用坐标计算图形的面积【解题方法指导】例1. 如下图是一个网格,每个小正方形的边长是100米。
小明的家在点A处,他的爷爷家在小明家正东方1000米处。
星期六小明准备带爷爷去医院作一次体检,医院的位置在点B处。
小明沿着网格的路线去接爷爷,然后去医院。
为了节省时间,小明的同学小亮准备寻找一条捷径先去医院挂号。
问小明、小亮到达医院各走了多少米?分析:先需要在图上标出小明爷爷家的位置,然后小明沿网格去接爷爷,然后再去医院,计算出所走的路程;小亮打算直接向北,到与医院水平位置时,再向东直奔医院,计算出所走的路程。
解:将网格放在平面直角坐标系中,O作为坐标原点。
小明从A 点出发,向东行进1000米,到达C 点(爷爷家);然后接了爷爷向北行进800米,到达D 点;再向左行进100米到达医院,他一共走了19001008001000=++(米)。
小亮从点A 出发,向北行进了800米,再向东行进了900米到达医院,他一共走了1700900800=+(米)。
评析:在解决这个问题时,首先要建立直角坐标系,然后确定几个点的位置(小明家A ,爷爷家C ,医院B ;同时要注意直角拐点D 、E 的位置);还要注意小明和小亮是沿着网格行走的,只能沿水平方向或竖直方向,不能沿斜的方向走;最后计算每人行进的路程。
例2. 如下图,在直角坐标系中,线段AB 在第二象限,A 点的坐标是(3,2-),B 点的坐标是(1,4-)。
请你完成以下操作:(1)将A 、B 两点分别沿水平方向向右平移6个单位,分别到达A 1,B 1位置; (2)将A 1,B 1两点分别向下平移5个单位,分别到达A 2,B 2位置; (3)将A 2,B 2两点分别向左平移6个单位,分别到达A 3,B 3位置。
观察图形,线段A 3B 3和线段AB 的位置有什么关系?线段A 3B 3怎样平移,可以到达AB 的位置?分析:将A 、B 两点向右平移6个单位,实际上是将线段AB 平移到线段A 1B 1的位置; 将A 1,B 1两点向下平移5个单位,实际上是将线段A 1B 1平移到线段A 2B 2的位置; 将A 2,B 2两点向左平移6个单位,实际上是将线段A 2B 2平移到线段A 3B 3的位置; 不难看出,线段A 3B 3∥AB ;只要将A 3B 3向上平移5个单位,便可到达线段AB 的位置。
2022年初中数学同步 7年级下册 第13课 坐标方法的简单应用(教师版含解析)

第13课坐标方法的简单应用目标导航课程标准1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.知识精讲知识点01 用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.注意:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.知识点02 用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).注意:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.注意:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.能力拓展考法01 用坐标表示地理位置【典例1】小明写信给他的朋友介绍学校的有关情况:校门正北方100米处是教学楼,从校门向东50米,再向北50米是科教楼,从校门向西100米,再向北150米是宿舍楼……请画出适当的平面直角坐标系表示校门、教学楼、科技楼、宿舍楼的位置,并写出这四个点的坐标.【分析】选取校门所在的位置为原点,并以正东,正北方向为x轴、y轴的正方向,可以容易地写出三个建筑物的坐标.否则就较复杂.【答案与解析】解:(1)平面直角坐标系及学校的建筑物位置如图所示,比例尺为1:10000.(2)校门的坐标为(0,0);教学楼的坐标为(0,100);科技楼的坐标是(50,50);宿舍楼的坐标为(-100,150).【点睛】选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.【即学即练】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250)【典例2】如图是一所学校的平面示意图,已知国旗杆的坐标为(-1,1),写出其他几个建筑物位置的坐标.若国旗杆的坐标为(3,1),则其他几个建筑物位置的坐标是否发生改变?若改变,请写出坐标,若不改变,请说明理由.【答案与解析】解:当国旗杆的坐标是(-1,1)时,校门的坐标是(-4,1),实验楼的坐标是(2,-2),教学楼的坐标是(2,1),图书馆的坐标是(1,4);若国旗杆的坐标是(3,1),则校门的坐标是(0,1),实验楼的坐标是(6,-2),教学楼的坐标是(6,1),图书馆的坐标是(5,4).【点睛】根据已知点确定平面直角坐标系,进一步求得要求点的坐标.【即学即练】如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上.【答案】(﹣2,1).解:∵位于点(1,﹣2)上,位于点(3,﹣2)上,∴位于点(﹣2,1)上.考法02用坐标表示平移【典例3】如如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.【答案与解析】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【点睛】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.【即学即练】已知三角形ABC三个顶点的坐标为A(-2,3),B(-4,-1),C(2,0).三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3).将三角形ABC作同样的平移得到三角形A1B1C1:(1)求A1B1C1的坐标.(2)求三角形ABC和△A1B1C1的面积大小.【答案】解:(1)A 1(3,6),B 1(1,2),C 1(7,3).(2)ABC A B C S S '''=△△11124246143222=-⨯⨯-⨯⨯-⨯⨯=24-4-3-6=11. 考法03 综合应用【典例4】在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.【分析】当台风中心移动到据B 点200千米时,B 市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km ,∴当台风中心移动到点(4,6)时,B 市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)【点睛】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.【即学即练】一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.【答案】在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C.题组A 基础过关练1.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】【详解】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.分层提分考点:坐标与图形变化-平移.的值为()2.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a bA.2B.3C.4D.5【答案】B【解析】【分析】先根据点A、B及其对应点的坐标得出平移方向和距离,据此求出a、b的值,继而可得答案.【详解】解:由点A(2,0)的对应点A1(4,b)知向右平移2个单位,由点B(0,1)的对应点B1(a,2)知向上平移1个单位,△a=0+2=2,b=0+1=1,△a+b=2+1=3,故答案为:B.【点睛】本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标的平移规律为:右移加,左移减;纵坐标的平移规律为:上移加,下移减.3.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)【答案】A【解析】【详解】△线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),△由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).4.如图, ,A B 的坐标为()()1,0,0,2,若将线段AB 平移至11A B ,则-a b 的值为( )A .1-B .0C .1D .2【答案】B【解析】【分析】 直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为2、4,可得B 点向上平移了2个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了2个单位,由此得线段AB 的平移的过程是:向上平移2个单位,再向右平移2个单位,所以点A 、B 均按此规律平移,由此可得a=0+2=2,b=0+2=2,△a -b=2-2=0,故选:B .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .2【答案】C【解析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】△A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),△平移方法为向右平移2个单位,△x=﹣2,y=3,△x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.6.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位【答案】D【解析】【分析】根据向下平移,纵坐标相减,横坐标不变解答.【详解】△将三角形各点的纵坐标都减去3,横坐标保持不变,△所得图形与原图形相比向下平移了3个单位.故选D.【点睛】本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】已知线段AB ,BC ,AC ,分别以三条线段为平行四边形的对角线,进行分类讨论,结合图形进行判断.【详解】如果以线段AB 为对角线,AC ,BC 为边,作平行四边形,则第四个顶点在第四象限;如果以线段AC 为对角线,AB ,BC 为边,作平行四边形,则第四个顶点在第二象限;如果以线段CB 为对角线,AC ,BA 为边,作平行四边形,则第四个顶点在第三象限.故不可能在第一象限.故选A.【点睛】考查了平行四边形的性质,建立平面直角坐标系,数形结合,分类讨论是解题的关键.8.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .(8,0)【答案】C【解析】【详解】 【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n),用n 2+n 秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n),用n 2+n 秒, △当n=8时,n 2+n=82+8=72,△当质点运动到第72秒时到达(8,8),△质点接下来向左运动,运动时间为80-72=8秒,△此时质点的横坐标为8-8=0,△此时质点的坐标为(0,8),△第80秒后质点所在位置的坐标是(0,8),故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.题组B 能力提升练9.将点()1,24P m m -+向上平移2个单位后落在x 轴上,则m =___.【答案】-3【解析】【分析】点坐标向上平移2个单位,就是纵坐标加上2,落在x 轴上,就是纵坐标为0,求出m 的值.【详解】解:点()1,24P m m -+向上平移2个单位得()1,26P m m '-+,△平移后落在x 轴上,△260m +=,解得3m =-.故答案是:-3.【点睛】本题考查点坐标的平移,解题的关键是掌握点坐标平移的方法.10.已知直线AB△x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________【答案】(4,2)或(﹣2,2).【解析】【详解】分析:AB△x 轴,说明A ,B 的纵坐标相等为2,再根据两点之间的距离公式求解即可.详解:△AB△x 轴,点A 坐标为(1,2),△A ,B 的纵坐标相等为2,设点B 的横坐标为x ,则有AB=|x -1|=3,解得:x=4或-2,△点B 的坐标为(4,2)或(-2,2).故本题答案为:(4,2)或(-2,2).点睛:本题主要考查了平行于x 轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.11.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.【答案】±4【解析】【详解】试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4.考点:1.三角形的面积;2.坐标与图形性质.12.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.【答案】-4或6【解析】【详解】分析:点M 、N 的纵坐标相等,则直线MN 在平行于x 轴的直线上,根据两点间的距离,可列出等式|x -1|=5,从而解得x 的值.解答:解:△点M(1,3)与点N(x ,3)之间的距离是5,△|x -1|=5,解得x=-4或6.故答案为-4或6.13.如图,点,A B 的坐标分别为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为_____.【答案】2【解析】【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【详解】由题意可知:a=0+(3-2)=1;b=0+(2-1)=1;△a+b=2.故答案为:2.【点睛】此题考查坐标与图形的变化-平移,解题的关键是得到各点的平移规律.14.把点A(a,-2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于____.【答案】1.5【解析】【详解】试题解析:由题意,得a+(a-3)=0,解得a=1.5.点睛:对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.(1)把点P(2,-3)向右平移2个单位长度到达点P',则点P'的坐标是_______.(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_______.(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点P',则点P'的坐标是_______.【答案】(4,-3) (-2,-6) (-2,7)【解析】【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可.【详解】解:(1)△把点P(2,-3)向右平移2个单位长度到达点P',△横坐标加2,纵坐标不变,△点P'的坐标是(4,-3);(2)△把点A(-2,-3)向下平移3个单位长度到达点B,△横坐标不变,纵坐标减3,△点B 的坐标是(-2,-6);(3)△把点P (2,3)向左平移4个单位长度,再向上平移4个单位长度到达点P ',△横坐标减4,纵坐标加4,△点P '的坐标是(-2,7).故答案为:(4,-3);(-2,-6);(-2,7).【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.16.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,则D 的坐标为_______,连接AC ,BD .在y 轴上存在一点P ,连接P A ,PB ,使PAB S =△S 四边形ABDC ,则点P 的坐标为_______.【答案】 (4,2) (0,4)或(0,-4)【解析】【分析】根据B 点的平移方式即可得到D 点的坐标;设点P 到AB 的距离为h ,则S △P AB =12×AB ×h ,根据S △P AB =S 四边形ABDC ,列方程求h 的值,确定P 点坐标;【详解】解:由题意得点D 是点B (3,0)先向上平移2个单位,再向右平移1个单位的对应点,△点D 的坐标为(4,2);同理可得点C 的坐标为(0,2),△OC =2,△A (-1,0),B (3,0),△AB =4,△=8ABDC S AB OC ⋅=四边形,设点P 到AB 的距离为h ,△S △P AB =12×AB ×h =2h ,△S △P AB =S 四边形ABDC ,得2h =8,解得h =4,△P 在y 轴上,△OP =4,△P (0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 题组C 培优拔尖练17.在平面直角坐标系中,P(1,4),点A 在坐标轴上,且S 三角形PAO =4,求点A 的坐标.【答案】A(2,0)或(-2,0)或(0,8)或(0,-8)【解析】【详解】试题分析:由于点A 的坐标不能确定,故应分点A 在x 轴上和点在y 轴上两种情况进行讨论.试题解析:当点A 在x 轴上时,设A(x ,0),△S △PAO =4,A(1,4) △12|x|×4=4,解得x=±2,△A(-2,0)或(2,0);当点A 在y 轴上时,设A(0,y),△S △PAO =4,A(1,4)△12|y|×1=4,解得x=±8,△A(-8,0)或(8,0).综上所述,A 点坐标为(-2,0)或(2,0)或(-8,0)或(8,0).点睛:本题考查的是平面直角坐标系中的三角形的面积,在解答此题时要注意进行分类讨论,不要漏解. 18.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△AOA 1的面积.【答案】(1)(4,-2);(2)作图见解析,(3)6.【解析】【分析】(1)根据点P 的对应点为P 1(6,2a b +-)确定出平移规律为向右6个单位,向下2个单位,,由此规律和C(-2,0)即可求出C 1的坐标;(2)根据(1)中的平移规律确定点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△AOA 1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】(1)△点P(a ,b)的对应点为P 1(a+6,b -2),△平移规律为向右6个单位,向下2个单位,△C(-2,0)的对应点C 1的坐标为(4,-2);(2)△A 1B 1C 1如图所示;(3)△AOA1的面积=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=18-12=6.考点:图形的平移变换.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.【答案】(1) (3,4);(2,0);A;(2)答案见解析;(3)10.【解析】【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.(1)规定:向上向右走为正,向下向左走为负△A →C 记为(3,4)B →C 记为(2,0)D →A 记为(﹣4,﹣2);(2)P 点位置如图所示.(3)据已知条件可知:A →B 表示为:(1,4),B →C 记为(2,0)C →D 记为(1,﹣2);该甲虫走过的路线长为1+4+2+1+2=10.故答案为(3,4);(2,0);A ;【点睛】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.20.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D .连接AC ,BD .(1)写出点C ,D 的坐标及四边形ABDC 的面积.(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S 三角形PAB =S 四边形ABDC ?若存在,求出点P 的坐标,若不存在,试说明理由;(3)点Q 是线段BD 上的动点,连接QC ,QO ,当点Q 在BD 上移动时(不与B ,D 重合),给出下列结论:①DCQ BOQ CQO +∠∠∠的值不变;②DCQ CQO BOQ+∠∠∠的值不变,其中有且只有一个正确,请你找出这个结论并求值.【答案】(1)C(0,2),D(4,2),S 四边形ABCD =8;(2)存在,点P 的坐标为(0,4)或(0,-4);(3)结论①正确,DCQ BOQ CQO+∠∠∠=1. 【解析】(1)根据点平移的规律:左减右加,上加下减,即可得到点C、D的坐标,利用平行四边形的面积公式计算面积即可;(2)设点P的坐标为(0,y),根据三角形的面积公式底乘以高的一半列式计算即可得到答案;(3)结论①正确.过点Q作QE△AB,交CO于点E,利用平行线的性质:两直线平行内错角相等证得△DCQ+△BOQ =△CQO,由此得到结论①正确【详解】(1)△将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,△C(0,2),D(4,2),AB△CD且AB=CD=4,△四边形ABDC是平行四边形,△S四边形ABCD=4×2=8.(2)存在,设点P的坐标为(0,y),根据题意,得12×4×|y|=8.解得y=4或y=-4.△点P的坐标为(0,4)或(0,-4).(3)结论①正确.过点Q作QE△AB,交CO于点E.△AB△CD,△QE△CD.△△DCQ=△EQC,△BOQ=△EQO.△△EQC+△EQO=△CQO,△△DCQ+△BOQ=△CQO.△DCQ BOQCQO∠∠∠=1.【点睛】此题考查点平移的坐标规律,利用面积求点的坐标,平行线的性质,(2)中利用面积求点坐标时,高度为点纵坐标的绝对值,得到纵坐标为两个值,这是题中易错点。
坐标方法的简单应用

坐标方法的简单应用1、用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.说明:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,因此建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.(3)表示各点的坐标有两种方式.2、用坐标变化表示平移由点的平移与点坐标的变化关系引出了图形的平移与图形上对应点的坐标的变化关系.(1)点的平移①点的平移引起的坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).②点的坐标的某种变化引起的点的平移变换.(2)图形的平移①图形上点的坐标的某种变化引起的图形的平移变换在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.②图形的平移引起的对应点的坐标的变化规律在平面直角坐标系内,如果把一个图形向右(或向左)平移a个单位长度,则图形上各个点的横坐标都加(或减去)a;如果把一个图形向上(或向下)平移a个单位长度,则它各个点的纵坐标都加(或减去)a.3、用坐标变化表示图形的压缩或拉伸在平面直角坐标系内,如果把一个图形各个点的横坐标都乘以一个大于1(或小于1且大于0)的数a,相应的新图形就是把原图形横向拉伸(或压缩)a倍;如果把它各个点的纵坐标都乘以一个大于1(或小于1且大于0)的数a,相应的新图形就是把原图形纵向拉伸(或压缩)a倍.4、用坐标变化表示图形的对称在平面直角坐标系内,如果把一个图形各个点的横坐标都乘以-1,相应的新图形与原图关于y轴对称;如果把一个图形各个点的纵坐标都乘以-1,相应的新图形与原图关于x轴对称;如果把一个图形各个点的横、纵坐标都乘以-1,相应的新图形与原图关于原点对称;平面直角坐标系练习1、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31),D .(40),2、如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)3、(1)把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达的位置坐标为_______。
专题08 坐标方法的简单应用

专题八 坐标方法的简单应用要点归纳1.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的 为原点,确定x 轴,y 轴的 ; (2)根据具体问题确定 ;(3)在平面内画出这些点,写出各点的 和各个地点的 . 2.一般地,在平面直角坐标系中,将点(x ,y )向右或向左平移a 个单位,可以得到对应点 或 ;将点(x ,y )向上或向下平移b 个单位长度,可以得到对应点 或 .3.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形 平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形 平移a 个单位长度. 典例讲解:一、用坐标表示位置:表示地理位置的方法有多种,主要有“方位角+距离”确定法,平面直角坐标系法,经纬度法等. 因为平面直角坐标系是最简单、最常用的坐标系,表示地理位置直观、方便.【例1】如图1是一个动物园浏览示意图,试设计确定这个动物园中每个景点位置的一种方法,并画图说明.思路点拨:根据已知条件,建立适当的直角坐标系表示地理位置.答案不唯一,可以以任何一个景点为原点,以水平方向为x 轴,竖直方向为y 轴建立直角坐标系.若以景点的相对中心位置南门为原点,则两栖动物(4,1),飞禽(3,4),狮子园(-4,5),马园(-3,-3). 解:答案不唯一,若以南门为原点,各点坐标如上述.如图2所示. 方法规律:(1)建立直角坐标系的关键在于确定原点.一般来说,要选择明显的或大家熟悉的地点为原点,这样才能清楚地表明其他地点的位置;(2)直角坐标系描点时,找准横坐标、纵坐标.为防止发生错误,描点时按“先横后纵”顺序;(3)借助直角坐标系中数对研究图形问题,是数形结合思想的运用.数形结合,把几何问题代数化,抽象问题具体化,直观易懂.图2图1二、用坐标平移【例2】把(0,-2)向右平移3个单位长度,在向下平移1个单位长度所到达位置的坐标是( )A.(-3,2)B.(3,-2)C.(3,-3)D.(0,-3) 思路点拨:根据“横坐标,右移加,左移减;纵坐标,上移加,下移减”确定点的位置,点(0,2)133,23,3−−−−−−−−→−−−−−−−−→右移下移个单位长度个单位长度点()点()解:C方法规律:点的平移,左右移,纵坐标不变;上下移,横坐标不变. 【例3】如图,三角形A 1B 1C 1是由三角形ABC 经过平移得到的. (1)请你写出平移的过程;(2)如果点N (a ,b ),求点M 的坐标.思路点拨:图形的平移,往往是抓住一组对应点进行突破,通过对应点进行突破,通过对应点坐标变化,发现平移规律,对于多次平移,可分解左右平移和上下平移,并且其结果不受沿某轴平移先后顺序的影响. 解:(1)方法一:选点A 移到点A 1,则A (-5,-2)→A ‘(-5,1)→A 1(1,1)由此可知,△A 1B 1C 1是由△ABC 先向上平移3个单位长度,再向右平移6个单位长度得到的. 方法二:A (-5,-2)→→A ‘(1,2)→A 1(1,1).由此可知,△A 1B 1C 1是由△ABC 先向右平移6个单位长度,再向上平移3个单位长度得到的. (2)如果点N (a ,b ),则点M 坐标为(a -6,b -3).拓展探究一、用坐标表示对称:坐标,不仅可以表示平移,而且可以表示轴对称,中心对称.(1)点P (m ,n )关于x 轴的对称点P 1(m ,-n ),即横坐标不变,纵坐标互为相反数; (2)点P (m ,n )关于x 轴的对称点P 2(-m ,n ),即纵坐标不变,横坐标互为相反数; (3)点P (m ,n )关于x 轴的对称点P 3(-m ,-n ),即横纵坐标都互为相反数.【例1】在平面直角坐标系中,直线l 过点M (3,0),且平行于y 轴. (1)如果△ABC 三个顶点的坐标分别是A (-2,0),B (-1,0),C (-1,2),△ABC 关于y 轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点坐标; (2)如果点P 的坐标是(-a ,0),其中a >0,点P 关于y 轴的对称点是P 1,P 1关于直线l 的对称点是P 2,求PP 2的长.思路点拨:关于y 轴,直线l 对称,通过画图利用对称的性质求坐标和线段的长度,关于直线x=3对称,纵坐标不变,横坐标之和为3的2倍.解:(1)△A 2B 2C 2的三个顶点坐标分别是A 2(4,0),B 2(5,0),C 2(5,2); (2)如图1,当0<a≤3时,∵P 与P 1关于y 轴对称,P (-a ,0),∴P 1(a ,0), 设P 2(x ,0),又∵P 1与P 2关于直线x=3对称,∴3-x=a -3,解得:x=6-a . 则PP 2=6-a (-a )=6-a+a=6.综上,PP 2的长度为6.方法规律:问题(2)中,P 1,P 2关于直线x=3对称,P 1与P 2的相对位置两种情况,因此分a >3,0<a≤3两类讨论,需要结合图形试试,发现P 1与P 2有两种相对位置,才能准确进行分类.A 链接中考1.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向 2.多层楼的电影院确定一个座位需要的数据是( )A .1个B .2个C .3个D .4个关于原点对称关于y 轴对称关于x 轴对称图1图23.方格纸上有A .B 两点,若以A 点为原点建立平面直角坐标系,则点B 的坐标为(-5,3),若以点B 为原点建立平面直角坐标系,则点A 的坐标为( )A .(-5,3)B .(5,-3)C .(-5,-3)D .(5,3)4.平面直角坐标系中,点P (-2,-3)先向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A .(-3,0)B .(-1,0)C .(-3,-6)D .(-1,6) 5.如图所示的平面坐标系内,画在透明胶片上的 □ABCD ,点A 的坐标是(0,2),现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是( )A .先向右平移5个单位,再向下平移1个单位B .先向右平移5个单位,再向下平移3个单位C .先向右平移4个单位,再向下平移1个单位D .先向右平移4个单位,再向下平移3个单位6.如图,把图中的⊙A 经过平移得到⊙O ,如果左图中⊙A 上一点P 的坐标为(m ,n ),那么平移后在右图中的对应点P ′的坐标为( )A .(m +2,n +1)B .(m -2,n -1)C .(m -2,n +1)D .(m +2,n -1)7.如图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是 .8.如图,用方向和距离表示火车站相对于仓库的位置是 , 若仓库的位置用(1,1)表示,那么火车站的位置表示为 . 9如图所示,长方形ABCD 在坐标平面内,点A 的坐标是1),且边AB ,CD 与x 轴平行,边AD ,BC 与y 轴平行,AB =4,AD =2. (1)求点B ,C ,D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?10.如图,正方形ABCD 的边长为4,请你建立适当的坐标系,写出各个顶点的坐标.第7题图第6题图第5题图第8题图北65412313.在直角坐标系中,描出点(1,0),(1,2),(3,1),(1,1),并用线段依次连接起来. (1)纵坐标不变,横坐标分别加2,所得图案与原图相比,有什么变化? (2)横坐标不变,纵坐标分别乘以-1呢? (3)横坐标,纵坐标都变成原来的2倍呢?14.如图所示,在雷达探测区内,可以建立平面直角坐标系表示位置,某次行动中,当我方两架飞机在 A (-1,-2)与B (3,2)位置时,可疑飞机在(-1,6)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来,并确定可疑飞机的所处方位.15.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4……,这样依次得到点A 1,A 2,A 3 ……,A n . (1)若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 坐标为 ;(2)若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n ,均在x 轴上方,求a ,b 应满足的条件.C 决战中考D CBA16.如图所示,⊙A1B1C1是由⊙ABC平移后的到的,已知⊙ABC中任意一点P(x0,y0)经过平移后对应点为P0(x0-6,y0-2).(1)已知A(2,6),B(1,3),C(5,3),Q(3,5),请写出A1,,B1,C1,Q1的坐标(2)式说明⊙A1B1C1是如何由⊙ABC平移得到的?(3)连接A1,A,CC1,求出五边形A1B1C1CA的面积.17.在平面直角坐标系中,已知O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)求点D的坐标;(2)将长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得到的四边形A1,B1C1D1四个顶点的坐标格式多少?(3)18.如图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现在同时点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点CD,连接AC,BD.(1)求点C、D的坐标及四边形ABCD的面积S四边形ABCD(2)在y轴上是否存在一点P,连接P A,PB,使得S⊙P AB= S四边形ABCD,若存在这样一点,求出点P坐标,若不存在,试说明理由;(3)点P是线段BD上一个动点,连接PC,PO,当点P在BD上移动时(不于B,D重合)给出下列结论⊙DCP BOPCPO∠+∠∠的值不变;⊙DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个正确结论并求值.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右为正,向下向左为负,如果从A到B记为AB(+1,+4),从BA到记作BA (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向. (1)图中AC ( , ),BC ( , ),CD ( , );(2)若这只甲虫从A 处去甲虫P 处行走的路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫行走的路线为AB ,请计算该甲虫走过的路程;(4)若图中另有两个格点M ,N ,且M (3-a ,b -4),MN (5-a ,b -2)则N A 应记为什么?20.阅读理解: 我们知道:任意两点关于他们所连线段的中心成中心对称 ,在平面直角坐标系中,任意两点P (x 1,,y 1),Q (x 2,y 2),的对称中心的点坐标为(1212,22x x y y ++). 观察应用(1)如图,在平面直角坐标系中,若点P 1,(0,-1),P 2(2,-3)的对称中心是点A ,则A 的坐标为 ;(2)另取两点B (-1,6.2),C (-1,0),有一电子青蛙从P 1,处开始依次关于点A ,B ,C 做循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到P 2关于点B 对称的P 3 ,第三次再跳到点P 3 关于点C 的对称点P 4处,第四次再跳到点P 4 关于点A 的对称点P 5处,…则点P 3,P 8的坐标分别是 , ; (3)求出点P 2016的坐标。
坐标方法的简单应用

注意:不同的原点产生的地理位置的坐标会改变吗?
.
7
解:如图所示,建立平面直角坐标系. 校门(0,0), 图书馆(3,1), 花坛(3,4), 体育场(4,7), 教学大楼(0,7), 国旗杆(0,3), 实验楼(-4,6), 体育馆(-3,2).
.
8
变式:如图是某中学的 校区平面示意图(一个 方格的边长代表1个单 位长度),花坛的位置 用(5,2)表示,请建 立平面直角坐标系,并 用坐标表示校门、图书 馆、体育场、教学大楼 、国旗杆、实验楼和体 育馆的位置.
C(-2,0)、A1(3,4)、C1(4,2);
(2)连接AA1,CC1,四边形ACC1A1的
面积=S△AA1C1+S△AC1C
∵S△AA1C1=S△AA1C1=
1 72 7 2
∴ 四边形ACC1A1的面积=14. .
A
B1
P 1
C O1
22
C1
x
小结
一、表示物体的地理位置的方法
(1)用坐标表示物体的地理位置;
.
9
知识点二:用方向和距离表示地理位置
自学研讨2
思考: 我们知道,通过建立平面直角坐标系,可 以用坐标表示平面内点的位置。还有其他方法吗?
如图,一艘船在A处遇险后向相距35 n mile位于 B处的救生船报警.
(1)如何用方向和距离描述救生船相对于遇险船 的位置?
(2)救生船接到 报警后准备前往救援,
(2)上、下平移: 横坐标不变,上加下减
原图形上的点(x,y) 向上平移b个单位 (x,y+b) 原图形上的点(x,y) 向. 下平移b个单位 (x20,y-b)
展示交流4
1.三角形ABC中,BC边上的中点为M,把三角形 ABC向右平移2个单位长度,再向下平移3个单位长 度后,得到三角形A1B1C1. 边B1C1的中点M1的坐标 为(-1,0),则点M 的坐标为 (-3, 3) . 2.已知三角形ABC, A(-3,2),B(1,1),C(-1,-2),现 将三角形ABC平移,使点A到点(1,-2) 的位置上,则点 B,C的坐标分别为 (5,-3) , (3,-6) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系---坐标方法的简单应用
学习要求
能建立适当的平面直角坐标系描述物体的位置.
在同一直角坐标系中,感受图形变换后点的坐标的变化.
(一)课堂学习检测
1.回答下面的问题.
(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园.
请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)
(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是
①建立______选择一个____________为原点,确定x轴、y轴的____________;
②根据具体问题确定适当的______在坐标轴上标出____________;
③在坐标平面内画出这些点,写出各点的______和各个地点的______.
2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:
3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐
标;
②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2
的坐标;
③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.
(二)综合运用诊断
一、填空
4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.
5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;
将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______.
7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______.
8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______.
9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1).
10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________ _______________________________________________________________________.
二、选择题
11.下列说法不正确的是( ).
A .坐标平面内的点与有序数对是一一对应的
B .在x 轴上的点纵坐标为零
C .在y 轴上的点横坐标为零
D .平面直角坐标系把平面上的点分为四部分
12.下列说法不正确的是( ).
A .把一个图形平移到一个确定位置,大小形状都不变
B .在平移图形的过程中,图形上的各点坐标发生同样的变化
C .在平移过程中图形上的个别点的坐标不变
D .平移后的两个图形的对应角相等,对应边相等,对应边平行或共线
13.把(0,-2)向上平移3个单位长度再向下平移1个单位长度所到达位置的坐标是
( ).
A .(3,-2)
B .(-3,-2)
C .(0,0)
D .(0,-3)
14.已知三角形内一点P (-3,2),如果将该三角形向右平移2个单位长度,再向下平
移1个单位长度,那么点P 的对应点P ′的坐标是( ).
A .(-1,1)
B .(-5,3)
C .(-5,1)
D .(-1,3)
15.将线段AB 在坐标系中作平行移动,已知A (-1,2),B (1,1),将线段AB 平移后,
其两个端点的坐标变为A (-2,1),B (0,0),则它平移的情况是( ).
A .向上平移了1个单位长度,向左平移了1个单位长度
B .向下平移了1个单位长度,向左平移了1个单位长度
C .向下平移了1个单位长度,向右平移了1个单位长度
D .向上平移了1个单位长度,向右平移了1个单位长度
16.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.
左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.
17.(1)如果动点P (x ,y )的坐标坐标满足关系式试12
1+=
x y ,在表格中求出相对应的值,并在平面直角坐标系里描出这些点:
(2)若将这五个点都先向右平移五个单位,再向上平移三个单位,至A 1、B 1、C 1、
D1、E1,试画出这几个点,并分别写出它们的坐标.
(三)拓广、探究、思考
18.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:
1)请在所给的网格内画出以线段AB、BC为边的平行四边形ABCD;
2)填空:平行四边形ABCD的面积等于______.
19.在A市北300km处有B市,以A市为原点,东西方向的直线为x轴,南北方向的直线为y轴,并以50km为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C(10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km,问经几小时后,B市将受到台风影响?并画出示意图.
参考答案
测试
1.(1)A(-150,50),B(150,200),C(-250,300),
D(450,-400),E(500,-100),F(350,400),
G(-100,-300),H(300,-250),L(-150,-500).
(2)略.
2.略.
3.(2)画图答案如图所示:
①C1(4,4);②C2(-4,-4);③D(0,-1).
4.x轴,y轴.5.(x+a,y),(x-a,y);(x,y+b),(x,y-b).
6.右,左,a个单位长度,上,下,b个单位长度.
7.(-2,5),(-4,3).8.(1,2).9.2,4.
10.点P1(-2,-3)向左平移4个单位长度,再向上平移6个单位长度得到P2点.11.D12.C13.C14.A15.B16.(5,4).
17.(1)
图略.
(2)A1(1,2),B1(3,3),C1(5,4),D1(7,5),E1(9,6),图略.
18.解:(1)如图,平行四边形ABCD;(2)平行四边形ABCD的面积是15.
(第18题答图)
19.提示:50×6÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)
(第19题答图)。