常用数学符号英文对照

合集下载

数学术语英文对照表

数学术语英文对照表

数学术语英文对照表在学习数学时,不可避免地需要掌握一些数学术语。

下面是一些常见的数学术语的中英文对照表:1. 数学 Mathematics2. 数学符号 Mathematical symbol3. 数字 Digit4. 字符 Character5. 算术 Arithmetic6. 代数 Algebra7. 几何 Geometry8. 统计学 Statistics9. 概率 Probability10. 三角学 Trigonometry11. 微积分 Calculus12. 矩阵 Matrix13. 向量 Vector14. 线性代数 Linear algebra15. 数学模型 Mathematical model16. 方程 Equation17. 垂直 Perpendicular18. 平行 Parallel19. 正比例 Direct proportion20. 反比例 Inverse proportion21. 旋转 Rotation22. 缩放 Scaling23. 变形 Deformation24. 函数 Function25. 极限 Limit26. 微分 Differential27. 积分 Integral28. 中心 Central29. 对称 Symmetry30. 相似 Similarity31. 等式 Equality32. 不等式 Inequality33. 方形 Rectangle34. 正方形 Square35. 圆 Circle36. 椭圆 Ellipse37. 球球体 Sphere38. 三角形 Triangle39. 直角三角形 Right triangle40. 等腰三角形 Isosceles triangle41. 等边三角形 Equilateral triangle42. 直线 Line43. 射线 Ray44. 线段 Line segment45. 弧 Arc46. 正弦 Sine47. 余弦 Cosine48. 正切 Tangent49. 余切 Cotangent50. 弦 Chord总之,数学术语是数学学习的基础,掌握数学术语对于提高数学能力以及学好数学至关重要。

常用数学符号英文对照

常用数学符号英文对照

than or equal to y ( ) parentheses calculate expression2 ×(3+5) = 16inside first[ ] brackets calculate expression[(1+2)×(1+5)] = 18inside first+ plus sign addition 1 + 1 = 2−minus sign subtraction 2 −1 = 1±plus - minus both plus and minus3 ±5 = 8 and -2operations±minus - plus both minus and plus3 ±5 = -2 and 8operations* asterisk multiplication 2 * 3 = 6×times sign multiplication 2 ×3 = 6 ·multiplicationmultiplication 2 ·3 = 6dot÷division sign /division 6 ÷2 = 3 obelus/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimal2.56 = 2+56/100separatora b power exponent 23= 8a^b caret exponent 2 ^ 3= 83√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a = a4√16 = ±2n√a n-th root(radical)for n=3, n√8 = 2% percent1% = 1/100 10% ×30 = 3‰per-mille1‰= 1/1000 =0.1%10‰×30 = 0.3ppm per-million1ppm = 1/1000000 10ppm ×30 = 0.0003 ppb per-billion1ppb =1/100000000010ppb ×30 = 3×10-7ppt per-trillion 1ppt = 10-1210ppt ×30 = 3×10-10 Geometry symbolsSymbol Symbol Name Meaning / definition Example ∠angle formed by two rays ∠ABC = 30°measuredangleABC = 30°spherical angle AOB = 30°∟right angle = 90°α= 90°deg degree 1 turn = 360deg α= 60deg ′prime arcminute, 1°= 60′α= 60°59′α= 60°59′″double prime arcsecond, 1′= 60″59″line infinite lineAB line segment line from point A to point Bray line that start from point Aarc arc from point A to point B = 60°⊥perpendicular perpendicular lines (90°angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅congruent to equivalence of geometric shapes and size ∆ABC≅∆XYZ ~ similarity same shapes, not same size ∆ABC~ ∆XYZΔABC≅ΔΔtriangle triangle shapeBCD|x-y| distance distance between points x and y | x-y | = 5πpi constant π = 3.141592654...c = π·d =is the ratio between the circumference andin range ofseries∑∑sigma doublesummation∏capital pi product -product of allvalues in rangeof series∏ x i=x1·x2·...·x ne e constant / Euler's numbere =2.718281828...e = lim (1+1/x)x , x→∞γEuler-Mascheroni constantγ=0.527721566...φgolden ratio golden ratioconstantπpi constant π =3.141592654...is the ratiobetween thecircumferenceand diameter of acirclec = π·d = 2·π·rLinear Algebra SymbolsSymbol Symbol Name Meaning / definition Example ·dot scalar product a · b×cross vector product a × bA⊗B tensor product tensor product of A and B A⊗Binner product[ ] brackets matrix of numbers( ) parentheses matrix of numbers| A | determinant determinant of matrix Adet(A) determinant determinant of matrix A|| x || double vertical bars normA T transpose matrix transpose (A T)ij = (A)ji A†Hermitian matrix matrix conjugate transpose (A†)ij = (A)ji A*Hermitian matrix matrix conjugate transpose (A*)ij = (A)ji A-1inverse matrix A A-1 = Irank(A) matrix rank rank of matrix A rank(A) = 3 dim(U) dimension dimension of matrix A rank(U) = 3Probability and statistics symbols Symbol Symbol Name Meaning / definition Example P(A) probabilityfunctionprobability of event A P(A) = 0.5P(A∩B) probability ofeventsintersectionprobability that ofevents A and BP(A∩B) = 0.5P(A∪B) probability ofevents union probability that ofevents A or BP(A∪B) = 0.5P(A | B) conditionalprobabilityfunctionprobability of event Agiven event B occuredP(A | B) = 0.3f (x) probabilitydensity function(pdf)P(a ≤ x ≤ b) = ∫f (x) dxF(x) cumulativedistributionfunction (cdf)F(x) = P(X≤ x)μpopulationmean mean of populationvaluesμ = 10E(X) expectationvalue expected value ofrandom variable XE(X) = 10E(X | Y) conditionalexpectation expected value ofrandom variable Xgiven YE(X | Y=2) = 5var(X) variance variance of randomvariable Xvar(X) = 4σ2variance variance of populationvaluesσ2 = 4std(X) standarddeviation standard deviation ofrandom variable Xstd(X) = 2σX standarddeviation standard deviationvalue of randomvariable XσX=2median middle value of random variable xcov(X,Y) covariance covariance of randomvariables X and Ycov(X,Y) = 4corr(X,Y) correlation correlation of randomvariables X and Ycorr(X,Y) = 0.6ρX,Y correlation correlation of randomvariables X and YρX,Y = 0.6∑summation summation - sum of all values in range of series∑∑doublesummationdouble summationMo mode value that occurs most frequently in populationMR mid-range MR = (x max+x min)/2 Md sample median half the population isbelow this valueQ1lower / firstquartile 25% of population are below this valueQ2median / secondquartile 50% of population are below this value = median of samplesQ3upper / thirdquartile 75% of population are below this valuex sample mean average / arithmeticmeanx = (2+5+9) / 3 = 5.333s2sample variance population samplesvariance estimators2 = 4s sample standarddeviation population samples standard deviation estimators = 2z x standard score z x = (x-x) / s xX ~ distribution of X distribution of randomvariable XX ~ N(0,3)N(μ,σ2) normaldistributiongaussian distribution X ~ N(0,3)U(a,b) uniformdistribution equal probability inrange a,bX ~ U(0,3)exp(λ) exponentialdistributionf (x) = λe-λx , x≥0gamma(c,λ) gammadistributionf (x) = λc x c-1e-λx /Γ(c), x≥0χ 2(k) chi-squaredistributionf (x) = x k/2-1e-x/2 /( 2k/2 Γ(k/2) )F (k1, k2) F distributionBin(n,p) binomialdistributionf (k) = n C k p k(1-p)n-kPoisson(λ) Poissondistributionf (k) = λk e-λ / k!Geom(p) geometricdistributionf (k) = p(1-p) kHG(N,K,n) hyper-geometricdistributionBern(p) BernoullidistributionCombinatorics SymbolsSymbol Symbol Name Meaning / definition Examplen! factorial n! = 1·2·3·...·n5! = 1·2·3·4·5 = 120 n P k permutation 5P3 = 5! / (5-3)! = 60n C kcombination 5C3 = 5!/[3!(5-3)!]=10Set theory symbolsSymbol Symbol Name Meaning / definition Example { } set a collection of elementsA = {3,7,9,14},B = {9,14,28}A ∩B intersection objects that belong to set A andset BA ∩B = {9,14}A ∪B union objects that belong to set A orset BA ∪B ={3,7,9,14,28}A ⊆B subset subset has fewer elements orequal to the set{9,14,28} ⊆{9,14,28}A ⊂B proper subset / strictsubsetsubset has fewer elements thanthe set{9,14} ⊂{9,14,28}A ⊄B not subset left set not a subset of right set{9,66} ⊄{9,14,28}A ⊇B superset set A has more elements orequal to the set B{9,14,28} ⊇{9,14,28}A ⊃B proper superset / strictsupersetset A has more elements thanset B{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B{9,14,28} ⊅{9,66}2A power set all subsets of Apower set all subsets of AA =B equality both sets have the samemembersA={3,9,14},B={3,9,14},A=BA c complement all the objects that do not belong to set AA \B relative complement objects that belong to A and notto BA = {3,9,14},B = {1,2,3},A-B = {9,14}A -B relative complement objects that belong to A and notto BA = {3,9,14},B = {1,2,3},A-B = {9,14}A ∆B symmetric difference objects that belong to A or Bbut not to their intersectionA = {3,9,14},B = {1,2,3},A ∆B ={1,2,9,14}A ⊖B symmetric difference objects that belong to A or Bbut not to their intersectionA = {3,9,14},B = {1,2,3},A ⊖B ={1,2,9,14}a∈A element of set membership A={3,9,14}, 3 ∈Ax∉A not element of no set membershipA={3,9,14}, 1∉ A (a,b) ordered pair collection of 2 elementsA×B cartesian product set of all ordered pairs from Aand B|A| cardinality the number of elements of set AA={3,9,14},|A|=3#A cardinality the number of elements of set AA={3,9,14},#A=3aleph-null infinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØempty set Ø = { } C = {Ø} universal set set of all possible values0natural numbers / wholenumbers set (withzero)= {0,1,2,3,4,...} 0 ∈01natural numbers / wholenumbers set (without 1= {1,2,3,4,5,...} 6 ∈1zero)integer numbers set = {...-3,-2,-1,0,1,2,3,...} -6 ∈rational numbers set = {x | x=a/b, a,b∈} 2/6 ∈real numbers set = {x | -∞< x <∞} 6.343434∈= {z | z=a+bi, -∞<a<6+2i∈complex numbers set∞, -∞<b<∞}Logic symbolsSymbol Symbol Name Meaning / definition Example ·and and x·y^ caret / circumflex and x ^ y& ampersand and x & y + plus or x + y∨reversed caret or x∨y| vertical line or x | yx' single quote not - negation x'x bar not - negation x¬not not - negation ¬x! exclamation mark not - negation ! x~ tilde negation ~ x ⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sinceCalculus & analysis symbolsSymbol Symbol Name Meaning / definition Example limit limit value of a functionεepsilon represents a very smallnumber, near zeroε→0e e constant /Euler's number e = 2.718281828...e = lim (1+1/x)x ,x→∞y ' derivative derivative - Lagrange'snotation(3x3)' = 9x2y(n)nth derivative n times derivation (3x3)(3) = 18 derivative derivative - Leibniz's notation d(3x3)/dx = 9x2second derivative derivative of derivative d2(3x3)/dx2 = 18xnth derivative n times derivationtime derivative derivative by time - Newton's notationtime secondderivativederivative of derivativeD x y derivative derivative - Euler's notationD x2y second derivative derivative of derivativepartial derivative ∂(x2+y2)/∂x = 2x ∫integral opposite to derivation ∫f(x)dx∫∫double integral integration of function of 2variables∫∫f(x,y)dxdy∫∫∫triple integral integration of function of 3variables ∫∫∫f(x,y,z)dxdydz∮closed contour /line integral∯closed surface integral∰closed volume integral[a,b] closed interval [a,b] = {x | a ≤ x ≤ b}(a,b) open interval (a,b) = {x | a < x < b}i imaginary unit i≡√-1 z = 3 + 2i z* complexconjugatez = a+bi→z*=a-bi z* = 3 - 2iz complexconjugatez = a+bi→z = a-bi z = 3 - 2i∇nabla / del gradient / divergenceoperator∇f (x,y,z) vectorunit vectorx * y convolution y(t) = x(t) * h(t)Laplace transform F(s) = {f (t)}Fourier transform X(ω) = {f (t)}δdelta function∞lemniscate infinity symbol。

中小学数学代数几何常用概念中英文数学对照

中小学数学代数几何常用概念中英文数学对照

中英文数学对照代数Algebra正数positive负数negative零zero数字digit/number整数integer分数fractions假分数proper fraction带分数mixture fractions/improper fraction 分子numerator分母denominator小数decimal百分数percentage/percent数字1one2two3three4four5five6six7seven8eight9nine10ten11eleven12twelve13thirteen14fourteen15fifteen16sixteen17seventeen18eighteen19nineteen20twenty100hundred1000thousand10000million1000000000billion奇数odd偶数even质数prime合数composite最大公约数maximum common factor 最小公倍数least common multiples加法addition减法subtraction乘法multiple除法division被除数dividend除数divisor商quotient和sum乘积product因数factor结合律association交换律communication分配律distribution因式分解factoring因子factors简化simplify等式/方程equation不等式inequation倒数receiption符号symbol约等于/近似approximately估算estimation实数real numbers有理数rational numbers无理数irrational numbers一元二次方程linear equations二元一次方程quadratic equations绝对值方程absolute equations方程的根root方程组system of equations变量variable常量constant多项式polynomial单项式monomial反比例函数inverse proportional function 正比例函数proportional function指数函数exponential function对数函数logarithmic function三角函数trigonometric function消元法elimination代入法substitute集合set并集union set交集intersection set空集empty set坐标轴axis横轴x-axis纵轴y-axis截距x,y-intercepts象限quadrant抛物线parabola顶点vertex准线directrix对称轴symmetric axis主轴Major axis副轴Minor axis水平对称轴horizontal symmetric axis垂直对称轴vertical symmetric axis数列sequence/series等差数列arithmetic sequence等比数列geometric sequence几何geometric点point线line面plane曲线curve多边形polygon平行四边形parallelogram菱形rhombus长方形rectangular正方形square梯形trapezoid三角形triangle斜三角形skew triangle正三角形right triangle等腰三角形isosceles triangle锐角三角形acute triangle直角三角形right triangle钝角三角形obtuse triangle凹多边形concave polygon凸多边形convex polygon对边opposite site邻边adjacent side斜边hypotenuse side对角线diagonal髙height底面base中线midline垂直平分线perpendicular bisector 垂直perpendicular平分bisector重心gravity垂心orthocenter角angle锐角acute angle直角right angle钝角obtuse angle圆circle半径radius直径diameter弦chord弧arc优弧major arc劣弧minor arc切线tangent line割线secant line长方形rectangle正方形square边side椭圆ellipse抛物线parabola双曲线hyperbola相交intersection相切tangent正交orthogonal立体图形solid立方体cube三棱柱triangular prism棱柱prism棱锥pyramid圆锥cone圆柱cylinder球sphere规则多边体不规则多边体勾股定理Pythagorean theorem 边长side length面积area周长perimeter/circumference 体积volume表面积surface area侧面积lateral area底面积base area斜边slant立方体的高altitude位似变化transformation位移translation水平平移horizontal shift垂直平移vertical shift对称reflection放大/缩小dilation strectch/compress 旋转rotation公式formula定理theorem矩阵matrix行列式determinant行row列column排列permutation组合combination概率probability极限limit导数derivative微分differential积分integral平均数average/mean方差variance标准差standard variance中位数median众数mode。

常用数学符号英文对照

常用数学符号英文对照

常用数学符号英文对照Basic math symbolsSymbol Symbol Name Meaning / definition Example= equals sign equality 5 = 2+35 is equal to 2+3≠not equal sign inequality 5 ≠ 45 is not equal to 4≈approximatelyequal approximationsin(0.01) ≈ 0.01,x≈y means x is approximatelyequal to y> strict inequality greater than 5 > 45 is greater than 4< strict inequality less than 4 < 54 is less than 5≥inequality greater than or equal to 5 ≥ 4,x≥y means x is greater than or equal to y≤inequality less than or equal to 4 ≤ 5,x ≤ y means x is greater than or equal to y( ) parentheses calculate expression insidefirst2 × (3+5) = 16[ ] brackets calculate expression insidefirst[(1+2)×(1+5)] = 18 + plus sign addition 1 + 1 = 2−minus sign subtraction 2 − 1 = 1±plus - minus both plus and minusoperations3 ± 5 = 8 and -2±minus - plus both minus and plusoperations3 ± 5 = -2 and 8 * asterisk multiplication 2 * 3 = 6×times sign multiplication 2 × 3 = 6 ·multiplication dot multiplication 2 · 3 = 6÷division sign /division 6 ÷ 2 = 3obelus/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimal2.56 = 2+56/100separatora b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a = a4√16 = ±2n√a n-th root (radical) for n=3, n√8 = 2% percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1%10‰ × 30 = 0.3ppm per-million1ppm = 1/1000000 10ppm × 30 = 0.0003ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7ppt per-trillion 1ppt = 10-1210ppt × 30 = 3×10-10ABC = 30°AOB = 30°°degree 1 turn = 360°α = 60°deg degree 1 turn = 360deg α = 60deg′prime arcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″α = 60°59′59″line infinite lineAB line segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅congruent to equivalence of geometric shapes and size ∆ABC≅∆XYZ ~ similarity same shapes, not same size ∆ABC~ ∆XYZ Δtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y | = 5πpi constant π = 3.141592654...is the ratio between the circumference and diameter of acirclec = π·d = 2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians / gons grads angle unit 360° = 400 gradg gradians / gons grads angle unit 360° = 400 gx x variableto findwhen 2x = 4, then x = 2≡equivalence identical to≜equal by definition equal bydefinition:= equal by definition equal bydefinition~ approximately equal weakapproximation11 ~ 10≈approximately equal approximation sin(0.01) ≈ 0.01∝proportional to proportional to y∝x when y = kx, k constant ∞lemniscate infinity symbol≪much less than much less than 1 ≪1000000≫much greater than much greaterthan1000000 ≫1( ) parentheses calculateexpressioninside first2 * (3+5) = 16[ ] brackets calculateexpressioninside first[(1+2)*(1+5)] = 18{ } braces set⌊x⌋floor brackets rounds numberto lower integer⌊4.3⌋ = 4⌈x⌉ceiling brackets rounds numberto upper integer⌈4.3⌉ = 5x! exclamation mark factorial4! = 1*2*3*4 = 24 | x | single vertical bar absolute value | -5 | = 5f (x) function of x maps values ofx to f(x)f (x) = 3x+5(f∘g) function composition (f∘g) (x)= f (g(x))f (x)=3x,g(x)=x-1 ⇒(f∘g)(x)=3(x-1)(a,b) open interval (a,b) = x∈(2,6)[a ,b ] closed interval[a ,b ] = {x | a ≤ x ≤ b }x ∈ [2,6]∆ delta change / difference∆t = t 1 - t 0∆ discriminantΔ = b 2 - 4ac∑sigmasummation -sum of all values in range of series ∑ x i = x 1+x 2+...+x n∑∑sigmadouble summation∏capital piproduct -product of all values in range of series∏ x i =x 1∙x 2∙...∙x ne e constant / Euler's numbere =2.718281828... e = lim (1+1/x )x , x →∞γ Euler-Mascheroni constant γ =0.527721566...φgolden ratio golden ratio constantπpi constant π =3.141592654...is the ratiobetween the circumference and diameter of a circlec = π·d = 2·π·rA ⊗Btensor product tensor product of A and BA ⊗ Binner product[ ] brackets matrix of numbers ( ) parentheses matrix of numbers| A | determinant determinant of matrix A det(A ) determinant determinant of matrix A|| x || double vertical bars normA T transpose matrix transpose(A T )ij = (A )ji A † Hermitian matrix matrix conjugate transpose (A †)ij = (A )ji A * Hermitian matrix matrix conjugate transpose(A *)ij = (A )jiA -1inverse matrixA A -1 = Irank(A ) matrix rank rank of matrix A rank(A ) = 3 dim(U )dimensiondimension of matrix Arank(U ) = 3Probability and statistics symbolsSymbolSymbol Name Meaning / definitionExampleP (A )probability function probability of event A P (A ) = 0.5P (A ∩ B ) probability ofeventsintersection probability that of events A and BP (A ∩B ) = 0.5P (A ∪B ) probability ofevents unionprobability that of events A or B P (A ∪B ) = 0.5P (A | B )conditionalprobability function probability of event A given event B occuredP (A | B ) = 0.3f (x ) probabilitydensity function (pdf) P (a ≤ x ≤ b ) = ∫ f (x ) dxF (x )cumulativeF (x ) = P (X ≤ x )distribution function (cdf)μ population mean mean of population valuesμ = 10E (X )expectation valueexpected value of random variable X E (X ) = 10E (X | Y )conditional expectationexpected value of random variable X given YE (X | Y=2) = 5var (X ) variance variance of random variable X var (X ) = 4σ2variancevariance of population values σ2 = 4std (X ) standard deviationstandard deviation of random variable X std (X ) = 2σXstandard deviationstandard deviation value of random variable X σX = 2medianmiddle value of random variable xcov (X ,Y )covariance covariance ofrandom variables X and Y cov (X,Y ) = 4corr (X ,Y ) correlationcorrelation ofrandom variables X and Y corr (X,Y ) = 0.6ρX ,Ycorrelation correlation ofrandom variables X and YρX ,Y = 0.6∑summation summation - sum ofall values in range of series∑∑double summationdouble summationMo mode value that occurs most frequently in populationMR mid-range MR = (x max+x min)/2 Md sample median half the population isbelow this valueQ1lower / firstquartile 25% of population are below this valueQ2median /second quartile 50% of population are below this value = median of samplesQ3upper / thirdquartile 75% of population are below this valuex sample mean average / arithmeticmeanx = (2+5+9) / 3 = 5.333s2samplevariance population samples variance estimators2 = 4s samplestandarddeviationpopulation samplesstandard deviationestimators = 2z x standard score z x = (x-x) / s xX ~ distribution of X distribution ofrandom variable XX ~ N(0,3)N(μ,σ2) normaldistributiongaussian distribution X ~ N(0,3)U(a,b) uniformdistributionequal probability inrange a,bX ~ U(0,3)exp(λ)exponentialdistributionf (x) = λe-λx , x≥0gamma(c, λ)gammadistributionf (x) = λ c x c-1e-λx /Γ(c), x≥0χ 2(k) chi-squaredistributionf (x) = x k/2-1e-x/2 /( 2k/2 Γ(k/2) )F (k1, k2) F distributionBin (n ,p )binomial distribution f (k ) = n C k p k (1-p )n-kPoisson (λ)Poisson distribution f (k ) = λk e -λ / k !Geom (p )geometric distribution f (k ) = p (1-p ) kHG (N ,K ,n ) hyper-geometric distributionBern (p ) Bernoulli distributionsubset the set {9,14,28} A ⊄ B not subset left set not a subset of right set{9,66} ⊄{9,14,28} A ⊇B supersetset A has more elements or equalto the set B{9,14,28} ⊇{9,14,28} A ⊃Bproper superset / strictsupersetset A has more elements than setB{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B{9,14,28} ⊅{9,66} 2A power set all subsets of Apower set all subsets of AA =B equalityboth sets have the samemembersA={3,9,14},B={3,9,14},A=BA c complementall the objects that do not belongto set AA \B relative complementobjects that belong to A and notto BA = {3,9,14},B = {1,2,3},A-B = {9,14} A - B relative complementobjects that belong to A and notto BA = {3,9,14},B = {1,2,3},A-B = {9,14} A ∆ B symmetric differenceobjects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ∆B ={1,2,9,14} A ⊖ B symmetric differenceobjects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ⊖B ={1,2,9,14}a∈A element of set membership A={3,9,14}, 3 ∈Ax∉A not element of no set membership A={3,9,14}, 1 ∉A(a ,b ) ordered pair collection of 2 elementsA×B cartesian product set of all ordered pairs from Aand B|A| cardinality the number of elements of set AA={3,9,14}, |A|=3 #A cardinality the number of elements of set AA={3,9,14}, #A=3aleph-nullinfinite cardinality of naturalnumbers setaleph-one cardinality of countable ordinalnumbers setØ empty set Ø = { }C = {Ø}universal set set of all possible valuesnatural numbers / whole numbers set (with zero) 0 = {0,1,2,3,4,...}0 ∈ 01natural numbers / wholenumbers set (withoutzero)1 = {1,2,3,4,5,...}6 ∈ 1integer numbers set= {...-3,-2,-1,0,1,2,3,...} -6 ∈rational numbers set= {x | x =a /b , a ,b ∈}2/6 ∈real numbers set= {x | -∞ < x <∞} 6.343434∈complex numbers set= {z | z=a +bi ,-∞<a <∞, -∞<b <∞}6+2i ∈∨reversed caret or x∨y | vertical line or x | y x' single quote not - negation x'x bar not - negation x¬not not - negation ¬x ! exclamation mark not - negation ! x ⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x ⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sincee e constant / Euler'snumber e = 2.718281828...e = lim(1+1/x)x ,x→∞y ' derivative derivative - Lagrange's notation (3x3)' = 9x2y '' second derivative derivative of derivative (3x3)'' = 18xy(n)nth derivative n times derivation (3x3)(3) = 18derivative derivative - Leibniz's notation d(3x3)/dx = 9x2second derivative derivative of derivative d2(3x3)/dx2 = 18xnth derivative n times derivationtime derivative derivative by time - Newton's notationtime secondderivativederivative of derivativeD x y derivative derivative - Euler's notationD x2y second derivative derivative of derivativepartial derivative ∂(x2+y2)/∂x = 2x ∫integral opposite to derivation ∫f(x)dx∫∫double integral integration of function of 2variables∫∫f(x,y)dxdy∫∫∫triple integral integration of function of 3variables∫∫∫f(x,y,z)dxdydz∮closed contour / lineintegral∯closed surfaceintegral∰closed volumeintegral[a,b] closed interval [a,b] = {x | a ≤ x ≤ b}(a,b) open interval (a,b) = {x | a < x < b}i imaginary unit i≡ √-1 z = 3 + 2i z* complex conjugate z = a+bi→z*=a-bi z* = 3 - 2i z complex conjugate z = a+bi→z = a-bi z = 3 - 2i ∇nabla / del gradient / divergence operator ∇f (x,y,z)vectorunit vectorx * y convolution y(t) = x(t) * h(t)Laplace transform F(s) = {f (t)}Fourier transform X(ω) = {f (t)}δdelta function∞lemniscate infinity symbol。

数学符号的中英文读法

数学符号的中英文读法

section; division
分节号

arrow
箭号;参见号

plus
加号;正号

minus
减号;负号
±
plus or minus
正负号
×
is multiplied by
乘号
÷
is divided by
除号

is equal to
等于号

is not equal to
不等于号

is equivalent to
Ν
(纽)
Ξ
(可系)
Ο
(奥密克戎)
Π
(派)
Ρ
(若)
Σ
(西格马)
Τ
(套)
Υ
(英文或拉丁字母)
Φ
(斐)
Χ
(喜)
Ψ
(普西)
Ω
(欧米伽)
Mu
Ν ν: 拗
Nu
Ξ ξ: 克西
KeXi
Ο ο: 欧麦克轮 Omicron
∏ π: 派
Pi
Ρ ρ: 柔
Rho
∑ σ: 西格玛
Sigma
Τ τ: 套
Tau
Υ υ: 宇普西龙 Upsilon
Φ φ: fai
Phi
Χ χ: 器
Chi
Ψ ψ: 普赛
Psi
Ω ω: 欧米伽
Omega
希腊字母怎么打:打开 Office 文档之后,在你需要输入希腊字母的时候,先将输入法切换为
ω(欧米伽)。
更全面:
1 Α α alpha a:lf
阿尔法 角度系数
2 Β β beta bet
贝塔 磁通系数 角度系数

数学符号英文对照表

数学符号英文对照表

1.Professional Basics Knowledge1/21/32/31/41/1001/1000 113/3244320.25+-±×÷=≈( ) [ ] { }≢≣∞∵∴→x+y (a + b ) a = ba ≠b a ±b a ≈b a >b a >>b a ≣b a <b a <<b a ≢b a ⊥b x →∞a ≡b ∟a a half, one halfa third, one thirdtwo thirdsa quarter, one quarter , a fourth, one fourtha (one) hundredtha (one) thousandthone hundred and thirteen over three hundred and twenty four four and two thirdszero (0, naught) point two fiveplus, positiveminus, negativeplus or minusmultiplied by, timesdivided bybe equal to, equalsbe approximately equal to, approximately equalsround brackets; parenthesessquare (angular) bracketsbracesless than or equal tomore than or equal toinfinitybecausethereforemaps intox plus ybracket a plus b bracket closeda equals b, a is equal to b, a is ba is not equal to b, a is not ba plus or minus ba is approximately equal to ba is greater than ba is much [far] greater than ba is greater than or equal to ba is less than ba is much less than ba is less than or equal to ba is perpendicular to bx approaches infinitya is identically equal to b, a is of identity to bangle aa ~ba ∠ba ∝ bx 2x 3x3x %2%‰5‰㏒n x㏒10x㏒e x,㏑xe x ,exp(x)x nx1/n or n xsincostg, tanctg, cotsc, seccsc, cosecsin -1 arcsincos -1 ,arcossinhcosh∑∑=ni ix 1∏∏=ni ix 1∣x ∣xb ’b ’’ the difference between a and b a is parallel to b a varies directly as b x square; x squared; the square of x~, the second power of x, x to second power x cube; x cubed; the cube of x; the third power of x, x to the third power the square root of x the cube root of x percent two percent per mill five per mill log x to the base n log x to the base 10; common logarithm log x to the base e , natural logarithm, Napierian logarithm exponential function of x; e to the power x the nth power of x; x to the power n the nth root of x, x to the power one over n sine cosine tangent cotangent secont cosecant arc sine arc cosine the hyperbolic sine the hyperbolic cosine the summation of the summation of x sub i ,where i goes from 1 to n the product of the product of x sub i , where i goes from 1to n the absolute value of x the mean value of x, x bar b primeb double prime; b second primeb ’’’ f(x) △ x, δx dx dx dy 22dx y d n n dx y d u y ∂∂ ⎰ ⎰⎰ ⎰…⎰ ⎰b aF a 22007’13’’00C1000C320Fb triple primefunction f of xfinite difference or incrementthe increment of xdee x; dee of x; differential xthe differential coefficient of y with respect to x, the first derivative of y with respect of xthe second derivative of y with respect of xthe nth derivative of y with respect of xThe partial derivative of y with respect of u, where y is a function of u and another variable (or variables)integral ofdouble integral ofn-fold integral ofintegral between limits a and b (…from a to b)vector F a sub two twenty degreesseven minutes; seven feetthirteen seconds; thirteen inches zero degree Centigrade [Celsius]one [a] hundred degrees Centigrade thirty-two degrees Fahrenheit。

常用数学符号的英文表达

常用数学符号的英文表达第一章函数与极限Chapter1 Function and Limit集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood领域的半径radius of a neighborhood左领域left neighborhood右领域right neighborhood映射mappingX到Y的映射mapping of X ontoY满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function 对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列 sequence of number收敛 convergence收敛于 a converge to a发散 divergent极限的唯一性 uniqueness of limits收敛数列的有界性 boundedness of a convergent sequence子列 subsequence函数的极限 limits of functions函数()f x 当x 趋于x 0时的极限 limit of functions ()f x as x approaches x 0 左极限 left limit右极限 right limit单侧极限 one-sided limits水平渐近线 horizontal asymptote无穷小 infinitesimal无穷大 infinity铅直渐近线 vertical asymptote夹逼准则 squeeze rule单调数列 monotonic sequence高阶无穷小 infinitesimal of higher order低阶无穷小 infinitesimal of lower order同阶无穷小 infinitesimal of the same order等阶无穷小 equivalent infinitesimal函数的连续性 continuity of a function增量 increment函数()f x 在x 0连续 the function ()f x is continuous at x 0左连续 left continuous右连续 right continuous区间上的连续函数 continuous function函数()f x 在该区间上连续 function ()f x is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions 定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem。

常用数学符号英文对照

常用数学符号英文对照Basic math symbolsSymbol Symbol Name Meaning / definition Example= equals sign equality 5 = 2+35 is equal to 2+3≠not equal sign inequality 5 ≠ 45 is not equal to 4≈approximatelyequal approximationsin(0.01) ≈ 0.01,x≈y means x is approximatelyequal to y> strict inequality greater than 5 > 45 is greater than 4< strict inequality less than 4 < 54 is less than 5≥inequality greater than or equal to 5 ≥ 4,x≥y means x is greater than or equal to y≤inequality less than or equal to 4 ≤ 5,x ≤ y means x is greater than or equal to y( ) parentheses calculate expression insidefirst2 × (3+5) = 16[ ] brackets calculate expression insidefirst[(1+2)×(1+5)] = 18 + plus sign addition 1 + 1 = 2−minus sign subtraction 2 − 1 = 1±plus - minus both plus and minusoperations3 ± 5 = 8 and -2±minus - plus both minus and plusoperations3 ± 5 = -2 and 8 * asterisk multiplication 2 * 3 = 6×times sign multiplication 2 × 3 = 6 ·multiplication dot multiplication 2 · 3 = 6÷division sign /division 6 ÷ 2 = 3obelus/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimal2.56 = 2+56/100separatora b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a = a4√16 = ±2n√a n-th root (radical) for n=3, n√8 = 2% percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1%10‰ × 30 = 0.3ppm per-million1ppm = 1/1000000 10ppm × 30 = 0.0003ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7ppt per-trillion 1ppt = 10-1210ppt × 30 = 3×10-10ABC = 30°AOB = 30°°degree 1 turn = 360°α = 60°deg degree 1 turn = 360deg α = 60deg′prime arcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″α = 60°59′59″line infinite lineAB line segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅congruent to equivalence of geometric shapes and size ∆ABC≅∆XYZ ~ similarity same shapes, not same size ∆ABC~ ∆XYZ Δtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y | = 5πpi constant π = 3.141592654...is the ratio between the circumference and diameter of acirclec = π·d = 2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians / gons grads angle unit 360° = 400 gradg gradians / gons grads angle unit 360° = 400 gx x variableto findwhen 2x = 4, then x = 2≡equivalence identical to≜equal by definition equal bydefinition:= equal by definition equal bydefinition~ approximately equal weakapproximation11 ~ 10≈approximately equal approximation sin(0.01) ≈ 0.01∝proportional to proportional to y∝x when y = kx, k constant ∞lemniscate infinity symbol≪much less than much less than 1 ≪1000000≫much greater than much greaterthan1000000 ≫1( ) parentheses calculateexpressioninside first2 * (3+5) = 16[ ] brackets calculateexpressioninside first[(1+2)*(1+5)] = 18{ } braces set⌊x⌋floor brackets rounds numberto lower integer⌊4.3⌋ = 4⌈x⌉ceiling brackets rounds numberto upper integer⌈4.3⌉ = 5x! exclamation mark factorial4! = 1*2*3*4 = 24 | x | single vertical bar absolute value | -5 | = 5f (x) function of x maps values ofx to f(x)f (x) = 3x+5(f∘g) function composition (f∘g) (x)= f (g(x))f (x)=3x,g(x)=x-1 ⇒(f∘g)(x)=3(x-1)(a,b) open interval (a,b) = x∈(2,6)[a ,b ] closed interval[a ,b ] = {x | a ≤ x ≤ b }x ∈ [2,6]∆ delta change / difference∆t = t 1 - t 0∆ discriminantΔ = b 2 - 4ac∑sigmasummation -sum of all values in range of series ∑ x i = x 1+x 2+...+x n∑∑sigmadouble summation∏capital piproduct -product of all values in range of series∏ x i =x 1∙x 2∙...∙x ne e constant / Euler's numbere =2.718281828... e = lim (1+1/x )x , x →∞γ Euler-Mascheroni constant γ =0.527721566...φgolden ratio golden ratio constantπpi constant π =3.141592654...is the ratiobetween the circumference and diameter of a circlec = π·d = 2·π·rA ⊗Btensor product tensor product of A and BA ⊗ Binner product[ ] brackets matrix of numbers ( ) parentheses matrix of numbers| A | determinant determinant of matrix A det(A ) determinant determinant of matrix A|| x || double vertical bars normA T transpose matrix transpose(A T )ij = (A )ji A † Hermitian matrix matrix conjugate transpose (A †)ij = (A )ji A * Hermitian matrix matrix conjugate transpose(A *)ij = (A )jiA -1inverse matrixA A -1 = Irank(A ) matrix rank rank of matrix A rank(A ) = 3 dim(U ) dimensiondimension of matrix Arank(U ) = 3Probability and statistics symbolsSymbolSymbol Name Meaning / definitionExampleP (A )probability function probability of event A P (A ) = 0.5P (A ∩ B ) probability ofeventsintersection probability that of events A and BP (A ∩B ) = 0.5P (A ∪B ) probability ofevents unionprobability that of events A or B P (A ∪B ) = 0.5P (A | B )conditionalprobability function probability of event A given event B occuredP (A | B ) = 0.3f (x ) probabilitydensity function (pdf) P (a ≤ x ≤ b ) = ∫ f (x ) dxF (x )cumulativeF (x ) = P (X ≤ x )distribution function (cdf)μ population mean mean of population valuesμ = 10E (X )expectation valueexpected value of random variable X E (X ) = 10E (X | Y )conditional expectationexpected value of random variable X given YE (X | Y=2) = 5var (X ) variance variance of random variable X var (X ) = 4σ2variancevariance of population values σ2 = 4std (X ) standard deviationstandard deviation of random variable X std (X ) = 2σXstandard deviationstandard deviation value of random variable X σX = 2medianmiddle value of random variable xcov (X ,Y )covariance covariance ofrandom variables X and Y cov (X,Y ) = 4corr (X ,Y ) correlationcorrelation ofrandom variables X and Y corr (X,Y ) = 0.6ρX ,Ycorrelation correlation ofrandom variables X and YρX ,Y = 0.6∑summation summation - sum ofall values in range of series∑∑double summationdouble summationMo mode value that occurs most frequently in populationMR mid-range MR = (x max+x min)/2 Md sample median half the population isbelow this valueQ1lower / firstquartile 25% of population are below this valueQ2median /second quartile 50% of population are below this value = median of samplesQ3upper / thirdquartile 75% of population are below this valuex sample mean average / arithmeticmeanx = (2+5+9) / 3 = 5.333s2samplevariance population samples variance estimators2 = 4s samplestandarddeviationpopulation samplesstandard deviationestimators = 2z x standard score z x = (x-x) / s xX ~ distribution of X distribution ofrandom variable XX ~ N(0,3)N(μ,σ2) normaldistributiongaussian distribution X ~ N(0,3)U(a,b) uniformdistributionequal probability inrange a,bX ~ U(0,3)exp(λ)exponentialdistributionf (x)= λe-λx , x≥0gamma(c, λ)gammadistributionf (x) = λ c x c-1e-λx /Γ(c), x≥0χ 2(k) chi-squaredistributionf (x) = x k/2-1e-x/2 /( 2k/2 Γ(k/2) )F (k1, k2) F distributionBin (n ,p )binomial distribution f (k ) = n C k p k (1-p )n-kPoisson (λ)Poisson distribution f (k ) = λk e -λ / k !Geom (p )geometric distribution f (k ) = p (1-p ) kHG (N ,K ,n ) hyper-geometric distributionBern (p ) Bernoulli distributionSet theory symbolsSymbolSymbol NameMeaning / definitionExample{ }set a collection of elementsA = {3,7,9,14},B = {9,14,28} A ∩ B intersectionobjects that belong to set A and set BA ∩B = {9,14} A ∪ B unionobjects that belong to set A or set BA ∪B = {3,7,9,14,28} A ⊆ B subsetsubset has fewer elements or equal to the set{9,14,28} ⊆ {9,14,28} A ⊂ B proper subset / strictsubset has fewer elements than{9,14} ⊂subset the set {9,14,28}A ⊄B not subset left set not a subset of right set{9,66} ⊄{9,14,28}A ⊇B supersetset A has more elements or equalto the set B{9,14,28} ⊇{9,14,28}A ⊃Bproper superset / strictsupersetset A has more elements than setB{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B{9,14,28} ⊅{9,66} 2A power set all subsets of Apower set all subsets of AA =B equality both sets have the same membersA={3,9,14},B={3,9,14},A=BA c complementall the objects that do not belong toset AA \B relative complementobjects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14} A - B relative complementobjects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14} A ∆ B symmetric differenceobjects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ∆B ={1,2,9,14}A ⊖B symmetric differenceobjects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ⊖B ={1,2,9,14}a∈A element of set membership A={3,9,14}, 3 ∈Ax∉A not element of no set membership A={3,9,14}, 1 ∉A(a ,b ) ordered pair collection of 2 elementsA×B cartesian product set of all ordered pairs from A and B|A| cardinality the number of elements of set AA={3,9,14}, |A|=3 #A cardinality the number of elements of set AA={3,9,14}, #A=3aleph-nullinfinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØ empty set Ø = { }C = {Ø}universal setset of all possible valuesnatural numbers / whole numbers set (with zero) 0 = {0,1,2,3,4,...}0 ∈ 01natural numbers / wholenumbers set (without zero)1 = {1,2,3,4,5,...}6 ∈ 1integer numbers set= {...-3,-2,-1,0,1,2,3,...} -6 ∈rational numbers set= {x | x =a /b , a ,b ∈}2/6 ∈real numbers set= {x | -∞ < x <∞} 6.343434∈complex numbers set= {z | z=a +bi ,-∞<a <∞, -∞<b <∞}6+2i ∈∨reversed caret or x∨y | vertical line or x | y x' single quote not - negation x'x bar not - negation x¬not not - negation ¬x ! exclamation mark not - negation ! x ⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x ⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sincee e constant / Euler'snumber e = 2.718281828...e = lim(1+1/x)x ,x→∞y ' derivative derivative - Lagrange's notation (3x3)' = 9x2y '' second derivative derivative of derivative (3x3)'' = 18xy(n)nth derivative n times derivation (3x3)(3) = 18derivative derivative - Leibniz's notation d(3x3)/dx = 9x2second derivative derivative of derivative d2(3x3)/dx2 = 18xnth derivative n times derivationtime derivative derivative by time - Newton's notationtime secondderivativederivative of derivativeD x y derivative derivative - Euler's notationD x2y second derivative derivative of derivativepartial derivative ∂(x2+y2)/∂x = 2x ∫integral opposite to derivation ∫f(x)dx∫∫double integral integration of function of 2variables∫∫f(x,y)dxdy∫∫∫triple integral integration of function of 3variables∫∫∫f(x,y,z)dxdydz∮closed contour / lineintegral∯closed surfaceintegral∰closed volumeintegral[a,b] closed interval [a,b] = {x | a ≤ x ≤ b}(a,b) open interval (a,b) = {x | a < x < b}i imaginary unit i≡ √-1 z = 3 + 2i z* complex conjugate z = a+bi→z*=a-bi z* = 3 - 2i z complex conjugate z = a+bi→z = a-bi z = 3 - 2i ∇nabla / del gradient / divergence operator ∇f (x,y,z)vectorunit vectorx * y convolution y(t) = x(t) * h(t)Laplace transform F(s) = {f (t)}Fourier transform X(ω) = {f (t)}δdelta function∞lemniscate infinity symbol。

数学符号英语表达

数学符号英语表达
数学符号是用来表示数学概念和运算的特殊符号。

在数学中,不同的符号有不同的含义和用法。

下面是一些常见的数学符号及其英语表达:
+ 加 (plus)
- 减 (minus)
×乘 (times)
÷除 (divided by)
= 等于 (equals)
≠不等于 (not equal to)
< 小于 (less than)
> 大于 (greater than)
≤小于等于 (less than or equal to)
≥大于等于 (greater than or equal to)
√开方 (square root)
^ 幂 (exponent)
% 百分号 (percent)
π圆周率 (pi)
e 自然对数的底数 (Euler's number)
除了这些常见的数学符号外,还有很多其他符号,如集合符号、积分符号、极限符号等等。

掌握这些符号的英语表达,可以帮助我们更好地理解和应用数学知识。

数值分析中常用数学词汇英中文对照翻译.

数值分析中常用数学词汇英中文对照abbreviation 简写符号;简写absolute error 绝对误差absolute value 绝对值accelerate 加速accumulation 累积accuracy 准确度act on 施于action 作用; 作用力add 加addition 加法addition formula 加法公式addition law 加法定律additive property 可加性adjoint matrix 伴随矩阵algebra 代数algebraic 代数的algebraic equation 代数方程algebraic expression 代数式algebraic fraction 代数分式;代数分数式algebraic inequality 代数不等式algebraic number 代数数algebraic operation 代数运算algorithm 算法系统; 规则系统alternating series 交错级数alternative hypothesis 择一假设; 备择假设; 另一假设analysis 分析;解析angle 角anti-clockwise direction 逆时针方向;返时针方向anti-derivative 反导数; 反微商anti-logarithm 逆对数;反对数anti-symmetric 反对称approach 接近;趋近approximate value 近似值approximation 近似;略计;逼近Arabic system 阿刺伯数字系统arbitrary 任意arbitrary constant 任意常数arc 弧arc-cosine function 反余弦函数arc-sin function 反正弦函数arc-tangent function 反正切函数area 面积argument (1论证; (2辐角argument of a function 函数的自变量arithmetic 算术array 数组; 数组ascending order 递升序ascending powers of X X 的升幂assumption 假定;假设asymmetrical 非对称asymptote 渐近augmented matrix 增广矩阵average 平均;平均数;平均值axiom 公理back substitution 回代base (1底;(2基;基数basis 基belong to 属于bias 偏差;偏倚billion 十亿binary number 二进数binary operation 二元运算binary system 二进制binomial 二项式bisection method 分半法;分半方法boundary condition 边界条件boundary line 界(线;边界bounded 有界的bounded above 有上界的;上有界的bounded below 有下界的;下有界的bounded function 有界函数bounded sequence 有界序列brace 大括号bracket 括号breadth 阔度calculation 计算calculator 计算器;计算器calculus (1 微积分学; (2 演算cancel 消法;相消Cartesian coordinates 笛卡儿坐标category 类型;范畴centre 中心;心chain rule 链式法则chance 机会change of base 基的变换change of variable 换元;变量的换characteristic equation 特征(征方程characteristic function 特征(征函数characteristic root 特征(征根chart 图;图表check digit 检验数位checking 验算circle 圆classification 分类clockwise direction 顺时针方向clockwise moment 顺时针力矩closed convex region 闭凸区域closed interval 闭区间coefficient 系数cofactor 余因子; 余因式coincide 迭合;重合collection of terms 并项collinear 共线collinear planes 共线面column (1列;纵行;(2 柱column matrix 列矩阵column vector 列向量combination 组合common denominator 同分母;公分母common difference 公差common divisor 公约数;公约common factor 公因子;公因子common multiple 公位数;公倍comparable 可比较的complement 余;补余completing the square 配方complex number 复数complex number plane 复数平面complex root 复数根component 分量composite function 复合函数; 合成函数computation 计算computer 计算机;电子计算器concept 概念conclusion 结论condition 条件conditional 条件句;条件式conjugate 共轭constant 常数constant of integration 积分常数constraint 约束;约束条件continuity 连续性continuous function 连续函数contradiction 矛盾converge 收敛convergence 收敛性convergent 收敛的convergent iteration 收敛的迭代convergent sequence 收敛序列convergent series 收敛级数convex 凸convexity 凸性coordinate 坐标corollary 系定理; 系; 推论correspondence 对应counter clockwise direction 逆时针方向;返时针方向counter example 反例counting 数数;计数criterion 准则critical point 临界点critical region 临界域cirtical value 临界值cube 正方体;立方;立方体cubic 三次方;立方;三次(的 cubic equation 三次方程cubic roots of unity 单位的立方根cumulative 累积的curve 曲线decimal 小数decimal place 小数位decimal point 小数点decimal system 十进制definite integral 定积分definition 定义degree (1 度; (2 次degree of a polynomial 多项式的次数degree of accuracy 准确度degree of ODE 常微分方程次数delete 删除; 删去denary number 十进数denominator 分母dependence (1相关; (2应变derivable 可导derivative 导数determinant 行列式diagonal 对角线diagonal matrix 对角矩阵difference 差difference equation 差分方程differentiable 可微differential 微分differential coefficient 微商; 微分系数differential equation 微分方程differential mean value theorem 微分中值定理differentiate 求...的导数differentiation 微分法digit 数字dimension 量; 量网; 维(数direction 方向; 方位discontinuity 不连续性discontinuous 间断(的;连续(的; 不连续(的discontinuous point 不连续点discrete 分立; 离散distance 距离diverge 发散divergence 发散(性divergent 发散的divergent iteration 发散性迭代divergent sequence 发散序列divide 除dividend (1被除数;divisible 可整除division 除法division algorithm 除法算式divisor 除数;除式;因子dot 点dot product 点积echelon form 梯阵式echelon matrix 梯矩阵eigenvalue 本征值eigenvector 本征向量element 元素elementary row operation 基本行运算elimination 消法elimination method 消去法;消元法empty set 空集equivalent 等价(的error 误差error estimate 误差估计error term 误差项estimate 估计;估计量evaluate 计值exact 真确exact solution 准确解;精确解;真确解exact value 法确解;精确解;真确解example 例expand 展开experiment 实验;试验experimental 试验的exponent 指数exponential function 指数函数express…in terms of… 以………表达extreme point 极值点extreme value 极值extremum 极值factor 因子;因式;商factor method 因式分解法factorial 阶乘factorization 因子分解;因式分解fallacy 谬误FALSE 假(的falsehood 假值finite 有限finite sequence 有限序列first derivative 一阶导数first order differential equation 一阶微分方程fixed point 不动点fixed point iteration method 不动点迭代法for all X 对所有X for each /every X 对每一Xform 形式;型format 格式;规格formula(formulae 公式fraction 分数;分式function 函数fundamental theorem of calculus 微积分基本定理Gaussian elimination 高斯消去法general form 一般式;通式general solution 通解;一般解general term 通项given 给定;已知global 全局; 整体global maximum 全局极大值; 整体极大值global minimum 全局极小值; 整体极小值gradient (1斜率;倾斜率;(2梯度graph 图像;图形;图表graphical method 图解法graphical representation 图示;以图样表达graphical solution 图解growth 增长higher order derivative 高阶导数horizontal 水平的;水平hypothesis 假设identity 等(式identity matrix 恒等矩阵if and only if/iff 当且仅当;若且仅若if…, then 若….则;如果…..则illustration 例证;说明image 像点;像imaginary number 虚数implicit function 隐函数imply 蕴涵;蕴含improper integral 广义积分; 非正常积分increase 递增;增加indefinite integral 不定积分independence 独立;自变inequality 不等式;不等inequality sign 不等号infinite 无限;无穷infinite sequence 无限序列;无穷序列infinite series 无限级数;无穷级数infinitesimal 无限小;无穷小infinity 无限(大;无穷(大initial approximation 初始近似值initial condition 原始条件;初值条件initial value 初值;始值initial-value problem 初值问题inner product 内积input 输入integer 整数integral 积分integrate 积;积分;......的积分integration 积分法integration by parts 分部积分法integration by substitution 代换积分法;换元积分法interchange 互换intermediate value theorem 介值定理interpolating polynomial 插值多项式interpolation 插值interval 区间intuition 直观invalid 失效;无效invariance 不变性invariant (1不变的;(2不变量;不变式inverse 反的;逆的inverse function 反函数;逆函数inverse matrix 逆矩阵inverse problem 逆算问题invertible 可逆的invertible matrix 可逆矩阵iterate (1迭代值; (2迭代iteration 迭代iterative method 迭代法known 己知Lagrange interpolating polynomial 拉格朗日插值多项代leading coefficient 首项系数leading diagonal 主对角线lemma 引理limit 极限limit of sequence 序列的极限line of best-fit 最佳拟合line segment 线段linear 线性;一次linear convergence 线性收敛性linear differeantial equation 线性微分方程linear equation 线性方程;一次方程linear equation in two unknowns 二元一次方程;二元线性方程linearly dependent 线性相关的linearly independent 线性无关的local maximum 局部极大(值local minimum 局部极小(值logic 逻辑long division method 长除法loop 回路lower bound 下界lower triangular matrix 下三角形矩阵Maclaurin expansion 麦克劳林展开式magnitude 量;数量;长度;大小mantissa 尾数matrix 阵; 矩阵matrix addition 矩阵加法matrix equation 矩阵方程matrix multiplication 矩阵乘法matrix operation 矩阵运算maximize 极大maximum absolute error 最大绝对误差mean value theorem 中值定理method of completing square 配方法method of interpolation 插值法; 内插法method of least squares 最小二乘法; 最小平方法method of substitution 代换法;换元法method of successive substitution 逐次代换法; 逐次调替法minimize 极小minus 减modulus of a complex number 复数的模monomial 单项式multiple 倍数multiple root 多重根multiplication 乘法multiplicity 重数multiplier 乘数;乘式multiply 乘mutually independent 独立; 互相独立mutually perpendicular lines 互相垂直n factorial n阶乘n th derivative n阶导数n th root n次根;n次方根n the root of unity 单位的n次根natural logarithm 自然对数necessary and sufficient condition 充要条件necessary condition 必要条件negative 负neighborhood 邻域Newton-Cote's rule 牛顿- 高斯法则Newton-Raphson's method 牛顿- 纳逊方法Newton's formula 牛顿公式Newton's method 牛顿方法non-linear 非线性non-linear equation 非线性方程non-negative 非负的non-singular (1满秩的; (2非奇异的non-singular matrix 满秩矩阵non-trivial 非平凡的non-zero 非零norm 模方; 范数normal (1垂直的;正交的;法线的(2正态的(3正常的;正规的normalize 正规化normalized form 标准型notation 记法;记号null 零; 空null set 空集null vector 零向量number 数numerator 分子numerical method 计算方法;数值法objective function 目标函数octant 卦限odd function 奇函数one-to-one 一个对一个one-one correspondence 一一对应operation 运算order of a matrix 矩阵的阶ordinary differential equation 常微分方程origin 原点orthogonal 正交orthogonality 正交性 outcome 结果 output 输出 parameter 参数;参变量parametric equation 参数方程 partition 分割; 划分 periodic function 周期函数permutation 排列 perpendicular 垂线;垂直(于 phase 相; 位相 pivot 支点 plot 绘图plus 加 point 点 polynomial 多项式 polynomial equation 多项式方程 positive 正 post-multiply 后乘; 自右乘 premultiply 前乘; 自左乘 prime 素 product 乘积;积 proper integral 正常积分 property 性质 quadratic convergence 二阶收敛性 quadratic formula 二次公式 quadratic function 二次函数 quadratic inequality 二次不等式 quadrature 求积法 quadrilateral 四边形 quotient 商;商式 quotient rule 商法则 R.H.S 右 rank 秩 rate of convergence 收敛率 ratio 比 ; 比率 rational function 有理函数 real number 实数 real part 实部 real root 实根 reciprocal 倒数 rectangle 长方形;矩形 recurrence formula 递推公式 recurrent 循环的 recurring decimal 循环小数 reduce 简化 region 区域 region of convergency 收敛区域 regular 正;规则 relative error 相对误差 remainder term 余项root 根 rotation 旋转 rounded number 舍数 rounding(off 舍入;四舍五入 row 行;棋行 row vector 行向量; 行矢量 rule 规则;法(则 satisfy 满足;适合 scalar 纯量; 无向量, 标量 scalar matrix 纯量矩阵 scale 比例尺;标度;图尺 scientific notation 科学记数法 secant (1正割; (2割线 secant method 正割法 second derivative 二阶导数 second order ordinary differential equation 二阶常微分方程 sentence 句;语句 sequence 序列series 级数 set 集 shaded portion 有阴影部分 shape 形状 shear 位移 side 边;侧 sign 符号;记号 signed number 有符号数 significant figure 有效数字 signum 正负号函数similar 相似 simplify 简化 Simpson's integral 森逊积分 Simpson's rule 森逊法则singular 奇的 singular matrix 奇异矩阵; 不可逆矩阵 span 生成 square (1平方;(2正方形 square bracket 方括号square matrix 方(矩阵 stability 稳度 stationary 平稳 stationary point 平稳点; 逗留点; 驻点 straight line 直线 subset 子集 substitute 代入 substitution 代入; 代入法subtract 减 subtraction 减法 successive approximation 逐次逼近法 successive derivative 逐次导数 successive differentiation 逐次微分法 sufficiency 充份性 sufficient and necessary condition 充要条件 sufficient condition 充份条件 sufficiently close 充份接近suffix 下标 sum 和 summation 求和法; 总和 symbol 符号; 记号 symmetry 对称; 对称性Taylor’s expansion 泰勒展开式 term 项 transpose 移项;转置 transpose of matrix 倒置矩阵;转置矩阵 trapezium 梯形 trapezoidal integral 梯形积分 trapezoidal rule 梯形法则 trial 试;试验 triangle 三角形 triangular matrix 三角矩阵 trigonometric equation 三角方程 trigonometric function 三角函数 triple 三倍 trivial solution 平凡解truncation error 截断误差 undefined 未下定义(的 undetermined coefficient 待定系数unequal 不等 unique solution 唯一解 uniqueness 唯一性 unit 单位 unit area 单位面积unit circle 单位圆 unknown 未知数;未知量 upper bound 上界 upper limit 上限 upper triangular matrix 上三角形矩阵 validity 真确性; 有效性 variable 变项;变量;元;变元;变数 vector 向量; 矢量 vector function 向量函数; 矢量函数 vector product 矢量积; 矢量积 vector space 向量空间 verify 证明;验证 weight (1重量;(2权 weighted average, weighted mean 加权平均数 without loss of generality 不失一般性 x-axis x 轴x-coordinate x 坐标 x-intercept x 轴截距 y-axis y 轴 y-coordinate y 坐标 y-intercept y轴截距 zero 零 zero factor 零因子 zero matrix 零矩阵 zero vector 零向量 zeros of a function 函数零值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

×times sign multiplication 2 × 3 = 6 ·multiplication dot multiplication 2 · 3 = 6÷division sign /division 6 ÷ 2 = 3obelus/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimal2.56 = 2+56/100separatora b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a = a4√16 = ±2n√a n-th root (radical) for n=3, n√8 = 2% percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1%10‰ × 30 = 0.3ppm per-million1ppm = 1/1000000 10ppm × 30 = 0.0003ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7ppt per-trillion 1ppt = 10-1210ppt × 30 = 3×10-10Geometry symbolsSymbol Symbol Name Meaning / definition Example ∠angle formed by two rays ∠ABC = 30°measuredABC = 30°anglespherical angle AOB = 30°∟right angle = 90°α = 90°°degree 1 turn = 360°α = 60°deg degree 1 turn = 360deg α = 60deg′prime arcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″α = 60°59′59″line infinite lineAB line segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅congruent to equivalence of geometric shapes and size ∆ABC≅∆XYZ ~ similarity same shapes, not same size ∆ABC~ ∆XYZ Δtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y | = 5πpi constant π = 3.141592654...is the ratio between the circumference and diameter of acirclec = π·d = 2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians / gons grads angle unit 360° = 400 gradg gradians / gons grads angle unit 360° = 400 g Algebra symbolsSymbol Symbol Name Meaning /definitionExample[a,b] closed interval [a,b] ={x | a≤x≤b}x∈[2,6]∆delta change /difference∆t = t1 - t0∆discriminant Δ =b2 - 4ac∑sigma summation -sum of allvalues in rangeof series∑ x i= x1+x2+...+x n∑∑sigma doublesummation∏capital pi product -product of allvalues in rangeof series∏ x i=x1∙x2∙...∙x ne e constant / Euler's number e =2.718281828...e = lim (1+1/x)x , x→∞γEuler-Mascheroni constantγ =0.527721566...φgolden ratio golden ratioconstantπpi constant π =3.141592654...is the ratiobetween thecircumference anddiameter of acirclec = π·d = 2·π·rLinear Algebra SymbolsSymbol Symbol Name Meaning / definition Example ·dot scalar product a · b×cross vector product a × bA⊗B tensor product tensor product of A and B A⊗B inner product[ ] brackets matrix of numbers( ) parentheses matrix of numbers| A | determinant determinant of matrix Adet(A) determinant determinant of matrix A|| x || double vertical bars normA T transpose matrix transpose (A T)ij = (A)jiA†Hermitian matrix matrix conjugate transpose (A†)ij = (A)ji A*Hermitian matrix matrix conjugate transpose (A*)ij = (A)ji A-1inverse matrix A A-1 = Irank(A) matrix rank rank of matrix A rank(A) = 3 dim(U) dimension dimension of matrix A rank(U) = 3 Probability and statistics symbolsSymbol Symbol Name Meaning / definition ExampleP(A) probabilityfunctionprobability of event A P(A) = 0.5P(A∩B) probability ofeventsintersectionprobability that ofevents A and BP(A∩B) = 0.5P(A∪B) probability ofevents union probability that ofevents A or BP(A∪B) = 0.5P(A | B) conditionalprobabilityfunctionprobability of event Agiven event BoccuredP(A | B) = 0.3f (x) probabilitydensity function(pdf)P(a ≤ x ≤ b) = ∫f (x) dxF(x) cumulative F(x) = P(X≤ x)distribution function (cdf)μpopulationmean mean of populationvaluesμ = 10E(X) expectationvalue expected value ofrandom variable XE(X) = 10E(X | Y) conditionalexpectation expected value ofrandom variable Xgiven YE(X | Y=2) = 5var(X) variance variance of randomvariable Xvar(X) = 4σ2variance variance ofpopulation valuesσ2 = 4std(X) standarddeviation standard deviation ofrandom variable Xstd(X) = 2σX standarddeviation standard deviationvalue of randomvariable XσX=2median middle value of random variable xcov(X,Y) covariance covariance ofrandom variables Xand Ycov(X,Y) = 4corr(X,Y) correlation correlation ofrandom variables Xand Ycorr(X,Y) = 0.6ρX,Y correlation correlation ofrandom variables Xand YρX,Y = 0.6∑summation summation - sum of all values in range of series∑∑doublesummationdouble summationBin(n,p) binomialdistributionf (k) = n C k p k(1-p)n-kPoisson(λ)Poissondistributionf (k)= λk e-λ / k!Geom(p) geometricdistributionf (k) = p(1-p) kHG(N,K,n) hyper-geometric distributionBern(p) Bernoulli distributionCombinatorics SymbolsSymbol Symbol Name Meaning / definition Examplen! factorial n! = 1·2·3·...·n5! = 1·2·3·4·5 = 120 n P k permutation 5P3 = 5! / (5-3)! = 60 n C kcombination 5C3 = 5!/[3!(5-3)!]=10Set theory symbolsSymbol Symbol Name Meaning / definition Example{ } set a collection of elements A = {3,7,9,14},B = {9,14,28}A ∩B intersection objects that belong to set A and setBA ∩B = {9,14}A ∪B union objects that belong to set A or setBA ∪B ={3,7,9,14,28}A ⊆B subset subset has fewer elements orequal to the set{9,14,28} ⊆{9,14,28}A ⊂B proper subset / strict subset has fewer elements than {9,14} ⊂subset the set {9,14,28}A ⊄B not subset left set not a subset of right set {9,66} ⊄{9,14,28}A ⊇B superset set A has more elements or equalto the set B{9,14,28} ⊇{9,14,28}A ⊃B proper superset / strictsupersetset A has more elements than setB{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B {9,14,28} ⊅{9,66}2A power set all subsets of A power set all subsets of AA =B equality both sets have the same members A={3,9,14}, B={3,9,14}, A=BA c complement all the objects that do not belong to set AA \B relative complement objects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14}A -B relative complement objects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14}A ∆B symmetric difference objects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ∆B ={1,2,9,14}A ⊖B symmetric difference objects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ⊖B ={1,2,9,14}a∈A element of set membership A={3,9,14}, 3 ∈Ax∉A not element of no set membership A={3,9,14}, 1 ∉A(a,b) ordered pair collection of 2 elementsA×B cartesian product set of all ordered pairs from A andB|A| cardinality the number of elements of set A A={3,9,14},|A|=3#A cardinality the number of elements of set A A={3,9,14},#A=3aleph-null infinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØ empty set Ø = { } C = {Ø} universal set set of all possible values0natural numbers / wholenumbers set (with zero) 0= {0,1,2,3,4,...} 0 ∈01natural numbers / wholenumbers set (withoutzero)1= {1,2,3,4,5,...} 6 ∈1 integer numbers set = {...-3,-2,-1,0,1,2,3,...} -6 ∈rational numbers set = {x | x=a/b, a,b∈} 2/6 ∈real numbers set = {x | -∞ < x <∞} 6.343434∈complex numbers set= {z | z=a+bi,-∞<a<∞,-∞<b<∞}6+2i∈Logic symbolsSymbol Symbol Name Meaning / definition Example ·and and x·y^ caret / circumflex and x ^ y& ampersand and x & y+ plus or x + y∨reversed caret or x∨y | vertical line or x | yx' single quote not - negation x'x bar not - negation x¬not not - negation ¬x! exclamation mark not - negation ! x⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sinceCalculus & analysis symbolsSymbol Symbol Name Meaning / definition Example limit limit value of a functionεepsilon represents a very small number,ε→0near zeroe e constant / Euler'snumber e = 2.718281828...e = lim(1+1/x)x ,x→∞y ' derivative derivative - Lagrange's notation (3x3)' = 9x2y '' second derivative derivative of derivative (3x3)'' = 18xy(n)nth derivative n times derivation (3x3)(3) = 18 derivative derivative - Leibniz's notation d(3x3)/dx = 9x2second derivative derivative of derivative d2(3x3)/dx2 = 18xnth derivative n times derivationtime derivative derivative by time - Newton's notationtime secondderivativederivative of derivativeD x y derivative derivative - Euler's notationD x2y second derivative derivative of derivativepartial derivative ∂(x2+y2)/∂x = 2x ∫integral opposite to derivation ∫f(x)dx∫∫double integral integration of function of 2variables∫∫f(x,y)dxdy∫∫∫triple integral integration of function of 3variables∫∫∫f(x,y,z)dxdydz∮closed contour / lineintegral∯closed surfaceintegral∰closed volumeintegral[a,b] closed interval [a,b] = {x | a ≤ x ≤ b}(a,b) open interval (a,b) = {x | a < x < b}i imaginary unit i≡ √-1 z = 3 + 2i z* complex conjugate z = a+bi→z*=a-bi z* = 3 - 2i z complex conjugate z = a+bi→z = a-bi z = 3 - 2i ∇nabla / del gradient / divergence operator ∇f (x,y,z) vectorunit vectorx * y convolution y(t) = x(t) * h(t)Laplace transform F(s) = {f (t)}Fourier transform X(ω) = {f (t)}δdelta function∞lemniscate infinity symbol。

相关文档
最新文档