线性代数—二次型的标准形和规范形

合集下载

二次型标准型和规范型

二次型标准型和规范型

二次型标准型和规范型二次型是数学中的一个重要概念,它在线性代数和微分几何中都有着广泛的应用。

在二次型的研究中,标准型和规范型是两个重要的概念,它们在二次型的研究和应用中起着至关重要的作用。

首先,我们来看一下二次型的标准型。

二次型的标准型是指通过合同变换将二次型化为一种特殊的形式,使得二次型的系数矩阵为对角矩阵。

对角矩阵的形式使得二次型的计算和分析变得更加简单和直观。

通过合同变换,我们可以将任意的二次型化为标准型,这为我们研究和应用二次型提供了方便。

接下来,我们来讨论二次型的规范型。

二次型的规范型是指通过正交变换将二次型化为一种特殊的形式,使得二次型的系数矩阵为对角矩阵,并且对角元素为1或-1。

规范型的形式使得二次型的计算和分析变得更加简单和规范化。

通过正交变换,我们可以将任意的二次型化为规范型,这为我们研究和应用二次型提供了便利。

二次型的标准型和规范型在实际问题中有着重要的应用。

例如,在物理学中,二次型常常用来描述物体的能量、惯性等性质。

通过将二次型化为标准型或规范型,我们可以更加直观地理解和分析物体的性质。

在工程学中,二次型常常用来描述材料的弹性、刚性等性质。

通过将二次型化为标准型或规范型,我们可以更加方便地计算和分析材料的性质。

总之,二次型的标准型和规范型是二次型研究中的重要概念,它们通过合同变换和正交变换将二次型化为特殊的形式,使得二次型的计算和分析变得更加简单和直观。

在实际问题中,标准型和规范型为我们理解和应用二次型提供了重要的工具。

希望本文能够帮助读者更加深入地理解二次型的标准型和规范型,以及它们在数学和应用中的重要作用。

二次型的规范形与标准形

二次型的规范形与标准形

二次型的规范形与标准形在线性代数中,二次型是由一组变量的二次多项式构成的一类函数。

它在数学和应用领域都有广泛的应用。

对于任意二次型,可以通过适当的线性变换将其化为规范形或标准形。

本文将介绍二次型的规范形和标准形,并探讨它们的性质和应用。

1. 二次型的定义和性质二次型是由变量x1,x2,...,xn 的二次多项式构成的函数。

通常表示为Q(x) = x^T A x,其中x = (x1, x2, ..., xn)^T 是变量向量,A 是实对称矩阵。

二次型具有以下性质:- 对称性:Q(x) = Q(x^T)- 齐次性:Q(kx) = k^2 Q(x),对任意实数k- 加性:Q(x + y) = Q(x) + Q(y),对任意向量x,y2. 二次型的规范形对于任意二次型Q(x),可以通过合适的变量变换将其化为规范形。

规范形是一种特殊的形式,使得无法再通过线性变换进一步简化。

规范形的形式如下:Q(x) = λ1 y1^2 + λ2 y2^2 + ... + λn yn^2其中,λ1,λ2,...,λn 是实数,y1,y2,...,yn 是规范变量。

通过矩阵的特征值分解,可以得到二次型的规范形。

具体步骤如下:- 求出二次型Q(x)对应的对称矩阵A的特征值λ1,λ2,...,λn- 对应每个特征值λi,求出对应的特征向量yi- 将特征向量yi按列排列得到矩阵P = (y1, y2, ..., yn)- 规范形为Q(x) = P^T Δ P,其中,Δ = diag(λ1, λ2, ..., λn) 是特征值对角矩阵3. 二次型的标准形二次型的标准形是规范形的一种特殊情况,对应于所有特征值都是1或-1的情况。

标准形的形式如下:Q(x) = y1^2 + y2^2 + ... + yn^2对于特征值λi = 1,取对应的特征向量yi作为标准变量;对于特征值λi = -1,取对应的特征向量yi的相反数作为标准变量。

相比规范形,标准形更加简洁,且易于分析和计算。

二次型标准型和规范型

二次型标准型和规范型

二次型标准型和规范型二次型是代数学中的一个重要概念,它在线性代数和矩阵理论中有着广泛应用。

二次型标准型和规范型是将一个任意的二次型通过线性变换化为一个简化的形式,使得我们可以更方便地研究和分析二次型的性质。

一个二次型可以表示为如下形式:$$Q(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n}a_{ij}x_ix_j$$其中 $x_1, x_2, \dots, x_n$ 是变量,$a_{ij}$ 是常数。

二次型的标准型是指将二次型中的二次项化为平方和的形式。

对于一个二次型 $Q(x)$,假设其矩阵为 $A$,则存在一个非奇异矩阵 $P$,使得:$$P^TAP = D$$其中 $D$ 是对角阵,对角线上的元素称为二次型的标准型系数。

标准型的特点是二次型的二次项仅包含平方和,没有交叉项和混合项。

这样的形式更简单,更容易研究和分析。

为了得到二次型的标准型,需要进行正交变换。

正交变换可以通过选取一组特殊的基进行,其中基向量之间两两正交且模长为1。

设有一组基向量 $p_1, p_2, \dots, p_n$,构成正交矩阵$P = [p_1, p_2, \dots, p_n]$,则有 $P^TP = I$。

通过变换 $y = Px$,可以得到新的变量 $y$ 对应的二次型 $Q(y)$。

从而有:$$Q(y) = Q(Px) = x^TP^TAPx = x^TDx$$其中 $D = P^TAP$,$D$ 是一个对角阵,对角线上的元素就是二次型的标准型系数。

在二次型的标准型基础上,可以进一步进行规范化处理。

规范化处理是将标准型系数中的非零元素变为1或-1,以及调整它们的顺序。

具体步骤如下:1. 如果标准型系数中存在非零元素 $d_{ii}$,则可以将其除以本身的绝对值,将其变为1或-1。

2. 如果标准型系数中存在连续的非零元素 $d_{ii}$ 和 $d_{i+1, i+1}$,且它们同号,则可以将 $d_{i+1, i+1}$ 变为与$d_{ii}$ 同号,并将它直接相加;如果符号相反,则将它们的绝对值取为1。

二次型的标准形与规范形

二次型的标准形与规范形

二次型的标准形与规范形引言在线性代数中,二次型是一个重要的概念。

它在解决优化问题、矩阵分析以及其他数学领域中有广泛的应用。

二次型可以通过变换来改变其表达形式,其中标准形和规范形是常用的两种变换形式。

本文将重点介绍二次型的标准形和规范形,并探讨它们的性质和应用。

二次型的定义在矩阵和向量的帮助下,我们可以定义二次型。

给定一个实对称矩阵A和一个实列向量$\\mathbf{x}$,一个二次型可以表示为$\\mathbf{x}^TA\\mathbf{x}$。

其中,A是一个$n\\times n$的实对称矩阵,$\\mathbf{x}$是一个n维实列向量。

二次型可以看作是向量$\\mathbf{x}$和矩阵A的乘积的形式。

二次型的标准形二次型的标准形是一个最简化的表达形式,可以通过合适的变换将任意的二次型转化为标准形。

标准形的特点是只有对角线上有非零元素,其余位置上都是零。

为了找到这样的标准形,我们需要进行特征值分解。

特征值分解根据实对称矩阵特征值的性质,矩阵A可以通过特征值分解表示为A=PDP T,其中P是由A的特征向量组成的正交矩阵,D是由特征值组成的对角矩阵。

将特征值代入二次型$\\mathbf{x}^TA\\mathbf{x}$中,可以得到$\\mathbf{x}^T(PDP^T)\\mathbf{x}$。

根据矩阵乘法的结合律,上式可以变为$(P^T\\mathbf{x})^TD(P^T\\mathbf{x})$。

标准形的规定为了将矩阵A转化为标准形,需要定义一个新的变量$\\mathbf{y} =P^T\\mathbf{x}$,其中$\\mathbf{y}$和$\\mathbf{x}$的关系可以写为$\\mathbf{x} = P\\mathbf{y}$。

带入二次型的表达式中,可以得到$\\mathbf{x}^TA\\mathbf{x} = \\mathbf{y}^TD\\mathbf{y}$。

根据特征值分解的性质,可以进一步将$\\mathbf{y}^TD\\mathbf{y}$化简为$y_1^2 + y_2^2 +\\ldots + y_n^2$。

二次型标准型和规范型

二次型标准型和规范型

二次型标准型和规范型二次型是矩阵形式的二次函数,通常用向量和矩阵的乘积来表示。

在线性代数中,二次型是一种将一个多元变量的向量映射到实数的函数,常用于描述抽象空间中的二次曲面。

对于一个n维实向量空间V上的二次型,可以通过一个对称矩阵A来定义,即二次型的矩阵表达式为Q(x) = x^T Ax,其中x是一个列向量。

二次型的标准型是指将二次型通过合适的线性变换转化为一个特定的形式,这个形式更便于研究和计算。

在实数域上,任何一个n维非退化二次型都可以通过合适的正交变换(即特征变换)化为标准型,即形如Q(x) = λ1y1^2 + λ2y2^2 + ... +λnyn^2,其中λi为非零实数,yi为变换后的新变量。

标准型中的每一项都是对应新变量的平方项,没有交叉项。

二次型的规范型是指将二次型通过一个线性变换转化为一个更简洁的形式,通常是对标准型进行变换。

规范型的形式为Q(x) = y1^2 + y2^2 + ... + yn^2,其中yi为变换后的新变量。

规范型相对于标准型来说,更加精简,变量之间没有相关性,也没有尺度差异。

这样的形式能够更好地研究和理解二次型的性质。

转化为二次型的标准型和规范型在研究和计算中起着重要的作用。

它们可以帮助我们更好地理解二次型的本质和性质,更清晰地描述和分析问题。

同时,标准型和规范型之间的转化可以通过线性变换来实现,这种变换能够保持二次型的性质不变,因此在问题求解中也可以通过变换将二次型转化为更容易处理的形式,简化计算过程。

总之,二次型的标准型和规范型是对其矩阵表达形式进行变换,将其转化为更方便研究和计算的形式。

标准型通过正交变换将二次型转化为形如λ1y1^2 + λ2y2^2 + ... + λnyn^2的形式,其中λi为非零实数,yi为变换后的新变量。

规范型是对标准型进行变换,将其转化为更简洁、更方便理解和分析的形式Q(x) = y1^2 + y2^2 + ... + yn^2,其中yi为变换后的新变量。

线性代数知识点总结(第6章)

线性代数知识点总结(第6章)

线性代数知识点总结(第6章)(一)二次型及其标准形1、二次型:(1)一般形式(2)矩阵形式(常用)2、标准形:如果二次型只含平方项,即f(x1,x2,…,x n)=d1x12+d2x22+…+d n x n2这样的二次型称为标准形(对角线)3、二次型化为标准形的方法:(1)配方法:通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。

其中,可逆线性变换及标准形通过先配方再换元得到。

★(2)正交变换法:通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λn y n2其中,λ1,λ2,…,λn是A的n个特征值,Q为A的正交矩阵注:正交矩阵Q不唯一,γi与λi对应即可。

(二)惯性定理及规范形4、定义:正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;规范形:f=z12+…z p2-z p+12-…-z p+q2称为二次型的规范形。

5、惯性定理:二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。

注:(1)由于正负惯性指数不变,所以规范形唯一。

(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)(三)合同矩阵6、定义:A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=C T AC,称A与B合同△7、总结:n阶实对称矩阵A、B的关系(1)A、B相似(B=P-1AP)←→相同的特征值(2)A、B合同(B=C T AC)←→相同的正负惯性指数←→相同的正负特征值的个数(3)A、B等价(B=PAQ)←→r(A)=r(B)注:实对称矩阵相似必合同,合同必等价(四)正定二次型与正定矩阵8、正定的定义二次型x T Ax,如果任意x≠0,恒有x T Ax>0,则称二次型正定,并称实对称矩阵A是正定矩阵。

9、n元二次型x T Ax正定充要条件:(1)A的正惯性指数为n(2)A与E合同,即存在可逆矩阵C,使得A=C T C或C T AC=E(3)A的特征值均大于0(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)10、n元二次型x T Ax正定必要条件:(1)a ii>0(2)|A|>011、总结:二次型x T Ax正定判定(大题)(1)A为数字:顺序主子式均大于0(2)A为抽象:①证A为实对称矩阵:A T=A;②再由定义或特征值判定12、重要结论:(1)若A是正定矩阵,则kA(k>0),A k,A T,A-1,A*正定(2)若A、B均为正定矩阵,则A+B正定。

4.2 二次型的标准型与规范型

4.2 二次型的标准型与规范型

4.2 二次型的标准型与规范型二次型是一个重要的数学概念,常常出现在线性代数和数学分析中。

在研究二次型的性质时,我们可以通过对其进行特征值分解来得到其标准型和规范型。

本文将对二次型的标准型与规范型进行详细阐述。

1. 二次型二次型是指形如 $f(x)=x^TAx$ 的二次齐次多项式,其中 $x$ 是 $n$ 维实向量,$A$ 是 $n$ 阶实对称矩阵。

其中 $n$ 称为二次型的阶数。

二次型具有以下性质:(1)对称性:$f(x)=x^TAx=x^T(A^T)x=f(x)$;(2)齐次性:$f(kx)=k^2f(x)$,其中 $k$ 是常数;(3)线性性:$f(x+y)=f(x)+f(y)$;(4)正定性:如果对于任意非零 $x$,有 $f(x)>0$,则称这个二次型是正定的;(8)无定性:如果既不是正定的,也不是负定的,则称这个二次型是无定性的。

2. 标准型标准型是指经过矩阵相似变换得到的对角矩阵。

标准型对于研究二次型的性质非常方便,因为对角矩阵的特殊性质使得二次型的性质易于判断。

我们可以通过以下步骤获得一个二次型的标准型:(1)求出二次型的矩阵 $A$ 的特征值和特征向量;(2)将特征向量按对应的特征值大小排列,组成矩阵 $P=[p_1, p_2, \cdots, p_n]$;(3)令 $D=\begin{bmatrix}\lambda_1 & & \\& \ddots & \\& & \lambda_n\end{bmatrix}$,其中 $\lambda_i$ 是矩阵 $A$ 的第 $i$ 个特征值;(4)则可得到一个相似变换矩阵 $T=P^{-1}$,使得 $T^{-1}AT=D$。

此时,$D$ 即为该二次型的标准型。

标准型的优点在于可以直接通过特征值的正负性判断二次型是否正定、负定或者无定。

例如,如果所有的特征值都为正,则该二次型是正定的;如果所有的特征值都为负,则该二次型是负定的;如果特征值有正有负,则该二次型是无定性的。

线性代数4.2 二次型的标准形与规范形

线性代数4.2 二次型的标准形与规范形
a11 a12 ... a1n x1 f ( x1 , x2 ,..., xn ) = x Ax= ( x1 , x2 ,..., xn ) a a ... a 21 22 2n x2 ⋮ ⋮ ⋮ ⋮ 经过非退化线性替换 x = Cy a an2 ... ann x n1 n x1 c11 c12 ... c1n y1 ↑
2 2 2 f ( x1 , x2 , x3 )化为 f = y1 − y2 + 4 y3
y1= x1− x2 + x3 令 y2 = 2 x 2 + x 3 y3 = x 3
标准形
2 2 2 f ( x1 , x2 , x3 ) = x1 − 3 x2 + 4 x3 − 2 x1 x2 + 2 x1 x3 − 6 x2 x3
2 2 2 f ( x1 , x2 , x3 ) = y1 − y2 + 4 y3
B= C T AC

B
对称矩阵A与对角矩阵合同. 对称矩阵A与对角矩阵合同.
例 将 f ( x1 , x2 , x3 ) = 2 x1 x2 + 2 x1 x3 − 4 x2 x3 化为规范形. 化为规范 规范形
制造”平方项. 此二次型没有平方项, 此二次型没有平方项, 先“制造”平方项. f ( x1 , x2 , x3 ) = 2 y1 ( y1 + y2 ) + 2 y1 y3 −4 ( y1 + y2 ) y3 解 令
2 2 = ( x1− x2 + x3 )2−4x2 +3 x3−4 x2 x3 2 2 2 = ( x1 − x2 + x3 )2 +(− x 2x2 −4x2x 33+x3) + 3x3 + x3 −(4 42 + 4 x 2 x 2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 1 0 0 1 0 0 1
x1 z1 z2 3z3
对应的线性变换为
x2
z1
z2
z3
.
x3
z3
9
2、用正交变换法化二次型为标准形 由上节定理可知,对实对称阵 A,总可找到正交
阵 P,使 P 1 AP 为对角阵,而由正交阵性质可知,
P 1 P T ,故 P 1 AP P T AP 。因此这样的正交
化为标准形,并求所作的正交变换。
解 二次型的矩阵
17 2 2
A 2 14 4
2 4 14
17 2
2
E A 2 14 4 ( 18)2( 9) ,
2
4 14
12
17 2
2
E A 2 14 4 ( 18)2( 9) ,
2
4 14
8 2 2 2 5 4
( x1 x2 x3 )2 ( x2 2x3 )2 ,
5
f ( x1 x2 x3 )2 ( x2 2x3 )2 ,

y1 y2
x1 x2 x2 2x3
x3
x1 x2
y1 y2 y2 2 y3
y3
y3
x3
x3 y3
x1 1 1 1 y1
含有平方项
含有x1的项配方
解 f x12 2 x22 5 x32 2 x1 x2 2 x1 x3 6 x2 x3
x12
2x1 x2
2x1 x3
2
x
2 2
5
x
2 3
6x2 x3
( x1 x2 x3 )2 x22 x32 2x2 x3 2x22 5x32 6x2 x3
( x1 x2 x3 )2 x22 4x32 4去x2掉x3 配方后多出来的项
阵 P 正好用来作为变换 X CY 中的矩阵 C。
当 C 是正交阵时,我们称X CY 是一个正交变换。
定理 任何二次型都可以通过正交变换化为标准形。
10
用正交变换化二次型为标准形的具体步骤
1. 将二次型表成矩阵形式 f X T AX ,求出A ;
2. 求出A的所有特征值 1, 2 , , n ;
题。
下面介绍二次型化为标准形的方法。
3
1、用拉格朗日配方法化二次型为标准形
拉格朗日配方法的基本步骤:
1. 若二次型含有 xi 的平方项,则先把含有 xi 的乘积项集中,然后配方,再对其余的变量同
样进行,直到都配成平方项为止,经过非退化线
性变换,就得到标准形;
2. 若二次型中不含有平方项,但是 aij 0 (i j), 则先作可逆线性变换
再配方,得
f 2( y1 y3 )2 2( y2 2 y3 )2 6 y32 ,

z1 z2
y1 y2
y3 2 y3
z3
y3
y1 y2
z1 z2
z3 2z3
,
y3 z3

y1 1 0 y2 0 1
1 z1 2 z2
y3
0
0
1
z3
标准形为
f 2z12 2z22 6z32 .
8
x1 1 1 0 y1 x2 1 1 0 y2 x2 0 0 1 y3
y1 1 0 1 z1 y2 0 1 2 z2 y3 0 0 1 z3
所用变换矩阵为
1 1 0 1 0 1 1 1 3 C 1 1 0 0 1 2 1 1 1 , ( C 2 0)
x2 0 1 2 y2
x3
0
0
1
y3
标准形为 f y12 y22 .
1 1
所用变换矩阵为
C 0
1
0 0
1 2 , 1
( C 1 0)
6
例2 用配方法化二次型 f 2 x1 x2 2 x1 x3 6 x2 x3
为标准形,并写出对应的可逆线性变换。
解 所给二次型中无平方项,所以先作线性变换
xi xj
yi yi
yj yj
xk yk
(k 1,2, , n且k i, j)
化二次型为含有平方项的二次型,然后再按1中方法
配方.
4
例1 用配方法化二次型
f x12 2 x22 5 x32 2 x1 x2 2 x1 x3 6 x2 x3
为标准形,并写出对应的可逆线性变换。
2
一、二次型的标准形
定义 如果二次型
f (x1, x2, , xn) XT AX
通过可逆线性变换 X CY ,化为二次型
Y T BY
d1 y12
d2 y22
d
n
y
2 n

则称之为原二次型的标准形。
实际上,二次型 f ( x1, x2 , , xn ) X T AX 化为标准形的
问题,等价于该二次型的矩阵 A
本节讨论的主要问题是:如何通过可逆线性变换X CY ,
把二次型 f (x1, x2, , xn) XT AX 化为 y1 , y2 , , yn 的平方和
d1 y12
d2 y22
dn
y
2 n
,称之为二次型的标准形。从前面分
析可以看出,要把一个二次型化为标准形,只要找一个可逆阵 C, 使 C T AC 成为对角阵,即 A 与一个对角阵合同。
x1 x2
y1 y1
y2 y2
,
x1 1 即 x2 1
1 1
0 y1 0 y2
x3
y3
x2 0 0 1 y3
原二次型化为
f 2 y12 2 y22 4 y1 y3 8 y2 y3 .
7
f 2 y12 2 y22 4 y1 y3 8 y2 y3 .
1
1 9 , 9E A 2 5 4 0 1 1 , 1 2 ,
2 4 5 0 0 0
2
1 2 2 1 2 2
2,3 18 , 18E A 2 4 4 0 0 0 ,
2
2 2 4 4 0 0 0
2 1 , 3 0 ,
0
1
13
1
3. 求出对应于特征值的特征向量1,2 , ,n ;
4.
将特征向量1, 2 ,
,

n

化,


化,

1,2 , ,n , 记C (1,2 , ,n ) ;
5. 作正交变换X CY , 则得 f 的标准形
f 1 y12 n yn2 .
11
例3 用正交变换将二次型 f 17 x12 14x22 14x32 4 x1 x2 4 x1 x3 8 x2 x3
相关文档
最新文档