北师大版八年级数学下册第五章分式与分式方程分式方程与分式方程的解法专题(有答案)

合集下载

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。

教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。

2.引入分式的概念,让学生举例说明分式的实际应用。

提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。

2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。

理论课(30分钟)1.分式的定义和性质。

2.分式的约分、通分和加减法。

3.分式与整式的加减法。

实践课(50分钟)1.分式的变形:分解、合并及简化。

2.分式方程的概念及解法。

3.通过实例让学生掌握分式方程的解法。

课堂总结(10分钟)1.小结本节课的重点内容。

2.引导学生对本节课的学习成果进行分享。

作业布置1.抄写本节课的重点内容以及实例。

2.完成课后练习。

教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。

在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。

北师大版八年级数学下册第五章分式与分式方程

北师大版八年级数学下册第五章分式与分式方程

八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。

例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。

(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。

检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)

一、选择题1.下列运算中,正确的是( )A .211a a a +=+B .21111a a a -⋅=-+C .1b a a b b a +=--D .0.22100.7710++=--a b a b a b a b2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 3.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn m n -元/升C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 7.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 9.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .411.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若关于x 的分式方程3122++=--x m x x有增根,则m 的值是______. 14.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 15.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 16.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 17.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 18.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.19.计算:262393x x x x -÷=+--______. 20.若()()023248x x ----有意义,则x 的取值范围是______.三、解答题21.(1)分解因式3228x xy -(2)解分式方程:23193x x x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?24.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b+=-=-----,故不符合题意;D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】 本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误; ④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a ≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确;方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.1【分析】分式方程去分母转化为整式方程由分式方程有增根确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2由分式方程有增根得到x ﹣2=0即x =2把x =2代入整式方程得:3﹣2﹣m =0解得:m =1解析:1【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:3﹣2﹣m =0,解得:m =1,故答案:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 17.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 18.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy -=()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++ =()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】 (1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可;(2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;24.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键. 25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。

北师版八年级下册数学第5章 分式与分式方程 解分式方程

北师版八年级下册数学第5章 分式与分式方程 解分式方程

感悟新知
1.
解方程:(1)
3= x-1
4 x

(2)
2
x x-3

5 3-2
x
=4.
知1-练
解:(1)
3= x-1
4 x
.
方程两边都乘x(x-1),得3x=4(x-1).
解这个方程,得x=4.
检验:将x=4代入原方程,得左边=1=右边.
所以,x=4是原方程的根.
感悟新知
(2)
x 2x-3

3-52 x =4.
感悟新知
知识点 3 分式方程的增根
议一议
在解方程时1,x小亮的1 解法2 如下: x2 2x
方程两边都乘x-2,得 1-x=-1-2(x-2). 解这个方程,得x=2.
你认为x=2是原方程的根吗?与同伴交流.
知2-讲
感悟新知
归纳
知3-讲
在这里,x=2不是原方程的根,因为它使得原 分式方程的分母为零,我们称它为原方程的增根.
知1-练
感悟新知
例2 解分式方程:
(1) x (2) x2 4
2 x2
1; x2
x1 x1
3 x2 x
. 2
导引:解分式方程的步骤: ①去分母,化分式方程为整式方程; ②解整式方程; ③检验,并写出原分式方程的根.
知1-练
感悟新知
(1) x
2
1;
x2 4 x 2 x 2
解:
x
2 1,
x 2x 2 x 2 x 2
第5章分式与分式方程
5.4分式方程
第2课时解分式方程
学习目标
1 课时讲解
解分式方程 分式方程的根(解) 分式方程的增根

新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

(共25题)一、选择题(共10题)1.若分式x2−4x+2的值为0,则x的值为( )A.±2B.2C.−2D.02.在方程:x+32−5=0,4x=6,x2+x−3=0,x3−4x=1中,是分式方程的有( )A.2个B.3个C.4个D.0个3.使分式3xx+2有意义的x的取值范围为( )A.x≠−2B.x≠2C.x≠0D.x≠±24.若代数式1x−9有意义,则实数x的取值范围是( )A.x≠0B.x≥0C.x≠9D.x≥95.使分式13−x有意义的x的取值范围是( )A.x≠3B.x=3C.x≠0D.x=06.计算2x+3x+1−2xx+1的结果为( )A.1B.3x+1C.3D.x+3x+17.下列方程是分式方程的是( )A.x−32+x+13=4B.xπ+1−x+1π−1=2C.√x−1x−12=1D.2xx+x−22=48.计算(1+1x )÷x2+2x+1x的结果是( )A.x+1B.1x+1C.xx+1D.x+1x9.若分式xx−3有意义,则x的取值范围是( )A . x >3B . x <3C . x ≠3D . x =310. 要使分式 3x−1有意义,则 x 的取值范围是 ( )A . x ≠1B . x >1C . x <1D . x ≠−1二、填空题(共7题) 11. 化简:4xy 220x 2y = . 12. 若 a b=23,则a−b b= .13. 要使分式 x−1x+1 有意义,x 的取值应满足 .14. 要使分式 x 2−1(x+1)(x−2) 有意义,则 x 应满足的条件是 .15. 当 x 时,分式 1x+3 有意义.16. 当 x 时,分式 1x 的值为正数.17. 用换元法解方程1x 2−2x+2x 2−4x =3 时,如果设 x 2−2x =y ,那么原方程可以化为关于 y 的整式方程是 .三、解答题(共8题) 18. 按要求计算:(1) 计算:√12−∣2√3−1∣+(π−2√3)0÷(12)−2.(2) 因式分解:① 4a 2−25b 2;② −3x 3y 2+6x 2y 3−3xy 4. (3) 解方程:x−1x−2+2=32−x .19. 已知 1x −1y =2,求 3x+4xy−3y2x−5xy−2y 的值.20.解下列方程:2x−2−1x=0.21.计算:11+x +x1−x.22.化简:x4−16x3+2x2+4x+8.23.从不同角度谈谈你对等式x(x+4)=5的理解.24.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?25.解方程:5x−4=14−x+2.答案一、选择题(共10题)1. 【答案】B【解析】根据题意得x2−4=0且x+2≠0,解得x=2.【知识点】分式值为正,为负,为零的条件2. 【答案】B【解析】由分式方程的定义,知4x =6,x2+x−3=0,x3−4x=1是分式方程.【知识点】分式方程的概念3. 【答案】A【解析】x+2≠0,∴x≠−2.【知识点】分式有无意义的条件4. 【答案】C【知识点】分式有无意义的条件5. 【答案】A【解析】分式13−x有意义,则3−x≠0,解得:x≠3.【知识点】分式有无意义的条件6. 【答案】B【解析】2x+3x+1−2xx+1=2x+3−2xx+1=3x+1.【知识点】分式的加减7. 【答案】D【知识点】分式方程的概念8. 【答案】B【解析】原式=(xx+1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1.【知识点】分式的混合运算9. 【答案】C【解析】∵分式xx−3有意义,∴x−3≠0,∴x的取值范围是x≠3.【知识点】分式有无意义的条件10. 【答案】A【解析】由题意得,x−1≠0,解得x≠1.【知识点】分式有无意义的条件二、填空题(共7题)11. 【答案】y5x【解析】原式=4xy⋅y4xy⋅5x =y5x.故答案为:y5x.【知识点】约分12. 【答案】−13【知识点】分式的基本性质13. 【答案】x≠−1【解析】∵分式x−1x+1有意义,∴x+1≠0,解得x≠−1.【知识点】分式有无意义的条件14. 【答案】x≠−1且x≠2【知识点】分式有无意义的条件15. 【答案】≠−3【解析】由题意得:x+3≠0,解得x≠−3.【知识点】分式有无意义的条件16. 【答案】 >0【解析】由题意得:1x >0,即 x >0.【知识点】分式值为正,为负,为零的条件17. 【答案】 2y 2−3y +1=0【知识点】分式方程的解法三、解答题(共8题) 18. 【答案】(1)√12−∣2√3−1∣+(π−2√3)0÷(12)−2=2√3−2√3+1+1+4= 6.(2) ① 原式=(2a +5b )(2a −5b );② 原式=−3xy 2(x 2−2xy +y 2)=−3xy 2(x −y )2.(3) 去分母得,x −1+2(x −2)=−3.3x −5=−3.解得x =23.检验:把 x =23 代入 x −2≠0,所以 x =23 是原方程的解.【知识点】提公因式法、算术平方根的运算、平方差、负指数幂运算、完全平方式、零指数幂运算、绝对值、分式方程的解法19. 【答案】 29.【知识点】约分、简单的代数式求值20. 【答案】去分母得:2x −x +2=0.解得:x =−2.经检验,x =−2 是原方程的解.【知识点】分式方程的解法21. 【答案】 1+x 21−x 2.【知识点】分式的加减22. 【答案】 x −2.【知识点】约分23. 【答案】①方程:一元二次方程 x 2+4x −5=0,两根分别为 x 1=1,x 2=−5;或分式方程 x +4−5x =0,两根分别为 x 1=1,x 2=−5; ②函数:二次函数 y =x 2+4x 与直线 y =5 的交点,或一次函数y=x+4与反比例函数y=5x的交点;③图形:边长为x和x+4,面积为5的矩形.【知识点】一元二次方程的解法、矩形的面积、分式方程的解法24. 【答案】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,根据题意,得15001.2x −1200x=10,变形为:1500−1440=12x,解得:x=5.经检验,x=5是原方程的解.则该老板这两次购买玩具一共盈利为:15001.2×5×(8−1.2×5)+12005×(7−5)=980(元).答:该老板两次一共赚了980元.【知识点】分式方程的应用25. 【答案】去分母得:5=−1+2(x−4).整理得:2x=14.解得:x=7.经检验x=7是分式方程的解.【知识点】分式方程的解法。

难点详解北师大版八年级数学下册第五章分式与分式方程专项测评试题(含详细解析)

难点详解北师大版八年级数学下册第五章分式与分式方程专项测评试题(含详细解析)

北师大版八年级数学下册第五章分式与分式方程专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形正确的是( )A .33y y x x +=+B .y y x x -=-C .22y y x x =D .y x x y= 2、关于x 的分式方程231x m x -=+的解是正数,则字母m 的取值范围是( ) A .3m <-B .3m <C .3m >且2m ≠D .3m >-且2m ≠ 3、分式12x x --有意义,则x 满足的条件是( ) A .1x ≠ B .2x ≠ C .2x = D .2x >4、x 满足什么条件时分式211x x --有意义( ). A .1x ≠ B .1x ≠- C .0x ≠ D .1x ≠±5、下列各式从左到右变形正确的是( )A .2362x x x =B .11n n m mC .n m n m m n mn --=D .22n n m m= 6、把0.0813写成科学记数法的形式,正确的是( )A .28.1310-⨯B .38.1310-⨯C .28.1310⨯D .381.310-⨯7、如果把223xy x y-中的x 和y 都扩大到原来的5倍,那么分式的值( ) A .扩大到原来的5倍 B .不变 C .缩小为原来的15 D .无法确定8、若把x 、y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .11x y ++B .2x y x y -+C .2x yD .xy x y+ 9、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯ 10、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .0.20.2a a b b =D .22a a b b= 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若2x =5y ,则x y x+=_____. 2、开学在即,由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.5倍,则第二次购买口罩的单价是 __元.3、分式方程1213x x=+的解是______. 4、当x =______ 时,分式21(3)(1)x x x ---的值为零 5、若0ab ≠,且5a b ab +=,则11a b+的值为________. 三、解答题(5小题,每小题10分,共计50分)1、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.2、在《开学第一课》中,东京奥运会的奥运健儿们向新开学的同学们送上了“希望你们能像运动员一样,努力奔跑,刻苦学习,实现你们的梦想”的祝福.为了提高学生的体育锻炼的意识和能力,丰富学生的体育锻炼的内容,学校准备购买一批体育用品. 在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲乙两种跳绳的单价各是多少元?3、解方程:(1)32133x x x +-=-+ (2)()()31112x x x x -=--+ 4、(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x ; (2)计算:211a a a ---; (3)先化简,再请你用喜爱的数代入求值2232122444x x x x x x x x x+-+⎛⎫-÷⎪--+-⎝⎭. 5、计算:2243342x x x x x x +---÷--.-参考答案-一、单选题1、B【分析】分式的基本性质:分式的分子与分母都乘以或除以同一个不为0的数(或整式),分式的值不变,利用分式的基本性质逐一分析判断即可.【详解】 解:3,3y y x x ++不一定相等,变形不符合分式的基本性质,变形错误,故A 不符合题意; y y x x-=-,变形符合分式的基本性质,故B 符合题意; 22,y y x x 不一定相等,变形不符合分式的基本性质,变形错误,故C 不符合题意; ,y x x y不一定相等,变形不符合分式的基本性质,变形错误,故D 不符合题意; 故选B【点睛】本题考查的是分式的基本性质,掌握“利用分式的基本性质判断分式变形是否正确”是解本题的关键.2、A【分析】解分式方程,得到含字母m 的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m 的不等式,解之即可.【详解】 解:231x m x -=+ 方程两边同时乘以(x +1),得到233x m x -=+3x m ∴=--+10x ≠1x ∴≠-31m ∴--≠-2m ∴≠-因为分式方程的解是正数,x∴>30m∴-->3m∴<-故选:A.【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键.3、B【分析】根据分式有意义的条件,分母不为0,即可求解.【详解】解:∵分式12xx--有意义,∴20x-≠2x∴≠故选B【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件即分母不为0是解题的关键.4、D【分析】直接利用分式有意义的条件解答即可.【详解】解:要使分式21 1x x --有意义,∴210x-≠,解得:1x≠±,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件—分母不等于零,是解题的关键.5、A【分析】根据分式的基本性质逐个判断即可.【详解】解:A.2362x xx=,故本选项正确,符合题意;B.11nm mn++≠,故本选项错误,不符合题意;C.22n m n mm n mn--=,故本选项错误,不符合题意;D.22n nm m≠,例如1,2n m==,1124≠,故本选项错误,不符合题意;故选:A.【点睛】本题考查了分式的基本性质,解题的关键是能熟记分式的基本性质,注意:分式的基本型性质是:分式的分子和分母都乘或除以同一个不等于0的整式,分式的值不变.6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0813=28.1310-⨯.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断.【详解】分式223xyx y-中的x与y分别用5x与5y代替后,得2(5)(5)50252(5)3(5)5(23)23x y xy xyx y x y x y⨯⨯==⨯⨯-⨯--,由此知,此时分式的值扩大到原来的5倍.故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍.8、B【分析】根据分式的基本性质逐项判断即可得.【详解】解:A、211211x xy y++≠++,此项不符题意;B、222222x y x yx y x y⨯--=++,此项符合题意;C 、222(2)4222x x x y y y==,此项不符题意; D 、22222x y xy x y x y ⋅=++,此项不符题意; 故选:B .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键.9、C【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.10、C【分析】找出分子分母的公因式进行约分,化为最简形式.【详解】解:a bA选项中,22ab++已是最简分式且不等于ab,所以错误,故不符合题意;B选项中,22ab--已是最简分式且不等于ab,所以错误,故不符合题意;C选项中,0.20.20.20.2a a ab b b=⨯=,所以正确,故符合题意;D选项中,22a a a ab b b b⨯=≠⨯,所以错误,故不符合题意;故选C.【点睛】本题考查了分式的化简.解题的关键是找出分式中分子、分母的公因式进行约分.二、填空题1、7 5【分析】先用含y的代数式表示出x,然后代入x yx+计算.【详解】解:∵2x=5y,∴52x y =,∴x yx+=572552y y yyy+==75.故答案为:75.【点睛】本题考查了分式的化简求值,用含y的代数式表示出x是解答本题的关键.2、109【分析】设第二次购买口罩的单价是x 元,则第一次购买口罩的单价是1.5x 元,根据两次购买口罩的费用相同,两次购进口罩6000个,列出方程求解即可.【详解】解:8000÷2=4000(元).设第二次购买口罩的单价是x 元,则第一次购买口罩的单价是1.5x 元, 依题意得:40001.5x +4000x=6000, 解得:x =109, 经检验,x =109是原方程的解,且符合题意. 故答案为:109. 【点睛】 本题考查了分式方程的应用,解题关键是准确把握题目中的数量关系,找出等量关系列方程. 3、2x =【分析】按照解分式方程的方法解方程即可.【详解】 解:1213x x=+, 方程两边同乘3(1)x x +得,32(1)=+x x ,解整式方程得,2x =,当2x =时,3(1)0x x +≠,2x =是原方程的解,故答案为:2x =.【点睛】本题考查了解分式方程,解题关键是熟练运用解分式方程的方法解方程,注意:分式方程要检验. 4、1-【分析】由分式的值为0的条件可得:()()210310x x x ⎧-=⎪⎨--≠⎪⎩,再解方程与不等式即可得到答案. 【详解】解: 分式21(3)(1)x x x ---的值为零, ()()210310x x x ⎧-=⎪∴⎨--≠⎪⎩①② 由①得:1,x =±由②得:3x ≠且1,x ≠综上: 1.x =-故答案为: 1.-【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.5、5【分析】先通分,再整体代入求值即可得到结果.【详解】解:∵0ab ≠,且5a b ab +=, ∴1155a b ab a b ab ab++===. 故答案为:5.【点睛】解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.三、解答题1、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、乙种跳绳的单价为42元,甲种跳绳的单价为32元【分析】设乙种跳绳的单价为x 元,则甲种跳绳的单价为(10)x -元,根据题意列出方程求解即可【详解】设乙种跳绳的单价为x 元,则甲种跳绳的单价为(10)x -元, 依据题意列出方程为:1600210010x x =-, 解得:42x =,经检验:42x =是所列方程的解,并且符合实际意义,∴1032x -=,答:乙种跳绳的单价为42元,则甲种跳绳的单价为32元.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,分式方程注意检验.3、(1)6x =-;(2)无解【分析】(1)分式方程两边乘以()()33x x +-,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边乘以()()21x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)32133x x x +-=-+, 解:()()()()232333x x x x +--=+-,2269269x x x x ++-+=-,424x =-,6x =-,检验:当6x =-时,()()330x x +-≠,所以,原方程的解是6x =-,(2)()()31112x x x x -=--+,解:()()()2213+-+-=x x x x ,22223x x x x +--+=,1x =,检验:当1x =时,()()210x x +-=,所以,1x =不是原方程的解.【点睛】本题考查了解分式方程,解题的关键是利用“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.4、(1)94;(2)11a -;(3)42x x --,当x =1时,原式=3. 【分析】(1)分别运用完全平方公式和多项式乘多项式法则展开后,合并即可;(2)先通分,再计算加减即可;(3)先计算括号内的减法(通分后按同分母的分式相加减法则计算)同时把除法变成乘法,再根据分式的乘法法则约分,最后代入求出即可.【详解】解:(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x=221(22)4x x x x x -+--+- =221224x x x x x -+-+-+ =94;(2)211a a a --- =2(1)(1)11a a a a a -+--- =22111a a a a ---- =11a -; (3)2232122444x x x x x x x x x +-+⎛⎫-÷⎪--+-⎝⎭ =2212(2)(2)(2)(2)x x x x x x x x x ⎡⎤+-+-÷⎢⎥--+-⎣⎦=22(2)(2)(1)1(2)(2)(2)x x x x x x x x x x ⎡⎤+---÷⎢⎥---⎣⎦=24(2)(2)x x x x x -⋅-- =42x x --, ∵要使式子有意义,∴x 2−2x ≠0,x 2−4x +4≠0,x 3−4x ≠0,x +2≠0,∴x 不能是0、2、−2,当x =1时,原式=1412--=3.【点睛】本题考查了整式的乘法、分式的混合运算及化简求值等知识点,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.5、22x -+. 【分析】先把除化乘,再因式分解同时约分,通分合并化简为最简分式即可.【详解】 解:2243342x x x x x x+---÷--, =2243423x x x x x x +--⋅---, =()()()()()2242222x x x x x x x ++-+--+, =()()224222x x x x x +--+-, =()()()2222x x x --+-, =22x -+. 【点睛】本题考查分数加减乘除混合运算,掌握分式混合运算法则是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
分式方程的概念与列分式方程
分式方程的概念
1.下列关于x 的方程中,是分式方程的是( ) A .3x =
B .=2
C .

D .3x ﹣2y =1
2、下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中分式共有( )个.
A 、2
B 、3
C 、4
D 、5
列分式方程
3.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .

=45 B .

=45 C .

=45 D .

=45
4.某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x 元,根据题意可列方程为 .
5.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A ﹣B ﹣C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得: .
练习:
6.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( ) A .﹣
=60
B .﹣=60
C .

=60
D .

=60
7.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A ,B ,C 三地在一条直线上,若A 、C 两地距离为2千米,则A 、B 两地之间的距离是 千米.
8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:
Ⅰ、甲队单独完成这项工程刚好如期完成;
Ⅱ、乙队单独完成这项工程要比规定日期多6天;
Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
(1)设甲队单独完成这项工程需要x天.
工程总量所用时间(天)工程效率
甲队
乙队
(2)根据题意及表中所得到的信息列出方程.
答案:
1.B.2.A 3.A.4.=﹣3.5.,6.D.7.12.5或10千米.8.解:(1)由题意可得,
把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,
故答案为:1,x,;1,x+6,;
(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,
故答案为:()×3+(x﹣3)×=1.
分式方程的解法
分式方程的解法
1.解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3
C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)
2.方程=的解为()
A.x=B.x=C.x=D.x=3.若关于x的分式方程=1的解为x=2,则m的值为()A.5B.4C.3D.2
4.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)
B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
5.分式方程=的解为y=.
6.解下列分式方程
(1)
31
3
221
x x
+=
--
(2)
11
2
22
x
x x
-
=-
--
(3)
27
1
326
x
x x
+=
++
;(4)
x
x
x-
-
=
+
-3
4
2
3
1
.
7.如图,点A、B在数轴上,它们对应的数分别为﹣2,,且点A、B到原点的距离相等.求x的值.
分式方程的增根
8.若分式方程有增根,则增根可能是()
A.1B.﹣1C.1或﹣1D.0
9.若关于x的分式方程﹣1=有增根,则m的值为.
10.已知关于x的分式方程+=.
(1)若方程的增根为x=2,求m的值;
(2)若方程有增根,求m的值;
(3)若方程无解,求m的值.
练习:
11.已知关于x的分式方程=1的解是非正数,则m的取值范围是()
A.m≤3B.m<3C.m>﹣3D.m≥﹣3
12.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()
A.3B.1C.5D.不能确定
13.若关于x的方程=﹣有增根,则m的值为.
14.若关于x的方程+=无解,则m的值为.
15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;
(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
16.阅读材料:小华像这样解分式方程=
解:移项,得:﹣=0
通分,得:=0
整理,得:=0
分子值取0,得:x+5=0
即:x=﹣5
经检验:x=﹣5是原分式方程的解.
(1)小华这种解分式方程的新方法,主要依据是;
(2)试用小华的方法解分式方程﹣=1
17.阅读理解,并解决问题.
分式方程的增根
解分式方程时可能会产生增根,原因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现0=0的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程时产生了增根,这个增根是;
(2)小明认为解分式方程时,不会产生增根,请你直接写出原因;
(3)解方程.。

相关文档
最新文档