用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题
用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题

与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。

解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。

一、 以定点为中点的弦所在直线的方程

例1、过椭圆14

162

2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B

Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y

Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642

222=+y x

两式相减得0)(4)(22212221=-+-y y x x

于是0))((4))((21212121=-++-+y y y y x x x x ∴

2

1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2

11--=-x y ,即042=-+y x 。 例2、已知双曲线12

2

2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B

则221=+x x ,221=+y y

122121=-y x ,122

222=-y x 两式相减,得

0))((2

1))((21212121=-+--+y y y y x x x x ∴22121

=--=x x y y k AB 故直线)1(21:-=-x y AB 由??

???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=?

这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

二、 过定点的弦和平行弦的中点坐标和中点轨迹

例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2

1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2

10=x 12021==+x x x , 0212y y y =+

又 125752121=+x y ,125

752

222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y

即0)(3)(221210=-+-x x y y y ∴0212123y x x y y -=-- Θ 32121=--=

x x y y k ∴ 3230=-y ,即2

10-=y ∴点M 的坐标为)2

1,21(-。 例4、已知椭圆125

752

2=+x y ,求它的斜率为3的弦中点的轨迹方程。 解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则

x x x 221=+, y y y 221=+ 又 125752121=+x y ,125

752222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y

即0)(3)(2121=-+-x x x y y y ,即y

x x x y y 32121

-=-- Θ 32121=--=x x y y k ∴33=-y

x ,即0=+y x 由?????=+=+125

7502

2x y y x ,得)235,235(-P )235,235(-Q Θ点M 在椭圆内

∴它的斜率为3的弦中点的轨迹方程为)2

35235(0<<-=+x y x 三、 求与中点弦有关的圆锥曲线的方程

例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为

2

1,求椭圆的方程。 解:设椭圆的方程为122

22=+b

x a y ,则5022=-b a ┅┅① 设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则

210=x ,2

12300-=-=x y ∴12021==+x x x ,12021-==+y y y 又1221221=+b x a y ,1222222=+b

x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b

即0)()(212

212=-+--x x a y y b

∴ 2

2

2121b a x x y y =-- ∴ 322=b a ┅┅② 联立①②解得752=a ,252

=b ∴所求椭圆的方程是125

752

2=+x y 四、圆锥曲线上两点关于某直线对称问题

例6、已知椭圆13

42

2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦21P P 的中点,

则12432121=+y x ,12432

222=+y x

两式相减得,0)(4)(322212221=-+-y y x x

即0))((4))((321212121=-++-+y y y y x x x x Θx x x 221=+,y y y 221=+,4

12121-=--x x y y ∴x y 3= 这就是弦21P P 中点P 轨迹方程。

它与直线m x y +=4的交点必须在椭圆内

联立???+==m x y x y 43,得???-=-=m

y m x 3 则必须满足22433x y -<, 即224

33)3(m m -<,解得1313213132<<-m 五、注意的问题

(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。

利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例 湖北省宜昌市夷陵中学 曹文红 [问题背景] 圆锥曲线的中点弦问题是解析几何中的一类常见问题。对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。 [案例实录] 1、 创设情景,提出问题 师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆19 362 2=+y x 所截得的线段的中点,求直线l 的方程。 问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。 2、 自主探索,暴露思维 学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书: 生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642 121=+y x ,3642222=+y x ,

圆锥曲线经典中点弦问题

.. . … 中点弦问题专题练习 一.选择题(共8小题) 1.已知椭圆,以及椭圆一点P(4,2),则以P为中点的弦所在直线的斜率为()A.B.C.2D.﹣2 2.已知A(1,2)为椭圆一点,则以A为中点的椭圆的弦所在的直线方程为() A.x+2y+4=0 B.x+2y﹣4=0 C.2x+y+4=0 D.2x+y﹣4=0 3.AB是椭圆(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K AB?K OM的值为() A.e﹣1 B.1﹣e C. e2﹣1 D. 1﹣e2 4.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为() A.3x+2y﹣12=0 B.2x+3y﹣12=0 C.4x+9y﹣144=0 D.9x+4y﹣144=0 5.若椭圆的弦中点(4,2),则此弦所在直线的斜率是() A.2B.﹣2 C.D. 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率是()A.B.C.D. 7.直线y=x+1被椭圆x2+2y2=4所截得的弦的中点坐标是() A.()B.(﹣,)C.(,﹣)D.(﹣,) 8.以椭圆一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 B.x﹣4y+3=0 C.4x+y﹣5=0 D.x+4y﹣5=0 二.填空题(共9小题) 9.过椭圆一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是_________ .

10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为:_________ . 11.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的斜率为_________ ,直线方程为_________ . 12.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为_________ . 13.过椭圆=1一定点(1,0)作弦,则弦中点的轨迹方程为_________ . 14.设AB是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则k AB?k OM= _________ . 15.以椭圆的点M(1,1)为中点的弦所在直线方程为_________ . 16.在椭圆+=1以点P(﹣2,1)为中点的弦所在的直线方程为_________ . 17.直线y=x+2被椭圆x2+2y2=4截得的线段的中点坐标是_________ . 三.解答题(共13小题) 18.求以坐标轴为对称轴,一焦点为且截直线y=3x﹣2所得弦的中点的横坐标为的椭圆方程.19.已知M(4,2)是直线l被椭圆x2+4y2=36所截的弦AB的中点,其直线l的方程. 20.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.21.已知椭圆,求以点P(2,﹣1)为中点的弦AB所在的直线方程. 22.已知椭圆与双曲线2x2﹣2y2=1共焦点,且过() (1)求椭圆的标准方程. (2)求斜率为2的一组平行弦的中点轨迹方程. 23.直线l:x﹣2y﹣4=0与椭圆x2+my2=16相交于A、B两点,弦AB的中点为P(2,﹣1).(1)求m的值;(2)设椭圆的中心为O,求△AOB的面积.

1. 中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题;④圆锥曲线的相关最值(范围)问题;⑤求曲线的方程问题;⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题------点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策略:具有斜率的弦中点问题,常用设而不求法(点差法):若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 02020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 一、求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4) 2(82 221+-=+k k k x x , 又M 为AB 的中点,所以21 4) 2(422 221=+-=+k k k x x , 解得2 1 -=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x , 两式相减得0)(4)(2 22 12 22 1=-+-y y x x , 所以 21)(421212121-=++-=--y y x x x x y y ,即21 -=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642 222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆 136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。 解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

高考数学专题复习之圆锥曲线的中点弦问题

高考数学专题复习之圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4)2(82221+-=+k k k x x , 又M 为AB 的中点,所以21 4)2(422221=+-=+k k k x x , 解得2 1-=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x , 两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即2 1-=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。

秒杀题型09 圆锥曲线中的中点弦(解析版)

秒杀题型:玩转压轴题之中点弦问题: 秒杀题型一:圆、椭圆、双曲线的中点弦问题: 注:方程:2 2 1mx ny +=,①当0,>n m 且n m ≠时,表示椭圆; ②当0,>n m 且n m =时,表示圆; ③当n m ,异号时,表示双曲线。 秒杀策略:点差法:简答题模板:step1:设直线与曲线 :设直线:l y kx t =+与曲线:2 2 1mx ny +=交于 两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B , Step2:代入点坐标:即1122y kx t y kx t =+??=+?;22 1122 22 1 (1) 1 (2) mx ny mx ny ?+=??+=??, Step3:作差得出结论:(1)-(2)得:..AB AB OP y m k k k x n =-=中中。(作为公式记住,在小题中直接用。) 题型一:求值 : 〖母题1〗已知椭圆 22 1164 x y +=,求以点P(2,-1)为中点的弦所在的直线方程. 【解析】:由结论可得: 16421-=?-k ,得2 1 -=k ,直线方程为:240x y --=。 1.(2013年新课标全国卷I10)已知椭圆22 22:1(0)x y G a b a b +=>>的右焦点为()0,3F ,过点F 的直线交椭圆 于B A ,两点.若AB 的中点坐标为()11-, ,则E 的方程为 ( ) A. 1364522=+y x B.1273622=+y x C.1182722=+y x D.19182 2=+y x 【解析】:由结论可得: 22 2111a b -=?-,得222b a =,3= c ,选D 。 2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于 ,A B 两点,且AB 的中点为()12,15N --,则E 的方程为 ( )

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--= .22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+ ,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

圆锥曲线经典中点弦问题

中点弦问题专题练习 一.选择题(共8小题) .已知椭圆,以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为(1) 2 C.D.B.A.﹣2 2.已知A(1,2)为椭圆内一点,则以A为中点的椭圆的弦所在的直线方程为() 2x+y+4=0 x+2y+4=0 C.D.2x+y﹣4=0 B.x+2yA.﹣4=0 (a>b>0)的任意一条与x轴不垂直的弦,O3.AB是椭圆是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K?K的值为()OMAB22D.﹣1e C.A.e﹣1 B.﹣ee﹣1 122)P的弦恰好以P为中点,那么这弦所在直线的方程为(+9y=144内有一点P(3,2)过点4.椭圆4x 144=0 ﹣.9x+4yD12=0 C.4x+9y﹣144=0 12=0 A.3x+2y ﹣B.2x+3y﹣)),则此弦所在直线的斜率是(5.若椭圆的弦中点(4,2 2..A.D.B ﹣2 C 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率 是() B.CA..D.

227.直线y=x+1被椭圆x+2y=4所截得的弦的中点坐标是() A.B.C.D.(﹣,))()(﹣,)(,﹣8.以椭圆内一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 x C.4x+y﹣5=0 D.+4y﹣5=0 4y+3=0 B.x﹣ 二.填空题(共9小题) 9.过椭圆内一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是 _________. 10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为: _________. 22,_________那么这弦所在直线的斜率为PP),(内有一点+9y椭圆11.4x=144P32过点的弦恰好以为中点,._________直线方程为 22 _________.的弦恰好以P为中点,那么这弦所在直线的方程为(4x+9y=144内有一点P3,2)过点P12.椭圆________.1,0)作弦,则弦中点的轨迹方程为 1.过椭圆=1内一定点(是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则ABk?k=_________.14.设OMAB .以椭圆内的点M(1,1)为中点的弦所在直线方程为 15_________. +=1内以点P(﹣2,161.在椭圆)为中点的弦所在的直线方程为_________. 2217.直线y=x+2被椭圆x+2y=4截得的线段的中点坐标是_________. 三.解答题(共13小题) 所得弦的中点的横坐标为的椭圆方程.2 且截直线y=3x18﹣.求以坐标轴为对称轴,一焦点为22的方程.的中点,其直线ll19.已知M(4,2)是直线被椭圆x+4y=36所截的弦AB

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 本文用这种方法作一些解题的探索。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)

点差法求解中点弦问题

点差法求解中点弦问题 【定理1】 在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N 两点的坐标分别为、,则有,得又 【定理2】 在双曲线(>0,>0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又 【定理3】 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN 的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又、、注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在、 一、椭圆 1、过椭圆+=1内一点P(2,1)作一条直线交椭圆于 A、B两点,使线段AB被P点平分,求此直线的方程. 【解】 法一:如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,(*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x

1、x2是(*)方程的两个根,∴x1+x2=、∵P为弦AB的中点,∴2==、解得k=-,∴所求直线的方程为x+2y-4=0、 法二:设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB 的中点,∴x1+x2=4,y1+y2=2、又∵ A、B在椭圆上,∴x+4y=16,x+4y= 16、两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0、∴==-,即kAB=-、∴所求直线方程为y-1=-(x-2),即x+2y-4=0、 2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程. 【解答】 解:设P(x,y),A(x1,y1),B(x2,y2).∵P为弦AB 的中点,∴x1+x2=2x,y1+y2=2y.则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为: x+y=0.(﹣<x<)∴点P的轨迹方程为:x+y=0(﹣<x<); 3、(xx秋?启东市校级月考)中心在原点,焦点坐标为(0,5)的椭圆被直线3x﹣y﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 . 【解答】 解:设椭圆=1(a>b>0),则a2﹣b2=50①又设直线3x﹣y ﹣2=0与椭圆交点为A(x1,y1),B(x2,y2),弦AB中点 (x0,y0)∵x0=,∴代入直线方程得y0=﹣2=﹣,由,得,∴AB

点差法求解中点弦问题

点差法求解中点弦问题 点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。求出直线的斜率,然后利用中点求出直线方程。用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。 【定理1】在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦 MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-, 得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴又.22,21211212x y x y x x y y x x y y k MN ==++--= .22a b x y k MN -=?∴ 【定理2】在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是 弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 222222 1221 b y a x b y a x )2()1(-,得.02 2 2 2 122 22 1=---b y y a x x .2212121212a b x x y y x x y y =++?--∴ 又.22,000021211212x y x y x x y y x x y y k MN ==++--= .2 2 00a b x y k MN =?∴ 【定理3】 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k M N =?0.

高中数学解题方法系列:解析几何中的点差法解中点弦问题

高中数学解题方法系列:点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为),(11y x A 、) ,(22y x B )1,2(M 为AB 的中点∴4 21=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,16 42222=+y x 两式相减得0 )(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、) ,(22y x B 则221=+x x ,221=+y y

解-点差法公式在抛物线中点弦问题中的妙用教案资料

“点差法”公式在抛物线中点弦问题中的妙用 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==)2(.2)1(,2222121ΛΛΛΛmx y mx y )2()1(-,得).(2212 221x x m y y -=- .2)(121 212m y y x x y y =+?--∴ 又01212122,y y y x x y y k MN =+--= Θ. m y k MN =?∴0. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =?01 . 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零. 例1.抛物线x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 2 12-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得: 21=?-y x y , 整理得:)1(22-=x y .

圆锥曲线中点弦公式

圆锥曲线中点弦公式 中点弦抛物线中点弦公式 抛物线C:x^2(这里x^2表示x的平方,下同)=2py上,过给定点P=(α,β)的中点弦所在直线方程为:py-αx=pβ-α^2。 中点弦存在的条件:2pβ>α^2(点P在抛物线开口内)。 中点弦椭圆中点弦公式 椭圆C:x^2/a^2+y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为: αx/a^2+βy/b^2=α^2/a^2+β^2/b^2。 中点弦存在的条件:α^2/a^2+β^2/b^2<1(点P在椭圆内)。 中点弦双曲线中点弦公式 双曲线C:x^2/a^2-y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为: αx/a^2-βy/b^2=α^2/a^2-β^2/b^2。 中点弦存在的条件:(α^2/a^2-β^2/b^2)(α^2/a^2-β^2/b^2-1)>0(点P不在双曲线、渐近线上以及它们所围成的区域内)。 中点弦二次曲线中点弦性质与蝴蝶定理 蝴蝶定理是二次曲线一个著名定理,它充分体现了蝴蝶生态美与“数学美”的一致性.不少中数专著或杂志至今还频繁讨论.本文揭示了它与中点弦性质的紧密联系,并给出统一而简明的证明,指出了一种有用的特殊情形和一种推广形式. 引理:设两条不同的二次曲线 S:F(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0 有A、B、C、D四个公共点,其中无三点共线,则过A、B、C、D四点的任意一条二次曲线S2必可唯一地表示成: (证明略)

定理1 设三条不同的二次曲线(S、S1、S2)有A、B、C、D四个公共点,其中无三点共线;又直线L0被S、S1、S2各截得一弦.若其中两弦中点重合,则第三弦中点亦重合.证设S、S1的方程为(1)、(2),则S2方程可表为(3).因直线L0(设斜率为k)关于二次曲线S、S1、S2的共轭直径分别为: L:(a11x+a12y+a13)+k(a12x+a22y+a23)=f(x,y)=0 因L、L1都通过L0被S与S1所截得的弦PQ与EF的共同中点O,显然L2也必通过点O,故O也是L0被S2所截得的弦GH的中点. 注两直线AB和CD或AD和CB或AC和BD都可看做二次曲线S1的特殊情形,甚至E和F重合于O.故本定理包括了蝴蝶定理众多情形. 定理2 设AB∥CD,S和S1是过A、B、C、D四点的任意两条二次曲线.若平行于AB的任意直线与S、S1各有两个交点,则夹在两曲线之间的两线段相等.证设AB、CD的中点分别为M、N,又AB∥CD,故直线MN就是AB关于S和S1的共轭直径,故若平行于AB的任意直线被S、S1所截的弦PQ、EF有共同中点O,故有PE=QF,命题得证. 注由于PQ可为AB与CD之间任意平行弦,皆有PE=QF,故夹在S和S1之间的两曲边区域△1和△2面积相等.[1]它酷似蝴蝶两翼,不过并非轴对称,而是沿AB方向共轭.如果世上真有这样的蝴蝶,飞行亦能平衡自如. 定理1还可推广得到更一般的结论. 定理3 若三条不同的二次曲线S、S1、S2有无三点共线的四个公共点,沿某一确定方向的任意直线L0被S、S1、S2各截得一弦PQ、EF、GH,则三弦中点O、O1、O2之间有向线段之比为常数. 证不妨取坐标系使确定方向为x轴.于是该方向(k=0)关于S、S1、S2的共轭直径分别为(参见定理1): L:a11x+a12y+a13=0 L1:b11x+b12y+b13=0 L2:(a11x+a12y+a13)+λ(b11x+b12y+b13)=0 设直线L0方程为y=y0,PQ、EF、GH的中点为O(x0,y0),O1(x1,y0),O2(x2,y0),于是由直径方程知: a11x0+a12y0+a13=0,b11x1+b12y0+b13=0 (a11x2+a12y0+a13)+λ(b11x2+b12y0+b13)=0 故a11(x2-x0)=λb11(x2-x1) (4) 即OO2/O2O1=α (a11≠0时) (5) 其中α=-λb11/a11是与y0无关的常数(由S、S1、S2三曲线确定.当a11=0时,L ∥L0可知L0与S无两个交点,故不在本命题讨论之列). (5)式意即:在指定顺序O、O2、O1之下,两有向线段之比不因L0平行移动而变化. 推论在定理3条件下,对任意直线L0所截的三弦中点中,任意两点总在第三点同侧或异侧.当O、O1、O2中有两点重合时,第三点也重合.“蝴蝶定理”虽然如自然界的蝴蝶种类一样千变万化,然而万变不离其宗,核心在于中点弦性质。

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 一、求以定点为中点的弦所在直线的方程例 1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为、为的中点 又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。例 2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。若存在这样的直线,求出它的方程,若不存在,说明理由。解:设存在被点平分的弦,且、则,,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。 二、求弦的中点坐标和中点轨迹方程例 3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。例

4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为 三、求与中点弦有关的圆锥曲线的方程例 5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立 ①②解得,所求椭圆的方程是 四、求圆锥曲线上两点关于某直线对称的问题例 6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,, 这就是弦中点轨迹方程。它与直线的交点必须在椭圆内联立,得则必须满足,即,解得例 7、已知抛物线C: 和直线为使抛物线上存在关于对称的两点,求的取值范围。解:设抛物线C上存在不同的两点关于直线对称,线段的中点为,则,①,②① -②可得:=,即由于,所以,故,即,即。又因为在直线上,所以,因为在抛物线开口内,所以,故,所以。即的取值范围是。策略:本题需要根据弦中点位置求的取值范围,如果不考虑位置,可能得出错误的结果。请务必小心。

相关文档
最新文档