华南理工大学电机学第四章思考题

合集下载

第四章 思考题参考答案.docx

第四章 思考题参考答案.docx

第四章同步电机思考参考答案1、直流电机是旋转电枢式,是为了要进行机械换向。

同步发电机是因电枢功率大,不宜置于旋转体上,滑动接触导出大电流,不但工艺困难,还会引起滑动接触电阻的铜耗,导致滑动接触因高温而损坏,所以将相对功率较小的励磁回路放在转子上。

2、汽轮机高速,所以发电机p=l,机体相对细长,直径相对小些可降低转子高速旋转引起的离心力,有利于转子材料的选用,汽轮发电机都是卧式的。

水轮机转速低,所以发电机的极数多达几十对,转子直径必需大,才能安置大量的磁极。

水轮机是立式的,故水轮发电机组都是立式的,相应要求配置结构复杂的推力轴承。

3、直流发电机励磁,要受直流发电机(高速)容量的限制,只能应用于中等容量的同步发电机,且直流励磁发电机需要维护。

静止半导体励磁,克服了直流励磁机受容量限制的缺点,主励磁机为交流,避免了直流机换向火花问题,并可减少维护工作量,担任有滑动接触,且要求有可靠性高的整流装置。

旋转半导体励磁,取消了滑动接触。

因为交流主励磁机与同步发电机转子同轴。

励磁机和同步机励磁绕组直接连接。

所以这种方式亦称为无刷励磁,在解决了半导体装置的可靠性问题后,此乃最佳方案。

4、平均每极每相绕组占的槽数不是整数的绕组称为分数槽绕组。

当电机的极对数很多时,采用整数槽绕组会使整个绕组的槽数过多,使设计大受限制。

分数槽绕组和短距、分布一样有利于获得较好的电动势波形。

因为总槽数必须是整数,极数必须是偶数,所以当q=l|时,该绕组至少要有10个极,p=5o5、分布绕组实现了槽与槽的分布,对比一下集中绕组就显而易见了。

短距绕组槽中上层绕组的分布与下层导体的分布是相同的,但两层间错过了一个位置,故绕组实现了层与层的分布。

参看图3-6b。

分数槽绕组各个极面下的槽分布不相同,如将一个单元绕组的各个极对重叠起来, 可见极面下的导体(槽)是分布的,故称之实现了极对间的分布。

参看图4-10bo6、增大发电机容量不外于增大其额定电流和电压,相应地其体积必然增大。

电机学第四版课后答案

电机学第四版课后答案

第一章 磁路 电机学1-1 磁路的磁阻如何计算?磁阻的单位是什么?答:磁路的磁阻与磁路的几何形状(长度、面积)和材料的导磁性能有关,计算公式为AlR m μ=,单位:WbA1-2 铁心中的磁滞损耗和涡流损耗是怎样产生的,它们各与哪些因素有关?答:磁滞损耗:铁磁材料置于交变磁场中,被反复交变磁化,磁畴间相互摩擦引起的损耗。

经验公式V fB C p nm h h =。

与铁磁材料的磁滞损耗系数、磁场交变的频率、铁心的体积及磁化强度有关;涡流损耗:交变的磁场产生交变的电场,在铁心中形成环流(涡流),通过电阻产生的损耗。

经验公式G B f C p m Fe h 23.1≈。

与材料的铁心损耗系数、频率、磁通及铁心重量有关。

1-3 图示铁心线圈,已知线圈的匝数N=1000,铁心厚度为0.025m (铁心由0.35mm 的DR320硅钢片叠成), 叠片系数(即截面中铁的面积与总面积之比)为0.93,不计漏磁,试计算:(1) 中间心柱的磁通为4105.7-⨯Wb ,不计铁心的磁位降时所需的直流励磁电流;(2) 考虑铁心磁位降时,产生同样的磁通量时所需的励磁电流。

解: 磁路左右对称∴可以从中间轴线分开,只考虑右半磁路的情况:铁心、气隙截面2422109.293.01025.1025.0m m A A --⨯=⨯⨯⨯==δ(考虑边缘效应时,通长在气隙截面边长上加一个气隙的长度;气隙截面可以不乘系数)气隙长度m l 41052-⨯==δδ铁心长度()m cm l 21045.122025.025.15225.125.7-⨯=⨯--+⨯⎪⎭⎫⎝⎛-= 铁心、气隙中的磁感应强度T T AB B 29.1109.22105.7244=⨯⨯⨯=Φ==--δ(1) 不计铁心中的磁位降: 气隙磁场强度m A m A B H 67100.110429.1⨯=⨯==-πμδδ磁势A A l H F F I 500105100.146=⨯⋅⨯=⋅==-δδδ电流A NF I I 5.0==(2) 考虑铁心中的磁位降:铁心中T B 29.1= 查表可知:m A H 700=铁心磁位降A A l H F Fe 15.871045.127002=⨯⨯=⋅=-A A A F F F Fe I 15.58715.87500=+=+=δ A NF I I 59.0≈=1-4 图示铁心线圈,线圈A 为100匝,通入电流1.5A ,线圈B 为50匝,通入电流1A ,铁心截面积均匀,求PQ 两点间的磁位降。

思考题答案

思考题答案
2
U1 , 4.44 fN1
l 减小 , 导致电 感 µS
ψ Nφ N × N1i0 N1 增大,励磁电抗 x m = ωLm 也增大。但是漏磁通路径 Lm = 0 = 1 0 = 1 = i0 i0 Rm Rm 0i
是线性磁路, 磁导率是常数,因此漏电抗不变。
U1 可知,励磁电抗越大越好,从而可降低空载电流。漏电抗则要根据变压器不 xm U1 同的使用场合来考虑。对于送电变压器,为了限制短路电流 I K ≈ 和短路时的电磁力,保 xK
[
]
U1 ,因此,电源电压降低,主磁通 Φ m 4.44 fN1
Φm ,因 S 不变, Bm 将随 Φ m 的减小而减小,铁心饱和程度降低,磁 S l 导率 µ 增大,磁阻 Rm = 减小。 µS 根据磁路欧姆定律 I 0 N 1 = Φ m Rm ,磁动势 F0 将减小,当线圈匝数不变时,励磁电流
电机学 课后思考题答案
第二章
2-1.变压器有哪些主要部件,它们的主要作用是什么? 答:铁心 : 构成变压器的磁路 ,同时又起着器身的骨架作用。 绕组: 构成变压器的电路 ,它是变压器输入和输出电能的电气回路。 分接开关 : 变压器为了调压而在高压绕组引出分接头 ,分接开关用以切换分接头 ,从而 实现变压器调压。 油箱和冷却装置 : 油箱容纳器身 ,盛变压器油,兼有散热冷却作用。 绝缘套管 : 变压器绕组引线需借助于绝缘套管与外电路连接, 使带电的绕组引线与接 地的油箱绝缘。 2-2.从物理意义上说明变压器为什么能变压,而不能变频率? 答:变压器原副绕组套在同一个铁芯上 , 原边接上电源后,流过激磁电流 I0, 产生励 磁磁动势 F0 , 在铁芯中产生交变主磁通ф0 , 其频率与电源电压的频率相同, 根据电磁感应 定律, 原副边因交链该磁通而分别产生同频率的感应电动势 e1 和 e2 , 且有 e1 = − N1
̇ ,漏感电动势 E ̇ ,一次绕组电阻压降 I ̇ r ,主电动势 答:一次绕组有主电动势 E 1 1σ 1 1 ̇ 由主磁通 Φ ̇ 由一次绕组漏磁通 Φ ̇ 交变产生,漏感电动势 E ̇ 交变产生。一次绕组电 E 1 0 1σ 1σ ̇ = −E ̇ +I ̇ ( R + jX ) ;二次绕组有主电动势 E ̇ ,漏感电动势 E ̇ ,二 动势平衡方程为 U

电机学课后问题详解

电机学课后问题详解

第一章磁路1-1磁路的磁阻如何计算?磁阻的单位是什么?答:磁路的磁阻与磁路的几何形状(长度、面积)和材料的导磁性能有关,计算公式为R m=TA,单位:AWb1-2铁心中的磁滞损耗和涡流损耗是怎样产生的,它们各与哪些因素有关?答:磁滞损耗:铁磁材料置于交变磁场中,被反复交变磁化,磁畴间相互摩擦引起的损耗。

经验公式P h =C h fB m V。

与铁磁材料的磁滞损耗系数、磁场交变的频率、铁心的体积及磁化强度有关;涡流损耗:交变的磁场产生交变的电场,在铁心中形成环流(涡流),通过电阻产生的损耗。

经验公式P h :-CFe f 1.3B m G。

与材料的铁心损耗系数、频率、磁通及铁心重量有关。

1-3图示铁心线圈,已知线圈的匝数N=1000,铁心厚度为0.025m (铁心由0.35mm的DR320硅钢片叠成),叠片系数(即截面中铁的面积与总面积之比)为0.93,不计漏磁,试计算:(1)中间心柱的磁通为7.5X10土Wb不计铁心的磁位降时所需的直流励磁电流;(2)考虑铁心磁位降时,产生同样的磁通量时所需的励磁电流。

解:;磁路左右对称.可以从中间轴线分开,只考虑右半磁路的情况:铁心、气隙截面A 二 A. =0.025 1.25 10,0.93m2 = 2.9 10*m2(考虑边缘效应时,通长在气隙截面边长上加一个气隙的长度;气隙截面可以不乘系数)气隙长度1黄.=2: =5 10^m(7 5 )“, 铁心长度I 1.25 2 5 -1.25 -0.025 2cm =12.45 10 m12 丿①7 5汇10°铁心、气隙中的磁感应强度B二B 75 104T =1.29T2A 2 汽 2.9 汇10(1)不计铁心中的磁位降:气隙磁场强度H.二旦;=—A'm=:1.0 106 A m° % 4兀汇10磁势F I二F. = H • l . =1.0 106 5 10*A = 500A电流I =旦=0.5AN(2)考虑铁心中的磁位降:铁心中B =1.29T 查表可知:H = 700A m铁心磁位降F F°二H l =700 12.45 10‘A=87.15AF I=F . F F e =500A87.15A =587.15AI 上:0.59AN1-4图示铁心线圈,线圈 A 为100匝,通入电流1.5A ,线圈B 为50匝,通入电流1A ,铁心截面积均匀,求 PQ 两点间的磁位降。

思考题与习题答案部分

思考题与习题答案部分

2016--2017学年五年级数学第一学期期中质量检测卷一、填空。

(每空1分,共20分,)1.5.74的10倍是(); 3.25的一半是()。

2. 5.2×2.78的积有()位小数。

3.在括号里填上“>、=、或 < ”7.9×0.8()7.9 2.1÷1.02()2.10.89÷0.98()0.89 4.25×1.1()4.251.666()1.6。

4÷5()0.84.一个算式的商 5.6,如果被除数和除数同时扩大100倍,商是()。

5.3.2525,,是()小数,循环节是(),用简便记法写(),保留三位小数是()。

6.在0.585 0.58?0.58??0.5?85?0.588这五个数中,最大的数是(),最小的数是()。

7.如图2:A点用数对表示为(1,1),B点用数对表示为(,), C点用数对表示为(,),三角形ABC是()三角形。

8.王阿姨用一根25米长的红丝带包装礼盒。

每个礼盒要用1.5米长的丝带,这些红丝带可以包装()个礼盒。

二、判断题(每小题1分,计5分)1.一个小数乘0.01,就是把这个小数缩小100倍。

()2.两个小数相乘的积一定比1小。

()3.一个不为零的数除以大于1的数,商一定比原数小。

()4.循环小数都是无限小数. ( )5.0.6时等于6分。

()三、选择题(每小题2分,计10分)1.下面各题的商小于1的是。

( )。

A、6.04÷6B、0.84÷28C、 76.5÷452.与91.2÷0.57得数相同的算式是( )A、 912÷57 B 、9.12÷57 C 、9120÷573.3.5÷0.01与3.5×0.01的计算结果比较()A、商较大B、积较大C、一样大4.一个三位小数四舍五入后为5.50,这个三位小数最大可能是()。

华南理工大学电机学第四章思考题

华南理工大学电机学第四章思考题

4-1 把一台三相感应电动机用原动机驱动,使其转速n 高于旋转磁场的转速s n ,定子接到三相交流电源,试分析转子导条中感应电动势和电流的方向。

这时电磁转矩的方向和性质是怎样的若把原动机去掉,电机的转速有何变化为什么【答】 感应电动机处于发电机状态,转子感应电动势、转子有功电流的方向如图所示,应用右手定则判断。

站在转子上观察时,电磁转矩e T 的方向与转子的转向相反,即电磁转矩e T 属于制动性质的转矩。

若把原动机去掉,即把与制动性质电磁转矩e T 平衡的原动机的驱动转矩去掉,电动机将在电磁转矩e T 的作用下减速,回到电动机状态。

4-2 有一台三相绕线型感应电动机,若将其定子三相短路,转子中通入频率为1f 的三相交流电流,问气隙旋转磁场相对于转子和相对于空间的转速及转子的转向。

【答】 假设转子中频率为1f 的交流电流建立逆时针方向旋转的气隙旋转磁场,相对于转子的转速为p f n s 160=;若转子不转,根据左手定则,定子将受到逆时针方向的电磁转矩e T ,由牛顿第三定律可知,定子不转时,转子为顺时针旋转,设其转速为n ,则气隙旋转磁场相对于定子的转速为n n s -。

4-3 三相感应电动机的转速变化时,转子所生磁动势在空间的转速是否改变为什么 【答】 不变。

因为转子所产生的磁动势2F 相对于转子的转速为n sn p f s p f n s ∆====1226060,而转子本身又以转速n 在旋转。

因此,从定子侧观看时,2F 在空间的转速应为()s s n n n n n n =+-=+∆,即无论转子的实际转速是多少,转子磁动势和定子磁动势在空间的转速总是等于同步转速s n ,在空间保持相对静止。

4-4 频率归算时,用等效的静止转子去代替实际旋转的转子,这样做是否影响定子边的电流、功率因数、输入功率和电机的电磁功率为什么【答】 频率归算前后,转子电流的幅值及其阻抗角都没有变化,转子磁动势幅值的相位也不变,即两种情况下转子反应相同,那么定子的所有物理量以及电磁功率亦都保持不变。

华南理工电机学课后习题及答案

华南理工电机学课后习题及答案

华南理工电机学课后习题及答案第-篇直流电机1.在直流发电机屮,电刷顺着电枢旋转方向移动一角度后,负载时,(C )A只有直轴电枢反应磁势。

B只有交轴电枢反应磁势。

C直轴和交轴电枢反应磁势都有,而且直轴电枢反应为去磁性质。

D 直轴和交轴电枢反应磁势都有,而II直轴电枢反应为助磁性质。

2.单波绕组的并联支路数应等于(A )A2 B极对数p C极数2p D换向片数k3.电磁转矩应等于(B )A Ce<I)nB CT(DIaC P2/QD CeKflfla3. 电磁转矩应等于(B )A CeOnB CT中laC P2/QD CeKflfla4.他励发电机外特性是指转速恒定且(A )A励磁电流恒定时,发电机端电压与线路电流之间的关系。

B发电机端电压恒定时,励磁电流与线路电流之间的关系。

C发电机线路电流恒定时,发电机端电压与励磁电流之间的关系。

D发电机端电压恒定时,励磁电压与线路电流之间的关系。

5.他励发屯机的调整特性是(B )A卜垂C水平D没准6.下列说法错误的是(C )A直流电动机制动的方法有能耗制动、反接制动和冋馈制动。

B直流电动机起动的方法有直接起动、电枢回路串电阻起动和降压起动。

C串励电动机允许空载运行。

D串励电动机的优点足有较大的起动转矩和过载能力。

7.电磁功率应等于(A)A EalaB Pl+pOC P2-p08.单叠绕组的并联支路数应等于(C )A 2 B极对数p C极数2p9.感应电动势应等于(A )A CeOnB CTOIaC P2 /la10.对于能耗制动来说,下列说法错误的是(A )A能量冋馈到电网。

B电机内仍符主磁场。

C电机变成他励发电机。

D T2QD换向片数kI) CTKfTflaD电磁转矩为制动性转矩。

13.A 用虚槽数计算的节距有(ABD第一节距 B 第二节距)oC换向器节距 D 合成节距14.直流电动机的电磁功率表达式有(BCD)oAPl-pO B TeQC Pl-pcuf-pcuaD Eala14.直流电动机的电磁功率表达式有( BCD )<,APl-pO B TeQc Pl-pcuf-pcuaD Eala15.并励直流发电机的自励条件有(ACD)oA磁路中必须有剩磁B 电枢回路的总电阻必须小于临界电阻C 励磁磁动势与剩磁方向相同 D励磁回路的总电阻必须小P 临界电阻16.并励直流发电机外特性的特点是(ABC )。

电机思考题答案

电机思考题答案

1)在系统启动过程的第2阶段中,理想的电流特性为:实际值小于给定/设定
值,试说明为何?
答:这是因为电动机反电动势呈线性增加,该扰动为一斜波扰动,而按典型Ⅰ型系统设计的ACR无法消除静差,因此实际值便小于给定值。

2)动态性能中,电流/转速特性的“超调量”与理论值是否有偏差?;如有偏
差,试给出分析/解释
答:动态性能中电流/转速特性的“超调量”与理论值有偏差,这可能是由于建模过程中的近似和计算过程中的舍入误差造成的。

3)在“双闭环直流电动机调速系统”中,电流调节器与速度调节器的输出都要
设置“限幅”,试说明:你是如何选取限幅值的
答:首先由电机的过载能力和拖动系统允许的最大加速度确定最大电流I dm,用I dm乘以ACR 反馈系数就得到了限幅值
4)假设系统中的励磁电压减小/增加,试说明:系统转速将可能怎样变化?
答:系统中的励磁电压减小,则会导致励磁电流减少,励磁电流与主磁通基本成正比例关系。

反映到系统动态结构图中为参数T m变大。

在双闭环结构中,这基本上不会影响电机稳态转速,但是系统的启动时间和抗扰恢复时间会变长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南理工大学电机学第四章思考题4-1 把一台三相感应电动机用原动机驱动,使其转速n 高于旋转磁场的转速sn ,定子接到三相交流电源,试分析转子导条中感应电动势和电流的方向。

这时电磁转矩的方向和性质是怎样的?若把原动机去掉,电机的转速有何变化?为什么? 【答】 感应电动机处于发电机状态,转子感应电动势、转子有功电流的方向如图所示,应用右手定则判断。

站在转子上观察时,电磁转矩eT 的方向与转子的转向相反,即电磁转矩eT 属于制动性质的转矩。

若把原动机去掉,即把与制动性质电磁转矩eT 平衡的原动机的驱动转矩去掉,电动机将在电磁转矩eT 的作用下减速,回到电动机状态。

4-2 有一台三相绕线型感应电动机,若将其定子三相短路,转子中通入频率为1f 的三相交流电流,问气隙旋转磁场相对于转子和相对于空间的转速及转子的转向。

【答】 假设转子中频率为1f 的交流电流建立逆时针方向旋转的气隙旋转磁场,相对于转子的转速为pf n s 160=;若转子不转,根据左手定则,定子将受到逆时针方向的电磁转矩eT ,由牛顿第三定律可知,定子不转时,转子为顺时针旋转,设其转速为n ,则气隙旋转磁场相对于定子的转速为nn s-。

4-3 三相感应电动机的转速变化时,转子所生磁动势在空间的转速是否改变?为什么? 【答】 不变。

因为转子所产生的磁动势2F 相对于转子的转速为nsn p f s p f ns ∆====1226060,而转子本身又以转速n 在旋转。

因此,从定子侧观看时,2F 在空间的转速应为()ssn n n nn n =+-=+∆,即无论转子的实际转速是多少,转子磁动势和定子磁动势在空间的转速总是等于同步转速sn ,在空间保持相对静止。

4-4 频率归算时,用等效的静止转子去代替实际旋转的转子,这样做是否影响定子边的电流、功率因数、输入功率和电机的电磁功率?为什么?【答】 频率归算前后,转子电流的幅值及其阻抗角都没有变化,转子磁动势幅值的相位也不变,即两种情况下转子反应相同,那么定子的所有物理量以及电磁功率亦都保持不变。

4-5 三相感应电动机的定、转子电路其频率互不相同,在T 形等效电路中为什么能把它们画在一起?【答】 主要原因是进行了频率归算。

即用一个静止的电阻为s R 2的等效转子先代替电阻为2R 的实际旋转的转子,等效转子和实际转子具有同样的转子磁动势,经过频率归算后,就定子而言,旋转的实际转子和等效的静止转子其效果完全相同。

所以,虽然两者的频率不相同,却可在T 型等效电路中画在一起。

4-6 感应电动机等效电路中的'21R ss-代表什么?能否不用电阻而用一个电抗去代替?为什么? 【答】'21R ss -是代表与归算到定子边的转子所产生的机械功率相对应的等效电阻,从数量上看,ssR I m P i -=1''2222等效代替了电机轴上的功率。

转差率s 的大小代表电机的运行状态:电动机状态,10<<s ,01'2>-R ss ,0>iP ,代表电动机轴上输出一个机械功率;发电机状态,0<s ,01'2<-Rss,0<iP ,代表发电机上输入一个机械功率;电磁制动状态,1>s ,表示旋转磁场的转向与转子转向相反,电磁转矩方向与转子转向相反,同样表示01'2<-Rss,0<iP ,电机轴上将产生一个制动作用的机械功率。

它不能用一个电抗去代替。

因为电动机输出的机械功率是有功的,故只能用有功元件——电阻表示。

4-7 感应电动机轴上所带的负载增大时,定子电流就会增大,试说明其原因和物理过程。

【答】 负载增大时,电机转速下降,转差率上升,转子绕组切割磁力线的速度增加,转子的感应电动势、感应电流相应增大,转子磁动势也增大,由磁动势平衡关系)+(-∙∙∙=2m1F F F 可知,定子磁动势也增大,所以定子电流就会增大。

4-8 为什么感应电动机的转子铜耗称为转差功率?【答】 因为电磁功率eP 传送到转子后,在转子绕组中要消耗的铜耗eCu sP R I m p=='22222',即转子铜耗与电磁功率eP 和转差率s 成正比,故转子铜耗也称为转差功率。

4-9 为什么感应电动机的功率因数总是滞后的,试说明其原因。

【答】 感应电动机定、转子间的电磁关系犹如变压器,电子电流∙1I 也由空载电流∙I 和负载分量电流∙LI 1两部分组成。

① ∙0I 维持气隙主磁通和漏磁通,需从电网吸收一定的滞后无功电流;② 负载分量电流∙LI 1取决于转子电路。

由等效电路可知,电动机轴上输出的机械功率(还包括机械损耗等)只能用转子电流流过虚拟的附加电阻'21R ss -所消耗的功率来代替,因为输出的机械功率是有功的,故只能用有功元件——电阻来等效代替。

再加上转子绕组的漏阻抗,故转子电流只可能是滞后无功电流,则与转子平衡的定子负载分量也只能是滞后的无功电流,因此异步电动机的功率因数总是滞后的。

4-10 感应电动机驱动额定负载运行时,若电源电压下降过多,往往会使电机严重过热,甚至烧毁,试说明其原因。

【答】 由于Ω+++=P p p pP Cu Fe Cu 211,又11111cos ϕI U m P =, 负载不变,则1P 不变,1U 降低,则导致1I 升高,铜耗增大。

所以当电压下降过多时,会使电机过热甚至烧损。

分析此过程也可从s T e-曲线来考虑,U ↓→eT ↓→n ↓,造成电机堵转或“爬行”,从而烧损。

如图所示,电源电压下降过多,s T e-曲线与负载的机械特性将失去交点,即机组因Le T T <而停转。

而此时电源电压仍然加在电机上,电机处于堵转状态,也就是短路状态。

虽然电源电压较低,但短路电流仍然很大,故电机将严重过热甚至烧毁。

若s T e-曲线与负载的机械特性仍有交点,那交点的横坐标即cs 必然很大。

此时转子铜耗ec Cu P s p =2很大,故电机将严重过热甚至烧毁。

4-11 试说明笼型转子的极数和相数是如何确定的,端环的漏阻抗是如何归并到导条中去的。

【答】 (1)笼型转子的极数取决于气隙磁场的极数,而本身并没有固定的极数。

一个处于两极气隙磁场里的笼型转子由于旋转磁场mB 先后切割处在不同位置的导条,在每根导条中将感生不同的电动势,由于导条和端环具有电阻和漏抗,所以导条电流要滞后导条电动势一个阻抗角2ψ,导条电流所产生的转子磁动势2F 的基波幅值在电流分布在轴线上。

由于导条内的电流分布取决于气隙主磁场的极数,故笼型转子的极数与产生它的定子磁场的极数恒相一致,且定、转子磁动势波始终保持相互静止。

(2)设气隙磁场为正弦分布,则导条中的感应磁动势也随时间正弦变化;相邻导条的电动势相量之间将互差2α角,则22360Q p ︒⨯=α,式中2Q 为转子槽数(即转子的导条数)。

若p Q 2为整数,则一对极下所有导条的电动势相量将构成一个均匀分布的电动势星形图,即笼型绕组是一个幅值相等、相位相差2α角的多相对称绕组,其中每对极下的每一根导条就构成一相,所以笼型转子的相数为pQ m 22=。

若p Q 2为分数,可认为在p 对极内总共有2Q相,此时22Q m=。

(3)由于每段端环同时与相邻两根导条连接,导条与端环内的电流互不相等,端环漏阻抗很难分清属于哪一相。

因此要确定每相的阻抗,需要进行电路的等效变换,把端环的多边形阻抗化成等效的星形阻抗,然后才能将它归并到导条阻抗中去。

4-12 一台感应电动机的性能可以从哪些方面和用哪些指标来衡量?【答】 感应电动机的特性可分为运行和起动两方面,运行方面的指标有:额定效率Nη、额定功率因数Nϕcos 、最大转矩倍数NTm ax。

起动方面的指标有:起动电流倍数NstI I 、起动转矩倍数NstT T。

4-13 增大感应电机转子的电阻或漏抗对起动电流、起动转矩、最大转矩、额定转速、额定效率有何影响?【答】 增加感应电机转子的电阻,起动电流()()2'212'211οοcX XcRRU I st +++=减小,由于临界转差率()2'2121'2οοcXX R cR s m ++±=增加,同时起动转矩()()2'212'21'2211οοcX X cR R R U m T s st +++Ω±=增大,但最大转矩()⎥⎦⎤⎢⎣⎡+±Ω±=2'21211211max2οοcX X R R c U mT s++不变,而转差率为eCu P p s 2=,转子铜耗2Cu p 与转子电流的平方成正比增大,电磁功率eP 则近似与转子电流的一次方成正比增大,增加转子电阻使转子电流增大,即转差率也增大,转速()s n n s-=1略微减小,额定效率11P p N ∑-=η,定、转子电流增大,铜耗增大,则额定效率降低,转子边有功分量增加,则额定功率因数11112cos I U m P N=ϕ增加;增加转子漏抗,起动电流、起动转矩、最大转矩都减小,额定转速减小,额定效率不变,额定功率因数降低。

4-14 试述转子电阻、电源电压对感应电动机sT e-曲线的影响。

【答】 感应电动机的电磁转矩()2'212'21'2211οοcX X s R c R s R Um T s e ++⎪⎪⎭⎫ ⎝⎛+Ω±=,而最大转矩()⎥⎦⎤⎢⎣⎡+±Ω±=2'21211211max2οοcX X R R c U m T s++,对应的临界转差率()2'2121'2οοcX X R cR s m ++±=,由此可知,最大转矩的大小与转子电阻的数值无关,但增大转子电阻,临界转差率ms 增大,即s T e-曲线的最大值往左偏移;临界转差率的大小与电源电压的大小无关,但增大电源电压,s T e-曲线上移。

4-15 三相感应电动机的参数如何测定?如何利用参数算出电动机的主要性能数据? 【答】 (1)利用空载试验:计算出221012020R I U R Z X -⎪⎪⎭⎫ ⎝⎛=-=…(1),式中mX X X+=ο10,mR R R+=ο10,其中2101Im p R Fe m =…(2),2101101Im p p P R Fe Ω--=…(3),ο10X X X m +=…(4),为了求出mX ,我们进行堵转试验,根据堵转试验,我们求出堵转时的阻抗,即短路阻抗kZ 、电阻kR 和电抗kX ,其中kkI U Z11=,2111kk kIm P R=,22k kk R Z X -=,由此可算出:()kk X X X R R R --=001'2… (5),若假定'21οοX X=,则有00'211X X X X X Xkiki-+==οο,(式中2002'2XX X R X Xkk ki--=)… (6),再将(6)代入(4)中即可求出mX 。

相关文档
最新文档