用点差法解圆锥曲线的中点弦问题
点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。
解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
本文用这种方法作一些解题的探索。
一、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为),(11y x A 、),(22y x B)1,2(M 为AB 的中点 ∴421=+x x 221=+y y又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得0)(4)(22212221=-+-y y x x于是0))((4))((21212121=-++-+y y y y x x x x ∴21244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。
例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。
本题属于中点弦问题,应考虑点差法或韦达定理。
解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B则221=+x x ,221=+y y122121=-y x ,122222=-y x 两式相减,得0))((21))((21212121=-+--+y y y y x x x x ∴22121=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。
“点差法”在圆锥曲线中的应用与推广

a2 b2
.接下来
我们看看高考真题中的“点差法”及其应用. 例 1 . ( 2015 全 国 卷 II , 理 科 20 ) 已 知 椭 圆
C : 9x2 y2 m2 (m 0) ,直线 l 不过原点 O 且不平行于坐 标轴, l 与 C 有两个交点 A , B ,线段 AB 的中点为 M .
证明:根据椭圆的对称性可知A、B关于原点对称,设
A(x1, y1), B(x2 , y2 ), P(x, y)
x12 a2
y12 b2
x2 1① a2
y2 b2
1②,
①-②可得如下表达式
( x1
x)( x1 a2
x)
( y1
y)( y1 b2
y)
0
,
两
边
同
除
(x1 x)(x1 x)
,
则
k
y2 x2
y1 x1
,
x2
x1
2x0
,
y2
y1
2 y0 .
将点A、B的坐标带入椭圆方程可得,
x12 a2
y12 b2
1
①,
x22 a2
y22 b2
1②
将
②
-
①
可
得: (x2 x1)(x2 x1) ( y2 y1)( y2 y1) 0
a2
b2
2x0 (x2 a2
1 k( )
1
b2
a2
,由点F及A、B中点可求出 k
1 2
浅谈“点差法”在求圆锥曲线范围问题中的应用

浅谈“点差法”在求圆锥曲线范围问题中的应用作者:张伟建来源:《中学教学参考·理科版》2012年第11期圆锥曲线问题是高中数学的难点之一,圆锥曲线的弦的中点有关问题是常考查的内容.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解,过程繁琐,计算量大.“点差法”是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式相减,可得一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率,或借助曲线方程中变量的取值范围求其他变量的范围时,一般都可以用“点差法”来求解.这种方法对有关点的坐标设而不求,充分发挥整体思想在解题中的应用,起到简化和优化解题过程的作用.【例1】已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点A的坐标为(0,-1),且右焦点到直线x-y+22=0的距离为3.(1)求a、b的值;(2)若存在斜率为k的直线l,使l与已知椭圆交于不同两点M、N,且满足|AM|=|AN|,求k的取值范围.解析:由于篇幅有限,常规解法不再赘述.下面使用点差法求解.设M(,),N(,),P(,).当k≠0时,由|AM|=|AN|知:;①;②;③;④---;⑤由①-②得()(-)+3()(-)=0.⑦将③④代入⑦,得-k;⑧将⑧和⑤联立得,-32k,将它们代入⑥得94k2+34解得k∈(-1,1)且k≠0.当k=0时显然成立.故k∈(-1,1).【例2】如图2所示,某椭圆的焦点是(-4,0)、(4,0),过点并垂直于x轴的直线与椭圆的一个交点为B,且,椭圆上不同的两点A(,)、C(,)满足条件:、、成等差数列.(1)求该椭圆方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.解析:(1)由椭圆定义及条件得,∴a=5.又c=4,∴b2=a2-c2=9.故椭圆方程为x25+y29=1.(2)由a=5,c=4知离心率e=ca=45,-,-依焦半径公式:由、、成等差数列,得5--,解得,∴故弦AC中点的横坐标为4.(3)由第(2)问可知弦AC中点的横坐标,再由弦AC的垂直平分线方程,可表示出AC的方程,然后与椭圆方程联立可将k用AC中点坐标表示,再由中点在y=kx+m上,可将m用弦AC中点的纵坐标表示,然后结合弦AC中点在线段BB′上这一条件,求出m的取值范围.故设弦AC中点为P(4,),所以直线AC的方程为:y--1k(x-4)(x≠0).将上式代入椭圆方程得(9k2+25)x2-50()x+25()2-25×9k2=0,∴()9k2+25=8,解得(当k=0时也成立),∵点P(4,)在弦AC的垂直平分线上,∴,∴---∵点P(4,)在线段BB′的内部,于是有-95这道题表面上看与“点差法”没多大联系,第(2)问中既然出现了线段的垂直平分线,当然也就有了弦的中点,“点差法”也就有了用武之地.下面使用点差法求解.设弦AC中点为P(4,),由A(,)、C(,)知;①;②;③;④--;⑤;⑥-95由①-②得()(-)25-()(-)9=0,将③④代入上式得:---2=-1k,解得().又由-95且得-165(注:当k=0时,AC中点为(4,0),此时)综上,m∈(-165,165).圆锥曲线求参数取值范围问题,常有两种解题思路:1.先求出直线的斜率的变化范围,进而求参数的取值范围.2.借助曲线中变量的取值范围求参数的取值范围在椭圆中,直线与椭圆如果有两个交点,则等价于弦的中点在椭圆内部,换句话说,某点在圆锥曲线的内部,则被该点平分的弦一般存在.本题即根据AC的中点P在椭圆内部,求出的取值范围,进一步求出m的范围.由此可见,中点弦问题中判断“中点”的位置非常重要,而“点差法”是解决此类问题当之无愧的“利剑”.参考文献邵丽云.高中数学疑难全解放入书架[M].南京:南京师范大学出版社,2006.[2]曹兵.高中数学难题新题精讲精练300例[M].上海:上海交通大学出版社,2008.。
点差法求解中点弦问题

点差法求解中点弦问题点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。
求出直线的斜率,然后利用中点求出直线方程。
用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。
【定理1】在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-byy a x x.2212121212ab x x y y x x y y -=++⋅--∴又.22,21211212x y x y x x y y x x y y k MN ==++--=.22a b x y k MN -=⋅∴ 【定理2】在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---b y y a x x .2212121212ab x x y y x x y y =++⋅--∴ 又.22,000021211212x y x y x x y y x x y y k MN==++--= .2200a b x y k MN =⋅∴ 【定理3】 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN=⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 mx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在.一、椭圆1、过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A 、B 两点,使线段AB 被P 点平分,求此直线的方程.【解】 法一:如图,设所求直线的方程为y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0, (*)又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1、x 2是(*)方程的两个根,∴x 1+x 2=8(2k 2-k )4k 2+1.∵P 为弦AB 的中点,∴2=x 1+x 22=4(2k 2-k )4k 2+1.解得k =-12,∴所求直线的方程为x +2y -4=0.法二:设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2), ∵P 为弦AB 的中点,∴x 1+x 2=4,y 1+y 2=2.又∵A 、B 在椭圆上,∴x 21+4y 21=16,x 22+4y 22=16.两式相减,得(x 21-x 22)+4(y 21-y 22)=0,即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0.∴y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12,即k AB =-12.∴所求直线方程为y -1=-12(x -2),即x +2y -4=0.2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程.【解答】解:设P (x ,y ),A (x 1,y 1),B (x 2,y 2). ∵P 为弦AB 的中点,∴x 1+x 2=2x ,y 1+y 2=2y .则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为:x+y=0.(﹣<x <)∴点P 的轨迹方程为:x+y=0(﹣<x <);3、(2013秋•启东市校级月考)中心在原点,焦点坐标为(0,±5)的椭圆被直线3x ﹣y ﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 .【解答】解:设椭圆=1(a >b >0),则a 2﹣b 2=50①又设直线3x ﹣y ﹣2=0与椭圆交点为A (x 1,y 1),B (x 2,y 2),弦AB 中点(x 0,y 0) ∵x 0=,∴代入直线方程得y 0=﹣2=﹣,由 ,得,∴AB 的斜率k==﹣•=﹣•=3∵=﹣1,∴a 2=3b 2②联解①②,可得a 2=75,b 2=25,∴椭圆的方程为:=1故答案为:=1.4、例1(09年四川)已知椭圆12222=+by a x (a >b >0)的左、右焦点分别为1F 、2F ,离心率22=e ,右准线方程为2=x .(Ⅰ) 求椭圆的标准方程;(Ⅱ) 过点1F 的直线l 与该椭圆相交于M 、N 两点,且3262||22=+N F M F ,求直线l 的方程. 解:(Ⅰ)根据题意,得⎪⎪⎩⎪⎪⎨⎧====.2,222c a x a c e ∴1,1,2===c b a .∴所求的椭圆方程为1222=+y x . (Ⅱ)椭圆的焦点为)0,1(1-F 、)0,1(2F . 设直线l 被椭圆所截的弦MN 的中点为),(y x P .由平行四边形法则知:P F N F M F 2222=+.由3262||22=+N F M F 得:326||2=P F .∴.926)1(22=+-y x ①y D若直线l 的斜率不存在,则x l ⊥轴,这时点P 与)0,1(1-F 重合,4|2|||1222==+F F N F M F ,与题设相矛盾,故直线l 的斜率存在.由22a b x y k MN -=⋅得:.211-=⋅+x y x y ∴).(2122x x y +-=② ②代入①,得.926)(21)1(22=+--x x x 整理,得:0174592=--x x . 解之得:317=x ,或32-=x .由②可知,317=x 不合题意. ∴32-=x ,从而31±=y .∴.11±=+=x yk∴所求的直线l 方程为1+=x y ,或1--=x y .6、(2009秋•工农区校级期末)已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点M ,则点M 的坐标为.【解答】解:设直线与椭圆的交点分别为(x 1,y 1),(x 2,y 2),则,两式相减,得=0,(y 1﹣y 2)(y 1+y 2)=﹣3(x 1﹣x 2)(x 1+x 2),=﹣3×,因为直线斜率为3,∴=3,∵两交点中点在直线x=,x 1+x 2=1,∴3=﹣3×1÷(y 1+y 2),∴=﹣.所以中点M 坐标为(,﹣).故答案为:(,﹣).7、如图,在DEF R t ∆中,25||,2||,90=+=︒=∠ED EF EF DEF ,椭圆C :12222=+by a x ,以E 、F为焦点且过点D ,点O 为坐标原点。
关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红) (1)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例湖北省宜昌市夷陵中学 曹文红[问题背景]圆锥曲线的中点弦问题是解析几何中的一类常见问题。
对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。
此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。
但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。
而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。
为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。
[案例实录]1、 创设情景,提出问题师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。
下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程。
问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。
2、 自主探索,暴露思维学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书:生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642121=+y x ,3642222=+y x ,两式相减,得:()()()()0421212121=-++-+y y y y x x x x ,因为)2,4(M 为AB 中点,所以有: 4,82121=+=+y y x x , 所以21)(4)(21212121-=++-=--=y y x x x x y y k AB ,故所求直线l 的方程为)4(212--=-x y ,即082=-+y x 。
用点差法巧解圆锥曲线问题

用“点差法”巧解圆锥曲线问题江苏省高淳中等专业学校 喻国忠解析几何是高考的重点内容,而圆锥曲线又是解析几何的重点、难点知识。
这里面,直线与圆锥曲线的位置关系问题综合性强,涉及知识面较多,运算量大,题型灵活多变,常常是打击学生们学习兴趣的罪魁祸首。
直线与圆锥曲线相交形成的弦中点、对称问题等,我们称之为圆锥曲线的“中点弦”问题。
解这类中点弦问题的常规做法是:联立直线和圆锥曲线的方程,借助根的判别式及韦达定理中根与系数的关系、中点坐标公式求解,但运算过程复杂,计算量偏大,解题效率低,尤其是对于基础较差、计算能力较弱的学生来说,很容易算错。
而使用“点差法”来进行求解中点弦问题,往往可以使解题过程化繁为简,优化解题过程,出奇制胜。
所谓“点差法”,就是在求解 “中点弦”问题时用到的一种“代点作差”的解题方法,其特点是代点作差后可巧代直线斜率和中点坐标,进而通过“设而不求”以达到减少计算量的目的。
使用“点差法”时,一般分三个步骤进行:设点、作差、检验。
下面试举几例,感受“点差法”在解题过程中的妙用。
例1.求以椭圆22185x y +=内的一点A(2,-1)为中点的弦所在的直线方程。
解法一:当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为1(2)y k x +=-,它与椭圆的交点分别为11(,)M x y ,22(,)N x y ,则221(2)185y k x x y +=-⎧⎪⎨+=⎪⎩,消去y 得:222(85)16(21)8[(21)5]0k x k k x k +-+++-=12216(21)85k k x x k +∴+=+ ,A 2-1又(,)MN 为弦的中点,124x x ∴+=,即216(21)=485k k k ++,54k ∴=,从而直线方程为54140x y --=。
解法二:当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为1(2)y k x +=-,它与椭圆的交点分别为11(,)M x y ,22(,)N x y ,则2211222258405840x y x y ⎧+=⎨+=⎩ (1)(2),(2)(1)-得222221215()8()0x x y y -+-=, A 2-1又(,)MN 为弦的中点,124x x ∴+=,122y y +=-,2121205=164y y x x -∴=-,即54k =,从而直线方程为54140x y --=。
点差法公式在抛物线中点弦问题中的妙用

点差法公式在抛物线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 mx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN=⋅01.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.典题妙解例1 抛物线x y 42=的过焦点的弦的中点的轨迹方程是( )A. 12-=x yB. )1(22-=x y C. 212-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x .由m y k MN =⋅得:21=⋅-y x y, 整理得:)1(22-=x y .∴所求的轨迹方程为)1(22-=x y .故选B.例2 抛物线22x y =上一组斜率为2的平行弦中点的轨迹方程是( ) A. 21=x (y >21) B. 21=y (x >21) C. x y 2=(x >1) D. 12+=x y 解:由22x y =得y x 212=,41=∴m ,焦点在y 轴上. 设平行弦的中点M 的坐标为),(y x .由m x k MN=⋅1得:4121=⋅x ,21=∴x . 在22x y =中,当21=x 时,21=y . ∴点M 的轨迹方程为21=x (y >21).故答案选A.例3 (03上海)直线1-=x y 被抛物线x y 42=截得的线段的中点坐标是___________. 解:2=m ,焦点)0,1(在x 轴上. 设弦MN 的中点P 的坐标为),(y x ,弦MN 所在的直线l 的斜率为MN k ,则.1=MN k 由m y k MN =⋅0得:20=y ,.120-=∴x 从而30=x .∴所求的中点坐标是)2,3(.例 4 抛物线的顶点在原点,焦点在x 轴上,它和直线1-=x y 相交,所得的弦的中点在522=+y x 上,求抛物线的方程.解:设抛物线的方程为)0(22≠=m mx y ,直线与抛物线的两个交点为M 、N ,弦MN 的中点P 的坐标为),(00y x .由m y k MN =⋅0得:m y =0,.1100+=+=∴m y x又 点),1(m m P +在圆522=+y x 上,.5)1(22=++∴m m解之得:,2-=m 或.1=m由⎩⎨⎧=-=.2,12mx y x y 得:.01)1(22=++-x m x 直线与抛物线有两个不同的交点,4)1(42-+=∆∴m >0.∴m <2-,或m >0. .1=∴m故所求的抛物线方程为.22x y =例5.已知抛物线x y 122=上永远有关于直线m x y l +=4:对称的相异两点,求实数m 的取值范围. 解:设抛物线上A 、B 两点关于直线l 对称,且弦AB 的中点为),(00y x P . 根据题意,点P 在直线l 上,l AB ⊥,∴41-=AB k . 又x y 122=,mx y 22=,∴6=m .由m y k AB =⋅0,得:6410=⋅-y ,∴240-=y . 又由m x y +=004,得:4240+-=m x .点),(00y x P 在抛物线的开口内,∴2)24(-<)424(12+-⨯m . 解之得:m <216-.故实数m 的取值范围)216,(--∞.例6. (05全国Ⅲ文22)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当3,121-==x x 时,求直线l 的方程.解:(Ⅰ)y x 212=,∴)81,0(,41F p =. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由p x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F. (Ⅱ)当3,121-==x x 时,.102,12),18,3(),2,1(210210=+=-=+=-y y y x x x B A 由p x k AB=⋅01得:41=k . ∴所求的直线l 的方程为10)1(41++=x y ,即.0414=+-y x 金指点睛1. 已知直线02=--y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 2. 直线2-=kx y 与抛物线x y 82=交于不同的两点P 、Q ,若PQ 中点的横坐标是2,则||PQ =____. 3. 已知抛物线C 的顶点在原点,焦点在x 轴的正半轴上,直线14:+-=x y l 被抛物线C 所截得的弦AB 的中点M 的纵坐标为2-,则抛物线C 的方程为____________.4. 设1P 2P 为抛物线y x =2的弦,如果这条弦的垂直平分线l 的方程为3+-=x y ,求弦1P 2P所在的直线方程.5. 过点)1,4(Q 作抛物线x y 82=的弦AB ,若弦AB 恰被Q 平分,则AB 所在的直线方程为_______. 6. 已知抛物线22x y =上有不同的两点A 、B 关于直线m x y l +=:对称,求实数m 的取值范围. 7. (05全国Ⅲ理21)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论.(Ⅱ)当直线l 的斜率为2时,求l 在y 轴上的截距的取值范围.8. (08陕西文理20) 已知抛物线22x y C =:,直线2+=kx y 交C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N.(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅,若存在,求k 的值;若不存在,请说明理由.参考答案1. 解:x y 42=,mx y 22=,∴2=m . 直线的斜率为1. 由m y k MN =⋅0得:20=y . 代入0200=--y x 求得40=x .∴线段AB 的中点坐标是)2,4(.2. 解:x y 82=,mx y 22=,∴4=m .在2-=kx y 中,20=x 时,220-=k y ,∴若PQ 中点的纵坐标是220-=k y . 由m y k AB =⋅0得:4)22(=-k k ,即022=--k k . 解之得:2=k 或1-=k . 由⎩⎨⎧=-=.8,22x y kx y 得:04)2(422=++-x k x k .直线与抛物线交于不同的两点,∴⎪⎩⎪⎨⎧-+=∆≠.016)2(16,0222 k k k 解之得:k >1-且0≠k . ∴2=k .由⎩⎨⎧=-=.8,222x y x y 得:041642=+-x x . 即0142=+-x x . 设),(),,(2211y x Q y x P ,则1,42121==+x x x x .∴[]152)416(54)()1(||212212=-=-++=x x x x k PQ .3. 解:x y 82=,mx y 22=,∴4=m . 由m y k AB =⋅0得:4=AB k .∴AB 所在的直线方程为)4(41-=-x y ,即0154=--y x . 4. 解:设抛物线的方程为mx y 22=(m >0). 在14+-=x y 中,斜率为4-,2-=y 时,43=x . ∴弦AB 的中点M 的坐标为)2,43(--. 由m y k AB =⋅0得:m =-⨯-)2(4,∴8=m .∴所求的抛物线的方程为x y 162=.5. 解:y x =2,my x 22=,∴21=m . 弦1P 2P 所在直线的斜率为 1. 设弦1P 2P 的中点坐标为),(00y x .由m x k P P =⋅0211得:210=x . 弦1P 2P的中点也在直线3+-=x y 上,∴253210=+-=y .弦1P 2P 的中点坐标为)25,21(. ∴弦1P 2P所在的直线方程为)21(125-⋅=-x y ,即02=+-y x . 6. 解:设弦AB 的中点为),(00y x P . 根据题意,l AB ⊥,∴1-=AB k .又y x 212=,my x 22=,∴41=m . 由m x k AB=⋅01,得:4110=⋅-x ,∴410-=x . 又由m x y +=00,得:m y +-=410. 点),(00y x P 在抛物线的开口内,∴2)41(-<)41(21m +-⨯.解之得:m >83.故实数m 的取值范围),83(+∞.7. 解:(Ⅰ)y x 212= ,∴)81,0(,41F p m ==.设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F.若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由m x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F.(Ⅱ)当2=k 时,由(Ⅰ)知,810-=x ,直线l 的方程为4120++=y x y , ∴它在y 轴上的截距410+=y b ,410-=b y . 直线AB 的方程为00)(21y x x y +--=,即16521-+-=b x y . 代入22x y =并整理得:085242=+-+b x x .直线AB 与抛物线有两个不同交点,∴)852(161+--=∆b >0,即932-b >0.∴b >329.故l 在y 轴上的截距的取值范围是),329(+∞.8.(Ⅰ)证明:41,212===p m y x ,设点M 的坐标为),(00y x .当0=k 时,点M 在y 轴上,点N与原点O 重合,抛物线C在点N 处的切线为x 轴,与AB 平行.当0≠k 时,由p x k AB=⋅01得:40k x =. ∴8222k x y N ==. 得点N 的坐标为)8,4(2k k . 设抛物线C 在点N 处的切线方程为)4(82k x m k y -=-,即8)4(2k k x m y +-=. 代入22x y =,得:8)4(222k k x m x +-=,整理得:084222=-+-k km mx x .0)(2)84(822222=-=+-=--=∆k m k km m k km m ,∴k m =,即抛物线C 在点N 处的切线的斜率等于直线AB故抛物线C 在点N 处的切线与AB 平行.(Ⅱ)解:若0=⋅,则⊥,即︒=∠90ANB .∴||2||2||2||MN BM AM AB ===.482200+=+=k kx y ,∴816848||2220+=-+=-=k k k y y MN N . 由⎩⎨⎧=+=.2,22x y kx y 得0222=--kx x . 设),(),,(2211y x B y x A ,则1,22121-==+x x kx x . ∴)16)(1(21)44)(1(]4))[(1(||2222212212++=++=-++=k k k k x x x x k AB . ∴8162)16)(1(21222+⨯=++k k k . 即4)16()16)(1(2222+=++k k k . 化简,得:416122+=+k k ,即42=k .∴2±=k .故存在实数2±=k ,使0=⋅.。
“点差法”解决圆锥曲线的中点弦问题

‘ ‘ 点茬法 ” 禳决圆锥曲线韵中 点弦 问题
韩 晓 刚 ( 山十 六 中 , 北 唐 河
摘 要 : 圆 锥 曲 线 的 弦 的 中点 有 关 的 问 题 。 们 称 之 为 与 我 圆锥 曲线 的 中 点 弦 问 题 涉 及 至 解 决 圆锥 曲 线 中 点 弦 的 问 4 题 . 采 用 “ 差 法 ” 求 解 “ 差 法 ” 利 用 直 线 和 圆 锥 曲 常 点 来 点 是 线 的 两个 交 点 。把 交 点 代 入 圆 锥 曲 线 的 方 程 .得 到 两 个 等 式 . 式 相 减 . 以得 到 一 个 与 弦 的 斜 率 及 中 点 相 关 的 式 子 两 可 ( 称 中点 和 斜 率 结 合 公 式 ) 再 结 合 已 知 条 件 , 用 学 过 的 也 。 运 知 识 使 问题 得 到 解 决 。 当 题 目涉 及 弦 的 中 点 、 率 时 . 般 斜 一 都 可 以 用 点 差 法 来 解 与 韦 达 定 理 法 纷 繁 冗 长 的 计 算 相 比 。 点 差 法 可 以 大 大 减 少 运 算 量 . 化 解 题 过 程 . 到 “ 而 不 优 达 设 求 ” 目的 本 文将 从 求 弦 的 斜 率 与 弦 的 中 点 问 题 、 弦 中 的 求 点 轨 迹 、 弦 的 垂 直 平 分 线 问 题 和 求 曲 线 的 方 程 四 个 方 面 举
m则 肿 = 。 ‘弦 中点 轨 迹 在 已 知 椭 圆 内 , x y+ y k 2, 0 . ‘ 所 求 弦 中 点 的轨 迹 方 程 为 ( 已知 椭 圆 内 ) 在 变 式 1 直 线 Z似 一 一 o 5 : 0是 参 数 ) 抛 物 线 y : : (+ ) 0( 与 = (+ ) 的 相 交 弦 是 A 则 弦 A 的 中 点 轨 迹 方 程 是 12 B. B 。 过定 点弦 的中点轨迹 方程 ) 分 析 : 线 Za - 一 n 5 = 方 程 中带 有 参 数 0 即 直 线 直 :x y (+ )0, 。 是 过 定 点 的 直 线 还 要 注 意 弦 中点 轨 迹 在 已知 抛 物 线 内 . 最 后 要 注 明 所 求 弦 中点 的 轨 迹 方 程 为 y 2 27 在 已 知 抛 物 线 = x— ( 内 ) 。 变 式 2 已 知 定 长 为 0 0 ) 线 段 AB 的 两 端 点 在 抛 : ( ≥1 的 物线 y 上 移动 , 动 弦 AB的 中点 Ⅳ 的轨 迹方程 。 ( 长 求 弦 为定 值的 弦的中点轨 迹方 程 ) 解 : 两 端 点 坐 标 为 A( , 曰(。Y) 设 Y ) ,2 , 的 中 点 为 (oy) 则 l 220 因 两 端 点 在 抛 物 线 上 , 以 y 1 Y: X o , = x, 所 l 2 2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用点差法解圆锥曲线的中点弦问题
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。
解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
一、 以定点为中点的弦所在直线的方程
例1、过椭圆14
162
2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为),(11y x A 、),(22y x B
Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y
Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x
两式相减得0)(4)(22212221=-+-y y x x
于是0))((4))((21212121=-++-+y y y y x x x x ∴
2
1244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2
11--=-x y ,即042=-+y x 。
例2、已知双曲线12
2
2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。
本题属于中点弦问题,应考虑点差法或韦达定理。
解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B
则221=+x x ,221=+y y
122121=-y x ,122
222=-y x 两式相减,得
0))((2
1))((21212121=-+--+y y y y x x x x ∴22121
=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩
⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆
这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。
评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。
由此题可看到中点弦问题中判断点的M 位置非常重要。
(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。
二、 过定点的弦和平行弦的中点坐标和中点轨迹
例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2
1=x 的交点恰为这条弦的中点M ,求点M 的坐标。
解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2
10=x 12021==+x x x , 0212y y y =+
又 125752121=+x y ,125
752
222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(221210=-+-x x y y y ∴0212123y x x y y -=-- Θ 32121=--=
x x y y k ∴ 3230=-y ,即2
10-=y ∴点M 的坐标为)2
1,21(-。
例4、已知椭圆125
752
2=+x y ,求它的斜率为3的弦中点的轨迹方程。
解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则
x x x 221=+, y y y 221=+ 又 125752121=+x y ,125
752222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(2121=-+-x x x y y y ,即y
x x x y y 32121
-=-- Θ 32121=--=x x y y k ∴33=-y
x ,即0=+y x 由⎪⎩⎪⎨⎧=+=+125
7502
2x y y x ,得)235,235(-P )235,235(-Q Θ点M 在椭圆内
∴它的斜率为3的弦中点的轨迹方程为)2
35235(0<<-=+x y x 三、 求与中点弦有关的圆锥曲线的方程
例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为
2
1,求椭圆的方程。
解:设椭圆的方程为122
22=+b
x a y ,则5022=-b a ┅┅① 设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则
210=x ,2
12300-=-=x y ∴12021==+x x x ,12021-==+y y y 又1221221=+b x a y ,1222222=+b
x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b
即0)()(212
212=-+--x x a y y b
∴ 2
2
2121b a x x y y =-- ∴ 322=b a ┅┅② 联立①②解得752=a ,252
=b ∴所求椭圆的方程是125
752
2=+x y 四、圆锥曲线上两点关于某直线对称问题
例6、已知椭圆13
42
2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。
解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦21P P 的中点,
则12432121=+y x ,12432
222=+y x
两式相减得,0)(4)(322212221=-+-y y x x
即0))((4))((321212121=-++-+y y y y x x x x Θx x x 221=+,y y y 221=+,4
12121-=--x x y y ∴x y 3= 这就是弦21P P 中点P 轨迹方程。
它与直线m x y +=4的交点必须在椭圆内
联立⎩⎨⎧+==m x y x y 43,得⎩⎨⎧-=-=m
y m x 3 则必须满足22433x y -<, 即224
33)3(m m -<,解得1313213132<<-m 五、注意的问题
(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。
利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。