中点弦问题(基础知识)

合集下载

中点弦公式点差法

中点弦公式点差法

中点弦公式点差法
中点弦公式是指通过连接曲线上两点中点的弦来近似曲线的斜率。

点差法是指对于曲线上的两个点,通过用极限的思想来逼近它们之间的点差(即横坐标之差),从而计算斜率。

中点弦公式的具体步骤为:
1. 选取曲线上两个不同的点,标记其坐标为$(x_1,y_1)$和$(x_2,y_2)$。

2. 计算这两个点的中点坐标
$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$。

3. 计算连接这两个点的弦的斜率,即$\frac{y_2-y_1}{x_2-
x_1}$。

点差法的具体步骤为:
1. 选取曲线上两个不同的点,标记其坐标为$(x_1,y_1)$和$(x_2,y_2)$。

2. 计算这两个点之间的点差(即横坐标之差),即$\Delta
x=x_2-x_1$。

3. 通过极限思想,将点差逐渐缩小为0,即$\Delta x\rightarrow 0$。

4. 计算这两个点之间的斜率的极限值,即$\lim\limits_{\Delta x\rightarrow 0}\frac{y_2-y_1}{\Delta x}$。

这个极限值即为这两点之间的切线斜率。

需要注意的是,中点弦公式是一种近似计算方法,只有在两点之间的曲线变化不太剧烈时才适用;而点差法则是一种精确计算方法,可以得到任何两点之间的切线斜率。

2022届高考数学精品微专题:中点弦问题

2022届高考数学精品微专题:中点弦问题

2022届高考数学精品微专题:中点弦问题一、常用结论1.椭圆中点弦问题结论(以焦点在x 轴的椭圆方程)0(12222>>=+b a by a x 为例)(1)如图,在椭圆C 中,E 为弦AB 的中点,则22b k k AB OE −=⋅;(证明:用点差法)(2)注意:若焦点在y 轴上的椭圆)(12222>=+ba ay b x 2b ABOE2.双曲线中点弦结论(以焦点在x 轴的双曲线方程12222=−by a x 为例)图1 图2(1)如图1或图2,E 为弦AB 的中点,则22ab k k ABOE =⋅; (2)注意:若焦点在y 轴上的双曲线12222=−b x a y ,则22ba k k AB OE =⋅3.抛物线中点弦结论(1)在抛物线)0(22≠=p px y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则p y k MN =⋅0. 即:0y p k =(2)同理可证,在抛物线)0(22≠=p py x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN=⋅01.即:px k 0=、典例【选填解答题】1.(2021·云南昆明市·昆明一中高三)已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为() A .2 B .2− C .12−D .12【答案】C【分析】先根据已知得到22,再利用点差法求出直线的斜率.【详解】由题得222222242,4()2,2c c a a b a a b a =∴=∴−=∴=.设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b += += ,两式相减得2212121212()()a ()()0b x x x x y y y y +−++−=,所以2()2a ()0所以221212()240()y y b b x x −+=−,所以1120,2k k +=∴=−.2.【2014年江西卷(理15)】过点作斜率为的直线与椭圆:相交于,若是线段的中点,则椭圆的离心率为【解析】由椭圆中点弦性质可得1222−=−=⋅e a b k k AB OM ,则 <<−=×−1011212e e ,故e =3.【2013全国卷1理科】已知椭圆E :(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .B .C .D . 【解析】22a b k k AB MF −=⋅,得22)1(13)1(0a b −=−×−−−,∴=,又9==,解得=9,=18, ∴椭圆方程为,故选D .(1,1)M 12−C 22221(0)x y a b a b +=>>,A B M AB C 2222=1x y a b+22=14536x y +22=13627x y +22=12718x y +22=1189x y +22b a 122c 22a b −2b 2a 221189x y +=(全国卷Ⅲ第一问)已知斜率为k 的直线l 与椭圆C :143+=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >.证明:12k <−. 【答案】证明见解析.【解析】设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=,上述两式相减,则32b kk 由题设知1212x x +=,122y y m +=,故43−=⋅m k ,于是34k m =−. 由<+>134102m m 得302m <<,故12k <−.5.(2020年湖北高二期末)如图,已知椭圆()222210x y C a b a b+=:>>,斜率为﹣1的直线与椭圆C 相交于A ,B 两点,平行四边形OAMB (O 为坐标原点)的对角线OM 的斜率为13,则椭圆的离心率为ABCD .23【答案】B【解析】方法1:设直线AB 方程为y x n =−+,设1122(,),(,)A x y B x y , 由22221x y a b y x n +==−+得:22222222()20a b x a nx a n a b +−+−=, ∴212222a n x x a b+=+,12122()y y n x x +=−+,设(,)M x y , ∵OAMB 是平行四边形,∴OM OA OB =+,∴1212,x x x y y y =+=+, ∴12121212122()21OM y y n x x y n k x x x x x x x +−+====−+++22222113a b b a a +=−==,223aa,∴3ea .故选B .方法2:(秒杀解) <<−=−⇒−=−=⋅1031112222e e e a b k k OMAB ,得36=e . 故选B .6.【2019一中月考】直线与椭圆:相交于两点,设线段的中点为,则动点的轨迹方程为( )D7.已知椭圆2217525+=y x 的一条弦的斜率为3,它与直线12x =的交点恰为这条弦的中点M ,则M 的坐标为() A .11,2B .11,22C .11,22−D .11,22−【答案】C 【分析】由题意知:斜率为3的弦中点01(,)2M y ,设弦所在直线方程3y x b =+,结合椭圆方程可得122b x x +=−即可求b ,进而求M 的坐标. 【详解】由题意,设椭圆与弦的交点为1122(,),(,)A x y B x y ,:3AB y x b =+, 则将3y x b =+代入椭圆方程,整理得:22126750x bx b ++−=,∴22123648(75)02b b bx x ∆=−−> +=−,而121x x =+,故2b =−, ∴:32AB y x =−,又01(,)2M y 在AB 上,则012y =−, 故选:C)(4R m m x y∈+C 1232=+y B A ,AB M M 16.+−=x y A 6.xy B −=)33(16.<<−+−=x x y C )26526(6.<<−−=x x y D22a b 圆于A ,B 两点.若AB 的中点坐标为(1,1−),则G 的方程为()A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D【分析】设1122(,),(,)A x y B x y ,代入椭圆的标准方程,两式作差可得ABk 22b a =,由22b a =12,9=2c =22a b −,【详解】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b +=,①2222221x y a b +=,②①-②得1212121222()()()()0x x x x y y y y a b +−+−+=,∴AB k =1212y y x x −−=212212()()b x x a y y +−+=22b a ,又ABk =0131+−=12,∴22b a =12,又9=2c =22a b −,解得2b =9,2a =18,∴1899.(2020·黑龙江哈尔滨市·哈师大附中)已知离心率为12的椭圆()222210y x a b a b+=>>内有个内接三角形ABC ,O 为坐标原点,边AB BC AC 、、的中点分别为D E F 、、,直线AB BC AC 、、的斜率分别为123k k k ,,,且均不为0,若直线OD OE OF 、、斜率之和为1,则123111k k k ++=() A .43−B .43C .34−D .34【答案】C【分析】设出椭圆方程,设出A B C ,,的坐标,通过点差法转化求解斜率,然后推出结果即可.【详解】由题意可得12c a =,所以2243,b a =不妨设为22143y x +=.设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,222211221,14343y x y x +=+=,两式作差得21212121()()()()34x x x x y y y y −+−+=−,则21212121()3()()4()x x y y y y x x +−=−+−,134OD ABk k =−,同理可得1313,44OF OE AC BC k k k k =−=−,所以12311133()44OD OE OF k k k k k k ++=−++=−,10.(2020·广东广州市·执信中学)已知椭圆2222:1(0)x y a b a b Γ+=>>,ABC ∆的三个顶点都在椭圆上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,F ,且三条边所在直线的斜率分别1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,则()A .22:1:2a b =C .直线BC 与直线OE 的斜率之积为12−D .若直线OD ,OE ,OF 的斜率之和为1,则123111k k k ++的值为2− 【答案】CD【分析】由题意可得:222a b =.设1(A x ,1)y ,2(B x ,2)y .0(D x ,0)y .利用点差法即可得出11·2OD k k =−,2·2OE k k =−,3·2OF k k =−,即可判断.【详解】椭圆2222:1(0)x y a b a b Γ+=>>,∴222112b e a =−=,222a b ∴=,故A 错;设1(A x ,1)y ,2(B x ,2)y .0(D x ,0)y .2211221x y a b+=22221x y ,两式相减可得:21212212121·2y y y y b x x x x a +−=−=−+−.11·2OD k k ∴=−,同理21·2OE k k =−,31·2OF k k =−,故B 错,C 正确. 又1231112()2OD OE OF k k k k k k ++=−++=−,11.(2020·广东广州市·执信中学)已知直线L 与双曲线22221()00a x y a bb >−=>,相交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,若直线L 的斜率为1k ,OM 的斜率为2k ,且122k k =,则双曲线渐近线的斜率等于() A.±B .2±C.D .12±【答案】C【详解】设()()1122,,,,(,)A x y B x y M x y ,则12122,2x x x y y y +=+=,2222222211a b x y ab −= ,两式相减可得:()()()()222221221212222211110,220x x y y x x x a a y y y b b−−−=−×−−×=,∵直线L 的斜率为()110k k ≠,直线OM 的斜率为2k ,212211222y y y b k x x a k x −=⋅==−∴,则b a=12.(2020·四川成都市·成都七中)过点(1,4)P 作直线l 交双曲线2214x y −=于A ,B 两点,而P 恰为弦AB的中点,则直线l 的斜率为(). A .116− B .-1 C .116D .1【答案】C【分析】根据P 为AB 的中点,利用点差法,设()11,A x y ,()22,B x y ,由221122221414x y x y −=−= ,两式相减求解. 【详解】设()11,A x y ,()22,B x y ,因为P 为AB 的中点,则12121242x x y y + = + = ,所以121228x x y y += += ,将A 、B 代入双曲线2214xy −=得,221122221414x y x y −=−= ,两式相减得:()()22221212104y y x x −−−=, 整理得:1212121214y y x x x x y y −+=⋅−+,所以12121214816ABy y k x x −==×=−.13.(2021·全国高二)已知斜率为1的直线l 与双曲线C :22221x y a b−=(0a >,0b >)相交于B 、D 两点,且BD 的中点为3(1)M ,.则C 的离心率为() A .2 BC .3 D【答案】A【详解】设()()1122,,,B x y D x y ,2222222211a b x y a b −= ,两式做差得()()()()12121212220x x x x y y y y a b −+−+−=整理得()()()()2121221212y y y y b a x x x x −+=−+,而12121BD y y k x x −−==,122x x +=,126y y +=,代入有223b a =,即2223c a a−=,可得2c e a ==.14.(2020·广州市天河中学)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(M −,则E 的方程为() A .22145x y −=B .22163x y −=C .2254x y −=22x y 【答案】B【详解】设双曲线E 的标准方程为22221x y a b−=,由题意知:3c =,即229a b +=①,设()11,A x y ,()22,B x y ,AB 的中点为(M −,124x x ∴+=−,12y y +,又A ,B 在双曲线上,则22112222222211x y a b x y ab −= −= , 两式作差得:22221212220x x y y a b−−−=,即()()()()1212121222x x x x y y y y a b −+−+=, 即()()2121221212ABb x x y y k x x a y y +−====−+,又M F ABM F y y k x x −===−即解得:222a b =②,由①②解得:26a =,23b =,∴双曲线的标准方程为:22163x y −=.15.(2019·陕西高考模拟)双曲线221369x y −=的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是() A.20x y −−=B.2100x y +−=C.20x y −=D.280x y +−=【答案】C【解析】设弦的两端点1(A x ,1)y ,2(B x ,2)y ,斜率为k ,则22111369x y −=,22221369x y −=,369即121212129()98136()3642y y x x kx x y y −+×===−+×, ∴弦所在的直线方程12(4)2y x −=−,即20x y −=. 故选:C28y 上有三个点A ,B ,C 且AB ,BC ,AC 的中点分别为D ,E ,F ,用字母k 表示斜率,若8OD OE OF k k k ++=−(点O 为坐标原点,且OD k ,OE k ,OF k 均不为零),则111AB BC ACk k k ++=________. 【答案】-1【详解】设()11,A x y ,()22,B x y ,()00,D x y ,则1202x x x +=,1202y y y +=,21118y x −=,22218y x −=, 两式相减得()()()()121212128y y y y x x x x +−−+=,整理可得0121208y x x y y x −=−,即18OD ABk k =,同理得18OE BCk k =,18OF AC k k =.因为8OD OE OF k k k ++=−,所以1111AB BC AC k k k ++=−.17.(2020·全国高二课时练习)双曲线()2222:10,0x y C a b a b−=>>的右焦点分别为F ,圆M 的方程为()22252x y b −+=.若直线l 与圆M 相切于点()4,1P ,与双曲线C 交于A ,B 两点,点P 恰好为AB 的中点,则双曲线C 的方程为________.【答案】2214x y −=【详解】设点()11,A x y ,()22,B x y ,直线l 的斜率为k ,则10145k −⋅=−−,所以1k =,()22224512b =−+=,即21b =,则2211221x y a b−=,2222221x y a b −=.两式相减,得()()()()1212121222x x x x y y y y a b −+−+= 则()()222121222212128412b x x y y b b k x x a y y a a +−=====−+,即24a =,所以双曲线C 的方程为2214x y −=.相交于M ,N 两点,若MN 中点的横坐标为23−,则此双曲线的方程是 A.22134x y −= B.22143x y −= C.22152x y −= D.22125x y −= 【答案】D【解析】设双曲线的方程为221(0,0)x ya b a b−=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN 的中点为25,33 −− ,由2211221x y a b −=且2222221x y a b −=,得()()12122x x x x a +−=()()12122y y y y b +−,2223a ×−=()2523b ×−(),即2225a b=,联立227a b +=22125x y −=.故选D .19.已知双曲线的左焦点为,过点F 且斜率为1的直线与双曲线C 交于A ,B 两点,若线段AB 的垂直平分线与x 轴交于点,则双曲线C 的离心率为( ) A.B.C.D. 2【答案】D 【解析】 【分析】设线段AB 的中点坐标为,根据 求出线段的中点坐标,用点差法求出关系,即可求解【详解】设线段AB 的中点坐标为,则有, 设,代入双曲线方程有,两式相减得, 2222:1x y C a b−=(0,0)a b >>(,0)F c −(2,0)P c ()00,M x y 11,1,MF MP k k ==−AB M ,a c ()00,x y 000112y x c y x c= +=− − 0,2c x ⇒=032y c =1122(,),(,)A x y B x y 2222112222221,1x y x y a b a b−=−=可得,即, .故选:D.20.直线l 过点(1,1)P 与抛物线4y x =交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的斜率为() A .2B .2−C .12D .12− 【答案】A【分析】 利用点差法,21122244y x y x = = 两式相减,利用中点坐标求直线的斜率. 【详解】设()()1122,,,A x y B x y ,21122244y x y x = = ,两式相减得()2212124y y x x −−, 即()()()1212124y y y y x x +−=−,当12x x ≠时,()1212124y y y y x x −+=−, 因为点()1,1P 是AB 的中点,所以122y y +=,24k =, 解得:2k =故选:A21.(2019秋•湖北月考)斜率为k 的直线l 过抛物线y 2=2px (p >0)焦点F ,交抛物线于A ,B 两点,点P (x 0,y 0)为AB 中点,则ky 0为( )A .定值B .定值pC .定值2pD .与k 有关的值【分析】设直线方程与抛物线联立得纵坐标之和,进而的中点的纵坐标,直接求出ky 0的值为定值.【解答】解:显然直线的斜率不为零,抛物线的焦点(,0),22a b 002210x y a b−⋅=2213,a b =223b a =2,c a ∴=2e =直线与抛物线联立得:y 2﹣2pmy ﹣p 2=0,y +y '=2pm ,所以由题意得:y 0==pm ,所以ky 0=•pm =p ,故选:B .22.过点)1,4(Q 作抛物线x y 82=的弦AB ,若弦AB 恰被Q 平分,则AB 所在的直线方程为_______. 解:x y 82=,mx y 22=,∴4=m . 由m y k=得:4=k ∴AB 所在的直线方程为)4(41−=−x y ,即0154=−−y x .23.设1P 2P 为抛物线y x =2的弦,如果这条弦的垂直平分线l 的方程为3+−=x y ,求弦1P 2P 所在的直线方程.解:y x =2,my x 22=,∴21=m . 弦1P 2P 所在直线的斜率为1. 设弦1P 2P 的中点坐标为),(00y x .由m x k P P =⋅0211得:210=x . 弦1P 2P 的中点也在直线3+−=x y 上,∴253210=+−=y .弦1P 2P 的中点坐标为)25,21(. ∴弦1P 2P 所在的直线方程为)21(125−⋅=−x y ,即02=+−y x .24. ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2), ABC 的重心G 是抛物线E 的焦点,则BC 边所在直线的方程为________.【答案】4x +4y +5=0【分析】设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),先求出点M 的坐标,再求出直线BC 的斜率,即得解.【详解】设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知1(,0)2G , 则12122132203x x y y ++ = ++ =从而12012012412x x x y y y + ==− + ==− ,即1(,1)4M −−, 又2211222,2y x y x ==, 两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率1212002BC x x y y y y −+故直线BC 的方程为y -(-1)=1()4x −+,即4x +4y +5=0.故答案为:4x +4y +5=025.在平面直角坐标系xOy 中,已知双曲线C的焦点为(0,、,实轴长为. (1)求双曲线C 的标准方程;(2)过点()1,1Q 的直线l 与曲线C 交于M ,N 两点,且恰好为线段MN 的中点,求线段MN 长度.【答案】(1)2212y x −=;(2. 【分析】(1)根据双曲线的定义c =,a =,即可求出双曲线的方程;(2)先根据点差法求直线l 的方程,再根据弦长公式即可求出【详解】(1)双曲线C的焦点为(0,、,实轴长为,则a =,c =,而222321b c a =−=−=, ∴双曲线C 的标准方程2212y x −=; (2)设点1(M x ,1)y ,2(N x ,2)y ,点()1,1Q 恰好为线段MN 的中点,即有122x x +=,122y y +=, 又221122221212y x y x −= −= ,两式相减可得121212121()()()()2y y y y x x x x −+=−+, ∴12122y y x x −−=, ∴直线l 的斜率为2k =,其方程为12(1)y x −=−,即21y x =−,由222122y x y x =− −=,即22410x x −−=,可得1212x x =−,则MN ===26.已知直线l 与抛物线2:5C y x =交于,A B 两点.(2)若弦AB 的中点为()6,1−,求l 的方程.【答案】(1;(2)52280x y +−=. 【分析】(1)联立直线与抛物线方程,写出韦达定理,利用弦长公式即可求解; (2)利用点差法求出直线斜率,即可求出直线方程. 设,A B 两点的坐标分别为()()1122,,,x y x y .(1)联立25,21,y x y x = =− 得24910,0x x −+=∆>, 因此121291,44x x x x +==,故||AB (2)因为,A B 两点在C 上,所以2112225,5,y x y x = = 两式相减,得()2221215y y x x −=−, 因为12122y y +=−×=−,所以212112552ABy y k x x y y −===−−+, 因此l 的方程为5(1)(6)2y x −−=−−,即52280x y +−=.。

每日精选072:圆的中点弦问题

每日精选072:圆的中点弦问题

每日精选072:圆的中点弦问题
题目:直线与圆相交于两个不同点、,当取不同实数值时,求中点的轨迹方程.
分析
解决与中点弦的有关问题时,有下列三种常见方法:(1)利用根与系数的关系求出中点坐标;
(2)设出弦的两个端点坐标,代入圆的方程得两式,将两式相减,此即为点差法;
(3)利用圆本身的几何性质,即圆心与弦中点的连线与弦垂直.
解法一:消去y,
得 ,
设此方程的两实数根为 , 的中点为 ,
由根与系数的关系和中点坐标公式得
,①
∵点在直线上,∴ ,即.②
将②代入①得 ,
整理得 ,
∴轨迹是圆位于圆内的部分弧.
解法二:∵直线过原点,圆的圆心为 ,如图所示.
设的中点为 ,则 ,
∴点在以为直径的圆周上,
此圆的圆心为 ,半径为,
其方程为 ,
即 .
又∵点在圆的内部,
∴轨迹是圆位于圆内的部分弧.
总结
解法一是一种通法,解法二充分运用圆的几何性质,即圆心与弦中点的连线和弦垂直.圆的几何性质是简化运算的有力工具.
课程详情
不容错过 | 积微精课2017年高一寒假班(含试听视频)
高二寒假班| 高三二轮复习课程期待你的加入(内含试听课视频)。

中点弦_精品文档

中点弦_精品文档

中点弦介绍中点弦是导入数学中用于数值计算的一种方法。

该方法可以用来计算函数在给定区间上的数值近似解。

中点弦方法基于割线法的思想,通过在函数上选择两个点,构造出一条经过这两个点的割线,并求取该割线与横轴的交点的纵坐标,作为函数在该区间上的近似解。

算法步骤中点弦方法的算法步骤如下:1.选择一个初始区间[a, b],确保函数在该区间上有一个单根(一个连续且单调递增/递减的区间)。

2.选择初始点x0和x1作为割线的两个点,计算相应的函数值f(x0)和f(x1)。

3.通过线性插值的方法,在割线上选择一个新的点x2,使得x2满足以下条件:–x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))4.通过计算函数在点x2处的函数值f(x2),判断是否符合终止准则。

如果满足终止准则,将x2作为函数在该区间上的近似解。

否则,继续进行下一步。

5.根据新的割线位置,更新x0和x1的值,并重复步骤3-5,直至满足终止准则为止。

终止准则中点弦方法的终止准则通常有以下两种选择:1.当函数在割线上的两个点之间的距离小于给定的阈值时,认为已找到了函数的近似解。

2.当函数在割线上的某一点的函数值小于给定的阈值时,认为该点即为函数的近似解。

算法特点中点弦方法具有以下特点:•相比于二分法,中点弦方法对函数的导数变化不敏感,因此适用于计算非线性函数的数值解。

•中点弦方法具有较快的收敛速度,尤其适用于具有分段线性特点的函数。

•由于中点弦方法采用割线插值的方式,每次迭代都可以接近函数的近似解,因此可以在较少的迭代次数下达到较高的精度。

示例下面通过一个具体的示例来说明中点弦方法的使用。

假设我们要求解函数f(x) = x^3 - 2x - 5 = 0在区间[1, 3]上的一个近似解。

首先,选择初始点x0 = 1和x1 = 3。

计算函数在这两个点上的函数值:f(x0) = (1)^3 - 2(1) - 5 = -6f(x1) = (3)^3 - 2(3) - 5 = 14根据割线公式,我们可以计算出新的割线点x2:x2 = x1 - (f(x1)(x1-x0))/(f(x1)-f(x0)) = 3 - (14(3-1))/(14-(-6)) = 3 - (28/20) = 2.6 接着,我们计算函数在x2处的函数值:f(x2) = (2.6)^3 - 2(2.6) - 5 = -0.664由于终止准则并没有满足,我们继续迭代。

圆锥曲线中点弦典型例题及解析

圆锥曲线中点弦典型例题及解析

01
总结词
这类问题主要考察了圆锥曲线与切线相关的性质和定理,需要利用切线
性质和圆锥曲线的定义来解决。
02
详细描述
在解决与切线相关的问题时,我们需要利用圆锥曲线的切线性质和定义,
结合题目给出的条件,推导出与中点弦相关的方程或不等式,进而求解。
03
示例
已知抛物线C的方程为y^2 = 2px (p > 0),过其焦点F作直线与C交于A、
数形结合
将代数问题与几何图形相结合 ,利用几何意义求解。
THANKS
感谢观看
特殊情况
当点$P$为圆锥曲线的焦点时, 中点弦称为焦点弦。
中点弦的性质
垂直性质
角度性质
中点弦所在的直线与过点$P$的切线 垂直。
中点弦与切线之间的夹角等于该弦所 对的圆周角。
长度性质
中点弦的长度与过点$P$的切线长度 成反比。
中点弦的几何意义
中点弦是连接圆锥曲 线上的两个对称点的 线段。
中点弦的长度等于圆 锥曲线上的两个对称 点到点$P$的距离之 和的一半。
详细描述
在解决椭圆的中点弦问题时,需要注意中点 弦的特殊性质。例如,当直线过椭圆中心时, 中点弦即为椭圆本身;当直线的斜率为0或 无穷大时,中点弦的长度为椭圆的长轴或短 轴的长度。这些特殊性质可以帮助我们快速 判断中点弦的性质和范围。
双曲线的中点弦问题
总结词
双曲线的性质和方程
详细描述
双曲线的中点弦问题主要考察了双曲线的性质和方程。解决这类问题需要利用双曲线的 性质,如对称性、开口方向等,以及双曲线的方程,如标准方程、参数方程等。通过联 立直线和双曲线的方程,消元化简,可以得到关于中点弦的方程,进一步求解得到中点

解析几何系列小专题2- 中点弦【解析版】

解析几何系列小专题2- 中点弦【解析版】

y2 b2
1(a
b
0) 的短轴长为
2,倾斜角为
的直线 l 与椭圆
4
C 相交于 A,B 两点,线段 AB 的中点为 M,且点 M 与坐标原点 O 连线的斜率为 1 ,求 2
椭圆 C 的标准方程;
(3)已知椭圆 C : x2 y2 1 上的两点.
2
①过
P1,1 2
的直线
l
与椭圆的弦被
P
平分,求直线
=
1;(2)设
M(x1,y1)N(x2,y2),根据直线与圆锥曲线
的位置关系可得x1
+
x2
=−
3m,可得
2
M,N
的中点坐标
Q(

3m 4
,
m 4
),又|AM|
=
|AN|知
AQ

MN,
因此kAQ =− 1= m−4+34m1,解得 m = 2,经检验Δ = 0 不合题意,故不存在.
试题解析:
(1)因为焦点在
请说明存在实数 k ,使得以 F1、F2 为直径的圆经过 N 点,(不要求求出实数 k ).
【答案】(1)
x2 4
y2 3
1 (2)存在实数 k
,使得以 F1F2 为直径的圆过
N

【解析】
试题分析:(1)由椭圆经过点 (0, 3) ,离心率为 1 ,列出方程组,可得 a, c, b 的值,则椭 2
x2 a2
y2 b2
1a>b>0 的焦点和上顶点分
别为 F1、F2、B,我们称 F1BF2 为椭圆 C 的“特征三角形”,如果两个椭圆的特征三角形是
相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相

[椭圆中点弦]中点弦问题

[椭圆中点弦]中点弦问题

[椭圆中点弦]中点弦问题中点弦问题(一):定义对于给定点P和给定的圆锥曲线C,若C上的某条弦AB过P点且被P点平分,则称该弦AB为圆锥曲线C上过P点的中点弦。

其中圆锥曲线弦为连接圆锥曲线C上不同两点A、B的线段AB称为圆锥曲线C的弦。

中点弦问题(二):圆锥曲线中点弦公式抛物线中点弦公式抛物线C:x^2(这里x^2表示x的平方,下同)=2py上,过给定点P=(α,β)的中点弦所在直线方程为:py-αx=pβ-α^2。

中点弦存在的条件:2pβα^2(点P在抛物线开口内)。

椭圆中点弦公式椭圆C:x^2/a^2+y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为:αx/a^2+βy/b^2=α^2/a^2+β^2/b^2。

中点弦存在的条件:α^2/a^2+β^2/b^21(点P在椭圆内)。

双曲线中点弦公式双曲线C:x^2/a^2-y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为:αx/a^2-βy/b^2=α^2/a^2-β^2/b^2。

中点弦存在的条件:(α^2/a^2-β^2/b^2)(α^2/a^2-β^2/b^2-1)0(点P不在双曲线、渐近线上以及它们所围成的区域内)。

中点弦问题(三):二次曲线中点弦性质与蝴蝶定理蝴蝶定理是二次曲线一个著名定理,它充分体现了蝴蝶生态美与“数学美”的一致性.不少中数专著或杂志至今还频繁讨论.本文揭示了它与中点弦性质的紧密联系,并给出统一而简明的证明,指出了一种有用的特殊情形和一种推广形式.引理:设两条不同的二次曲线S:F(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0有A、B、C、D 四个公共点,其中无三点共线,则过A、B、C、D四点的任意一条二次曲线S2必可唯一地表示成:(证明略)定理1 设三条不同的二次曲线(S、S1、S2)有A、B、C、D四个公共点,其中无三点共线;又直线L0被S、S1、S2各截得一弦.若其中两弦中点重合,则第三弦中点亦重合.证设S、S1的方程为(1)、(2),则S2方程可表为(3).因直线L0(设斜率为k)关于二次曲线S、S1、S2的共轭直径分别为:L:(a11x+a12y+a13)+k(a12x+a22y+a23)=f(x,y)=0因L、L1都通过L0被S与S1所截得的弦PQ与EF的共同中点O,显然L2也必通过点O,故O也是L0被S2所截得的弦GH 的中点.注两直线AB和CD或AD和CB或AC和BD都可看做二次曲线S1的特殊情形,甚至E和F重合于O.故本定理包括了蝴蝶定理众多情形.定理2 设AB∥CD,S和S1是过A、B、C、D四点的任意两条二次曲线.若平行于AB的任意直线与S、S1各有两个交点,则夹在两曲线之间的两线段相等.证设AB、CD的中点分别为M、N,又AB∥CD,故直线MN就是AB关于S和S1的共轭直径,故若平行于AB的任意直线被S、S1所截的弦PQ、EF有共同中点O,故有PE=QF,命题得证.注由于PQ可为AB与CD之间任意平行弦,皆有PE=QF,故夹在S和S1之间的两曲边区域△1和△2面积相等.它酷似蝴蝶两翼,不过并非轴对称,而是沿AB方向共轭.如果世上真有这样的蝴蝶,飞行亦能平衡自如.定理1还可推广得到更一般的结论.定理3 若三条不同的二次曲线S、S1、S2有无三点共线的四个公共点,沿某一确定方向的任意直线L0被S、S1、S2各截得一弦PQ、EF、GH,则三弦中点O、O1、O2之间有向线段之比为常数.证不妨取坐标系使确定方向为x轴.于是该方向(k=0)关于S、S1、S2的共轭直径分别为(参见定理1):L:a11x+a12y+a13=0L1:b11x+b12y+b13=0L2:(a11x+a12y+a13)+λ(b11x+b12y+b13)=0设直线L0方程为y=y0,PQ、EF、GH的中点为O(x0,y0),O1(x1,y0),O2(x2,y0),于是由直径方程知:a11x0+a12y0+a13=0,b11x1+b12y0+b13=0(a11x2+a12y0+a13)+λ(b11x2+b12y0+b13 )=0故a11(x2__0)=λb11(x2__1) (4)即OO2/O2O1=α (a11≠0时) (5)其中α=-λb11/a11是与y0无关的常数(由S、S1、S2三曲线确定.当a11=0时,L∥L0可知L0与S无两个交点,故不在本命题讨论之列).(5)式意即:在指定顺序O、O2、O1之下,两有向线段之比不因L0平行移动而变化.推论在定理3条件下,对任意直线L0所截的三弦中点中,任意两点总在第三点同侧或异侧.当O、O1、O2中有两点重合时,第三点也重合.“蝴蝶定理”虽然如自然界的蝴蝶种类一样千变万化,然而万变不离其宗,核心在于中点弦性质.。

圆锥曲线中点弦问题

圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。

这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。

其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。

一、求中点弦所在直线方程问题例1 过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。

解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:016)12(4)2(8)14(2222=--+--+k x k k x k又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是14)2(82221+-=+k k k x x ,又M 为AB 的中点,所以214)2(422221=+-=+k k k x x , 解得21-=k ,故所求直线方程为042=-+y x 。

解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x ,两式相减得0)(4)(22212221=-+-y y x x ,所以21)(421212121-=++-=--y y x x x x y y ,即21-=AB k , 故所求直线方程为042=-+y x 。

解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,),因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16)2(4)4(1642222y x y x , 两式相减得042=-+y x ,由于过A 、B 的直线只有一条,故所求直线方程为042=-+y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的中点弦问题
一:圆锥曲线的中点弦问题:
遇到中点弦问题常用“韦达定理”或“点差法”求解.
①在椭圆中,以为中点的弦所在直线的斜率;
②在双曲线中,以为中点的弦所在直线的斜率;
③在抛物线中,以为中点的弦所在直线的斜率。

注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0!
1、以定点为中点的弦所在直线的方程
例1、过椭圆14
162
2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

例2、已知双曲线12
2
2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

2、 过定点的弦和平行弦的中点坐标和中点轨迹
例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2
1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

例4、已知椭圆125
752
2=+x y ,求它的斜率为3的弦中点的轨迹方程。

3、 求与中点弦有关的圆锥曲线的方程
例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为
2
1,求椭圆的方程。

∴所求椭圆的方程是125
752
2=+x y 4、圆锥曲线上两点关于某直线对称问题
例6、已知椭圆13
42
2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

五、注意的问题
(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。

利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

答案:1.解:设直线与椭圆的交点为),(11y x A 、),(22y x B
)1,2(M 为AB 的中点 ∴421=+x x 221=+y y
又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x
两式相减得0)(4)(22212221=-+-y y x x
于是0))((4))((21212121=-++-+y y y y x x x x ∴
2
1244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2
11--=-x y ,即042=-+y x 。

2.解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B
则221=+x x ,221=+y y 122121=-y x ,122
222=-y x 两式相减,得
0))((2
1))((21212121=-+--+y y y y x x x x ∴22121
=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩
⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆
这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。

由此题可看到中点弦问题中判断点的M 位置非常重要。

(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2) 若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

3.解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2
10=x 12021==+x x x , 0212y y y =+
又 125752121=+x y ,125
752
222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(221210=-+-x x y y y ∴0212123y x x y y -=-- 32121=--=
x x y y k ∴ 3230=-y ,即2
10-=y ∴点M 的坐标为)2
1,21(-。

4.解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则
x x x 221=+, y y y 221=+ 又 125752121=+x y ,125
752
222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(2121=-+-x x x y y y ,即y
x x x y y 32121-=-- 32121=--=x x y y k ∴33=-y
x ,即0=+y x 由⎪⎩⎪⎨⎧=+=+125
75022x y y x ,得)235,235(-P )235,235(-Q 点M 在椭圆内
∴它的斜率为3的弦中点的轨迹方程为)2
35235(0<<-=+x y x 5.解:设椭圆的方程为122
22=+b
x a y ,则5022=-b a ┅┅① 设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则
210=x ,2
12300-=-=x y ∴12021==+x x x ,12021-==+y y y 又1221221=+b x a y ,1222222=+b
x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b
即0)()(212
212=-+--x x a y y b ∴ 22
2121b
a x x y y =-- ∴ 322=
b a ┅┅② 联立①②解得752=a ,252
=b
6.解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦21P P 的中
点,则12432121=+y x ,12432222=+y x
两式相减得,0)(4)(322212221=-+-y y x x
即0))((4))((321212121=-++-+y y y y x x x x x x x 221=+,y y y 221=+,4
12121-=--x x y y ∴x y 3= 这就是弦21P P 中点P 轨迹方程。

它与直线m x y +=4的交点必须在椭圆内
联立⎩⎨⎧+==m x y x y 43,得⎩⎨⎧-=-=m
y m x 3 则必须满足22433x y -<, 即224
33)3(m m -<,解得1313213132<<-m。

相关文档
最新文档