北师大版数学八年级下册5.4 第1课时 分式方程的概念及解法
六合区八中八年级数学下册 第五章 分式与分式方程 1认识分式第1课时 分式的概念课件新版北师大版

练习
1.画出一次函数 y=-2x-6 的图象 , 结合图象求 :
y=-2x-6 y
〔1〕x__=_-3___时 , y=0 ; 〔2〕x_<__-3___时 , y>0 ;
C〔-6 ,•6〕
〔3〕x_>__-3___时 , y<0 ; 〔4〕x_<__-6___时 , y>6 ;
B〔-3 , 0•〕O
第五章 分式与分式方程 1 认识分式
第1课时 分式的概念
新课导入
面対日益严重的土地沙漠化问题 , 某县决定在 一定期限内固沙造林2400hm2 , 实际每月固沙造林 的面积比原计划多30hm2 , 结果提前完成原计划的 任务.如果设原计划每月固沙造林xhm2 , 那么 〔1〕原计划完成造林任务需要多少月 ?2 4 0 0 〔2〕实际完成造林任务用了多少个月 ? x 2 4 0 0
x + 30
做一做
新课探索
〔1〕2010 年上海世博会吸引了成千上万的参观 者 , 某一时段内的统计结果显示 , 前 a 天日均参观人 数 35 万 , 后 b 天日均参观人数 45 万 , 这〔a+b〕天 日均参观人数为多少万 ?
35a 45b ab
〔2〕文林书店库存一批图书 , 其中一种图书的 原价是每册 a 元 , 现每册降价 x 元销售 , 当这种图 书的库存全部售出时 , 其销售额为 b 元.降价销售开 始时 , 文林书店这种图书的库存量是多少?
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油!奥利给~
北师大版八年级数学下册:分式方程课件

所以,该市今年居民用水的价格为2元/m3.
四、随堂练习
1.勤洗手,戴口罩.小明第一次用120元买了若干包口罩,第二次用240元 在同一商家买同样的口罩,这次商家每包优惠4元,结果比上次多买了20包, 求第一次买了多少包口罩?若设第一次买了x包口罩,列方程正确的是( D.).
A. 240 120 4 x 20 x
3
x
11x 3
15
30 15 5. 11x x
3
30
三、典例分析
解:设该市去年居民用水的价格为x元/m3, 则今年居民
用水的价格为
1
1 3
x 元/m3.
30
根据题意,得:
1
1
x
15 x
5.
3
解得:
x3 2
经检验, x 3 是原方程的根.
2
整理
45 15 5.
2x x
3 1 1 2 元 / m3 23
所有房屋出租的租金第一年为9.6万元, 第二年为10.2万元.
第一年所有房屋出租的租金=9.6万元 第二年所有房屋出租的租金=10.2万元
1.你能找出这一情境中的等量关系吗?
找等量 关系
第二年每间房屋的租金 = 第一年每间房屋的租金+ 500.
第一年出租的房屋间数 = 第二年出租的房屋间数.
发掘隐含条件!
在“火神山”医院的建造过程中,有两个工程队共同参其中一项搬运工程,
甲队单独施工1天完成总工程的三分之一,这时增加了乙队,两队又共同工 作了半天天,总工程全部完成. 乙单独干这项工程需要多长时间?
解:设小亮每小时各加工x个,则小明每小时各加工(x+10)个.
根据题意,得:
150 120 . x 10 x
北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件

第1课时 分式的概念
北师版 八年级下册
新课导入
面对日益严重的土地沙漠化问题,某县决定在
一定期限内固沙造林2400hm2,实际每月固沙造林
的面积比原计划多30hm2 ,结果提前完成原计划的
任务.如果设原计划每月固沙造林xhm2,那么
(1)原计划完成造林任务需要多少月? 2 4 0 0
b a x
上面问题中出现了代数式 2 4 0 0 , 2 4 0 0 ,
35a 45b , b
x
x + 30
,它们有什么共同特征?
ab a x
观察下列两组式子,它们都是整式吗? 它们有什么特点? (1)a,-3x2y3,5x-1,x2+xy+y2 (2) 2 ,y,a ,c
m-n x 9a-1 ab
x2
A. ±2
B.2 C. -2
D.4
分析 分式的值为零,即分子为零且分母不为零. 根据题意,得x2-4=0且x-2≠0, 解得x=-2.
3.有下列式子:①x; ②y2; ③5; ④x2 .
3 y x2
其中是分式的有( B )
A. 1个
B.2个 C. 3个
D.4个
课后小结
一般地,.只要分母不 等于零,分式就有意义;
(2)有关求分式有意义、无意义的条件的问题, 常转化为不等式的问题.
分式的值为零的条件
分式的值为零的条件:分子为零,分母不为零. 用式子表示:B A=0A=0且B0 例 当x为何值时,分式 x 2 9 的值为零.
x3
[分析] 分式的值为零 分 分子 母= 00xx239 解出x的值.
解 依题意,得
x 2 9 = 0 ①
北师大版八年级数学初二下册第5章《分式与分式方程》5.1认识分式5.2分式的乘除法优秀PPT课件

a 1 11 解:(1)当a=1时, 2. 2a 1 2 1 a 1 2 1 1. 当a=2时, 2a 1 4 1 a 1 1 1 0. 当a=-1时, 2a 1 2 1
(2)当分母的值为零时,分式没有 意义,除此以外,分式都有意义.
b by (1) (y≠0); 2 x 2 xy
〔解析〕
(2)
ax a . bx b
据分式的基本性质,分子b 也要乘y,才能得到 2 xy .(2)
b (1) 的分母2x乘y才能化为2xy,为保证分式的值不变,根 2x by
得到a,所以分母bx也需要除以x得到b.在这里,由于已知 解:(1)因为y≠0,所以
ax 的分子ax除以x bx ax
的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.
无意义.试求m,n的值.
x m n1 4.对于分式 ,已知当x=-3时,分式的值为0;当x=2时,分式 m 2n 3m
解:∵当x=-3时,分式的值为0,
3 m n 0, m+n -3, 即 m 2n 9 0, m 2n 9.
问题2
如图(2)所示,面积为1的长方形平均分成了2份,则阴影
部分的面积是多少?
问题3 这两块阴影部分的面积相等吗?
请看下面的问题:
问题1
如图(1)所示,面积为1的长方形,长为a,那么长方形
的宽怎么表示呢? 问题2 如图(2)所示,两个图(1)中的长方形拼接在一起, 它的宽怎么表示呢? 问题3 两图中长方形的宽相等吗?
2.若分式
2x 1 有意义,则x的取值范围是 3x 5
5 3
.
5 解析:依题意得3x+5≠0,解得x≠- 5 ,因此x的取值范围是x≠5 填x≠- . 3 3
北师大版数学八年级下册5.4.2《分式方程的解法》 教案

4分式方程第2课时分式方程的解法教学目标【知识与技能】1.知道解分式方程的步骤;2.明确分式方程产生增根的原因及分式方程检验的方法;【过程与方法】经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】掌握分式方程的解法【教学难点】掌握分式方程的解法、解分式方程要验根.教学过程一.问题导引,初步认知我们已经学过一元一次方程,你还记得一元一次方程的解法吗?你能想象一下,如何得到分式方程的解吗?二.思考探究,获取新知探究:分式方程的解法1.解下列分式方程:【教学说明】通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师对例题讲解,让学生明确解分式方程的一般步骤.【归纳结论】1.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验2.下列哪种解法准确?解分式方程解法一:将原方程变形为方程两边都乘以x-2,得:1-x=-1-2解这个方程,得:x=4.解法二:将原方程变形为方程两边都乘以x-2 ,得:1-x=-1-2(x-2)解这个方程,得:x=2你认为x=2是原方程的根?与同伴交流.【归纳结论】增根概念:将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根;认识增根:①增根是去分母后所得的根;②增根使最简公分母的值为0;③增根不是原方程的根.三.运用新知,深化理解A.2个 B.3个 C.4个 D.5个答案:B.()是分式方程,()是整式方程.答案:B;A、C3.王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?解:方程两边都乘以y(y-1),得2y2+y(y-1)=(y-1)(3y-1),2y2+y2-y=3y2-4y+1,3y=1,解得y=1/3.检验:当y=1/3时,y(y-1)=1/3×1/3-1=-2/9≠0,∴y=1/3是原方程的解,∴原方程的解为y=1/3.解:两边同时乘以(x+1)(x-2),得x(x-2)-(x+1)(x-2)=3.解这个方程,得x=-1.检验:x=-1时(x+1)(x-2)=0,x=-1不是原分式方程的解,∴原分式方程无解.(3)解:方程的两边同乘(x-1)(x+1),得3x+3-x-3=0,解得x=0.检验:把x=0代入(x-1)(x+1)=-1≠0.∴原方程的解为:x=0.(4)解:方程的两边同乘(x+2)(x-2),得2-(x-2)=0,解得x=4.检验:把x=4代入(x+2)(x-2)=12≠0.∴原方程的解为:x=4.再两边同乘以3x-1,得3(3x-1)-1=2,3x-1=1,x=2/3.检验:把x=2/3代入(3x-1):(3x-1)≠0,∴x=2/3是原方程的根.∴原方程的解为x=2/3.(6)解:方程两边同乘以2(3x-1),得:-2+3x-1=3,解得:x=2,检验:x=2时,2(3x-1)≠0.所以x=2是原方程的解.【教学说明】通过学生的反馈练习,考察学生对分式方程概念的理解;以及解分式方程.使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验:把整式方程的根代入最简公分母,使最简公分母的值不等于零的根是原分式方程的_____,使最简公分母的值等于零的根是原方程的_____.五.作业布置作业:教材“习题5.8”中第1、2、3、4题;作业本本节习题。
北师大版八年级数学下册 5.4分式方程 第1课时 分式方程的概念及解法 教案设计

5.4 分式方程第1课时分式方程的概念及解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1.理解分式方程的意义.2.理解解分式方程的基本思路和方法.3.了解分式方程可能无解的原因,并掌握解分式方程中验根的方法.【教学难点】掌握分式方程的解法、解,分式方程要验根.【教学过程】一、情境导入问题1:甲、乙两名同学同时从学校出发,去15千米外的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?设甲同学每小时行x千米,你能列出相应的方程吗?这个方程是我们以前学过的方程吗?如果不是,你能给它取个名字吗?问题2:在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成计划任务.原计划每月固沙造林多少公顷?分析:这一问题中有哪些已知量和未知量?已知量:造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务未知量:原计划每月固沙造林多少公顷这一问题中有哪些等量关系?实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷原计划完成的时间-完成实际的时间=4个月我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要_____个月,实际完成一期工程用了______个月,根据题意,可得方程____________.【教学说明】为了让学生经历从实际问题抽象.概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,利用第一节《分式》中一个熟悉的问题,引导学生努力寻找问题中的所有等量关系,发展学生分析问题.解决问题的能力.二、合作探究探究点一:分式方程的概念下列关于x的方程中,是分式方程的是( )A.4+x5=2+3x6B.2x-17=x2+3C.xπ+1=7x-12D.12+x=1-2x解析:A中方程分母不含未知数,故不是分式方程;B中方程分母不含未知数,故不是分式方程;C中方程分母不含表示未知数的字母,π是常数;D中方程分母含未知数x,故是分式方程.故选D.方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为( )A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程四、教学反思虽然在课堂上做了很多,但也存在许多不足的地方,以下是教师在教学中应该注意的地方:第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步;第二,给学生的鼓励不是很多.鼓励可以让学生有充分的自信心.“信心是成功的一半”,在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化,多鼓励,少批评;多肯定,少指责.用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心.赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生.一句肯定的话、一个赞许的点头、一张表示优秀的卡片,都是很好的鼓励,会起到意想不到的良好结果.本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.。
北师大版八年级下册数学5.4.1分式方程(教案)

四、教学流程
(一)导入新课(用时5分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分母的方程,它的特点是分母不为零。分式方程在解决实际问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算甲、乙两人合作完成工作的效率问题,将这个问题转化为分式方程,并求解。
3.重点难点解析:在讲授过程中,我会特别强调分式方程的求解步骤和去分母的方法这两个重点。对于难点部分,如处理最小公倍数和.培养学生掌握分式方程的求解方法,增强逻辑思维和运算能力;
3.培养学生将数学知识应用于实际生活中的意识,提高数学在实际问题中的应用能力;
4.培养学生在解决分式方程问题时,形成合作、探究的学习习惯,增强团队协作能力;
5.培养学生具备严谨的数学态度和良好的数学审美观念,提高数学素养。
三、教学难点与重点
此外,我也意识到,在讲解分式方程的求解步骤时,我可能过于注重解题技巧,而忽略了让学生去探索解题背后的数学原理。在未来的教学中,我应该更多地引导学生去理解数学知识背后的逻辑和原理,这样他们才能在遇到新问题时,运用已学的知识去解决。
2.教学难点
-理解分式方程中分母不为零的条件,避免在解题过程中出现错误;
-在去分母的过程中,正确处理不同分母的最小公倍数,避免在运算过程中出现错误;
-移项时符号的变化,尤其是在处理负数和分数时的符号变化;
-对于复杂的分式方程,如何进行有效分解和简化,以便于求解;
北师大版八年级数学下册教案 5-4 第1课时 分式方程及其解法

5.4分式方程第1课时分式方程及其解法教学目标【知识与技能】1.理解并能够说出分式方程的意义;2.理解并掌握分式方程的解法步骤,掌握验根的方法.【过程与方法】经历探索分式方程的解法的过程,经历解分式方程产生增根和将分式方程转化为整式方程的过程,体会数学中的化归思想.【情感、态度与价值观】在建立分式方程的数学模型的过程中培养克服困难的勇气,并从中获得成就感,提高解决问题的能力.教学重难点【教学重点】理解并掌握分式方程的解法.【教学难点】解分式方程产生增根的原因.教学过程一、情境导入在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要2400x 个月,实际完成一期工程用了2400x+30个月.根据题意,可得方程2400 x −2400x+30=4.像2400x,2400x+30这种分母中含有字母的代数式是分式.而像2400x−2400x+30=4这样的方程我们是第一次遇到,它和我们学过的一元一次方程一样能刻画现实世界中的数量关系,是一种反映现实世界的数学模型.二、合作探究探究点1分式方程的意义典例1下列方程是分式方程的是()A.12−x3=0 B.4x=-2C.x2-1=3D.2x+1=3x[解析]观察知B项符合题意.[答案]B【技巧点拨】分母中含有未知数的方程叫做分式方程,可见,判断一个方程是否为分式方程,关键看分母里是否有未知数.下列方程:①x−35=1;②3x+1=2;③1+x5+x =12;④x 2+2x 2+1=5;⑤x π+x 2π=4.其中是分式方程的有 ( )A.①②B.②③C.③④D.②③④[答案] D探究点2 分式方程的解法典例2 解下列分式方程:(1)xx−1−2x−1x 2−1=1; (2)2+x 2−x +16x 2−4=-1.[解析] (1)去分母,得x (x +1)-(2x -1)=x 2-1,解得x =2.检验:当x =2时,x 2-1≠0,故分式方程的解为x =2.(2)去分母,得-(x +2)2+16=4-x 2,解得x =2.检验:当x =2时,2-x =0,故分式方程无解.探究点3 分式方程的增根典例3若分式方程3x−a x 2−2x +1x−2=2x 有增根,则实数a 的取值是 ( )A.0或2B.4C.8D.4或8[解析] 去分母,得3x -a +x =2(x -2),由题意得,分式方程的增根为0或2.当x =0时,-a =-4,解得a =4;当x =2时,8-a =0,解得a =8,故a 的值为4或8.[答案] D在将分式方程化为整式方程的过程中,若整式方程的根使分式方程的分母为零,那么这个根叫做分式方程的增根.产生增根的原因是在方程两边同乘了一个使分母为0的整式,因为解分式方程可能产生增根,所以解分式方程必须检验.检验的方法是检验所得的根是否使分式方程中分母的值等于0.若关于x 的分式方程m x 2−4−1x+2=0无解,则m = .[答案] 0或-4三、板书设计分式方程及其解法分式方程及其解法{ 分式方程的意义分式方程的解法步骤{ 转化解整检验结论增根及其产生的原因教学反思本节课中,让学生自己通过观察、类比的方法找到分式方程的解法,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4 分式方程
第1课时 分式方程的概念及解法
01 基础题
知识点1 分式方程的概念
1.下列方程是分式方程的是(A)
A.2x +1=5x -3
B.3y -12=y +56
-2 C .2x 2
+12x -3=0 D .2x -5=8x +17 2.在关于x 的方程:①1x =13+11x ;②x 22-x 5=0;③mx =n m x +1(m ,n 均为常数);④x +12=1-x 3;⑤9 000x =x +315 000
;⑥12+x 5=a 3
(a 为常数)中,整式方程是②③④⑥,分式方程是①⑤. 知识点2 分式方程的解法
3.(来宾中考)将分式方程1x =2x -2
去分母后得到整式方程,正确的是(A) A .x -2=2x B .x 2-2x =2x
C .x -2=x
D .x =2x -4
4.(宜昌中考)分式方程2x -1x -2
=1的解为 (A) A .x =-1 B .x =12
C .x =1
D .x =2
5.(遵义中考)若x =3是分式方程a -2x -1x -2
=0的根,则a 的值是(A) A .5 B .-5
C .3
D .-3
6.(营口中考)若关于x 的分式方程2x -3+x +m 3-x
=2有增根,则m 的值是(A) A .m =-1 B .m =0
C .m =3
D .m =0或m =3
7.请你给x 选择一个合适的值,使方程2x -1=1x -2
成立,你选择的x =3. 8.解方程:
(1)5m -3
=-1;
解:去分母,得-m +3=5.
解得m =-2.
经检验,m =-2是原方程的解.
(2)(连云港中考)2x -11+x
=0; 解:移项,得2x =11+x
. 去分母,得2x +2=x.
解得x =-2.
经检验,原方程的解为x =-2.
(3)(贵港中考)x -3x -2+1=-3x -2
; 解:方程的两边同乘(x -2),得
x -3+x -2=-3.解得x =1.
检验:当x =1时,x -2≠0,
∴原方程的解为x =1.
(4)(深圳中考)x 2x -3+53-2x
=4. 解:去分母,得x -5=4(2x -3).
解得x =1.
经检验,原分式方程的解为x =1.
02 中档题
9.(潍坊中考)若关于x 的方程x +m x -3+3m 3-x
=3的解为正数,则m 的取值范围是(B) A .m <92 B .m <92且m≠32
C .m >-94
D .m >-94且m≠-34
10.(梅州中考)对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32
=-18.则方程x ⊗(-2)=2x -4
-1的解是(B) A .x =4 B .x =5 C .x =6 D .x =7
11.当x =4时,1x -5与2x -2
互为相反数.
12.解分式方程:
(1)23x -1-1=36x -2
; 解:方程两边同乘2(3x -1),得4-2(3x -1)=3.
解得x =12
. 检验:当x =12
时,2(3x -1)≠0, ∴x =12
是原分式方程的解.
(2)12x -1=12-34x -2
; 解:方程两边同乘2(2x -1),得2=2x -1-3.
解得x =3.
检验:当x =3时,2(2x -1)≠0,
∴x =3是原分式方程的解.
(3)x -2x +3-3x -3
=1. 解:去分母,得x 2-5x +6-3x -9=x 2-9.
解得x =34
. 检验:当x =34
时,(x +3)(x -3)≠0, ∴原方程的解为x =34
.
13.(泰州中考)当x 为何值时,分式3-x 2-x 的值比分式1x -2
的值大3? 解:列方程得3-x 2-x -1x -2
=3.解得x =1. 经检验,x =1是原方程的根.
所以x 的值为1.
14.分式方程x x -1-1=m (x -1)(x +2)
有增根,求m 的值. 解:将分式方程去分母,求出x =m -2.
因为分式方程有增根,
所以增根可能是x =1或x =-2.
所以对应的m =3或m =0.
当m =0时,分式方程变为x x -1
-1=0,此时,x =-2不成立,前后矛盾. 所以m =3.
03 综合题
15.若方程3-2x x -3+2+mx 3-x
=-1无解,求m 的值. 解:方程无解,即解方程所得的根可能为增根,根据增根的意义,方程若有增根,增根为x =3. 原方程去分母,得(3-2x)-(2+mx)=3-x.
整理,得(m +1)x =-2.
若m +1=0,即m =-1时,方程(m +1)x =-2无解;
若m +1≠0,则x =-2m +1
是增根. 此时-2m +1=3.解得m =-53
. 所以m 的值为-1或-53
.。