电力线路的数学模型

合集下载

2.2 电力线路的参数及数学模型

2.2 电力线路的参数及数学模型

2.2电力线路的参数及数学模型电力线路分为架空线路和电缆线路。

由于架空线路比电缆线路建造费用低,施工期短,维护方便,因此架空线路应用更为广泛。

2.2.1 电力线路的基本结构1.架空线路架空线路主要由导线、避雷线(又称架空地线)、杆塔、绝缘子串和金具等部分组成,如图(2-11)所示。

导线用来传导电流,输送电能。

避雷线用来将雷电流引入大地,保护线路免遭直击雷的破坏。

杆塔用来支撑导线和避雷线,并使导线和导线之间、导线与接地体之间保持必要的安全距离。

绝缘子用来使导线与导线、导线与杆塔之间保持绝缘状态,它应能承受最高运行电压和各种过电压而不致被击穿或闪络。

金具是用来固定、悬挂、连接和保护架空各主要元件的金属器件的总称。

图2-11架空线路2.电缆线路电缆是将导电芯线用绝缘层及防护层包裹,敷设于地下、水中、沟槽等处的电力线路。

由于其造价高,故障后检测故障点位置和维修较麻烦等缺点,因而使用范围远不如架空线路。

但电缆线路具有占地面积少,供电可靠,极少受外力破坏,对人身也较安全,可使城市美观等优点。

因此,在大城市空中走廊的地区,在发电厂和变电所的进出线处,在穿过江河湖海地区以及国防或特殊需要的地区,往往都采用电力电缆线路。

2.2.2电力线路的参数对电力系统进行定量分析及计算时,必须知道其各元件的等值电路和电气参数。

本节主要介绍电力线路的参数及其计算。

电力线路的电气参数是指线路的电阻r、电抗x、电导g和电纳b。

下面就架空线路参数进行讨论(架空线一般采用铝线、钢芯铝线和铜线)。

1. 输电线路的电阻有色金属导线(含铝线、钢芯铝线和铜线)每单位长度的电阻可引用电路课程中导体的电阻与长度、导体电阻率成正比,与横截面积成反比的原理计算:(2-26)式中,r为导线单位长度电阻,;为导线材料的电阻率,;S为导线截面积,mm2。

在电力系统计算中,导线材料的电阻率采用下列数值:铜为18.8,铝为31.5。

它们略大于这些材料的直流电阻率,其原因是:①通过导线的三相工频交流电流,而由于集肤效应和邻近效应,使导线内电流分布不均匀,截面积得不到充分利用等原因,交流电阻比直流电阻大;②由于多股绞线的扭绞,导线实际长度比导线长度长2%~3%;③在制造中,导线的实际截面积比标称截面积略小。

电力系统各元件的数学模型

电力系统各元件的数学模型

推导过程:从1-1’,2-2’之间等值,将导纳支路拿出去
ZT 1:k
I1 1 I2 k
U2
k
U1
I1
ZT
1 I1
U1
ZT
1:k I2
2 U2
I1
U1 ZT
U2
1’
ZT k
U1 (y10
y) 12
2’
U2
y 12
I2
U1 ZT k
U2 ZT k2
U1 y12
U2 (y20
y) 12
§2.5 电力系统的等值电路
一些常用概念
1. 实际变比 k
k=UI/UII UI、UII :分别为与变压器高、低压绕组实际 匝数相对应的电压。 2. 标准变比kN
• 有名制:归算参数时所取的变比 • 标幺制:归算参数时所取各基准电压之比
3. 非标准变比 k* k*= k /kN=UIIN UI /UII UIN
U
U UB
I S Z
I IB S SB Z ZB
P jQ SB
R jX ZB
P SB R ZB
j
Q SB
P
jQ
j
X ZB
R
jX
§2.5 电力系统的等值电路
2、基准值的选取 1) 基准值的单位与对应有名值的单位相同 2) 各种量的基准值之间应符合电路的基本关系
SB 3 UB IB UB 3 IB ZB
§2.5 电力系统的等值电路
四、电力系统的等值电路制订
1、决定是用有名值,还是用标幺值
容量不相同时 2、变压器的归算问题
电压等级归算
采用Γ型和T型 采用π型—不归算
3、适当简化处理

第二章电力系统各元件的数学模型

第二章电力系统各元件的数学模型

试验时小绕组不过负荷,存在归算问题,归算到SN
2) 对于(100/50/100)
2
Pk (12)
P' k (12)
IN 0.5IN
P 4 ' k (12)
2
Pk ( 23)
P' k (23)
IN 0.5IN
P 4 ' k ( 23 )
3) 对于(100/100/50)
2
Pk (13)
P' k (13)
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
一次整循环换位:
A B
C
换位的目的:为了减 少三相参数的不平衡
§2.3 电力线路的参数和数学模型
Xd
§2.1 发电机的数学模型
受限条件
定子绕组: IN为限—S园弧
转子绕组: Eqn ife 励磁电流为限—F园弧 Xd
原动机出力:额定有功功率—BC直线
其它约束: 静稳、进相导致漏磁引起温升—T弧
进相运行时受定 子端部发热限制 受原动机出力限制
定子绕组不超 过额定电流
励磁绕组不超 过额定电流 留稳定储备
2、由短路电压百分比求XT(制造商已归算,直接用)
U U U U 1 k1(%) 2
k(12) (%) k(13) (%) (%) k(23)
XT1
Uk
1(%
)U2 N
100SN
U U U U 1 k2 (%) 2
k(12) (%) k(23) (%) (%) k(13)

2.1电力线路的数学模型2

2.1电力线路的数学模型2
8
/(3 10 )
8 6
2 /(6 10 )(rad / m) 2 / 6000( rad / km)
超高压线路始末两端电压与线路输送功率的关系: • 输送功率=自然功率,末端电压=始端电压 • 输送功率 自然功率,末端电压 始端电压 • 输送功率 自然功率,末端电压 始端电压
Dm Dm Z c L1 / C1 60 ln 138.2 lg ; r r 8 j L1C1 j /(3 10 ) (不计架空线路的内部磁场,有L1=2 10 C1 1 1.8 10 ln
10 —7
Dm ln r
Dm
)
由于 /(310 ) ,而 2f ,当 f 50Hz 时:
ZC L1 / C1
波阻抗 相位系数
j L1C1
• 自然功率:也称为波阻抗负荷,是指负荷阻抗为波 阻抗时,该负荷所消耗的功率。 • 若负荷端电压为线路额定电压,则相应的自然功率 为: 2
UN S N = PN = Zc
由于这时的负荷阻抗为纯电阻,相应的自然功率 显然为纯有功功率。
• 无损耗线路末端连接的负荷阻抗为波阻抗时,线 路的特点: 1)线路始端、末端乃至线路上任何一点的电压 大小都相等,而功率因数都等于1. 2)线路两端电压的相位差正比于线路的长度, 相应的比例系数即相位系数:
—空气的相对密度;
b —大气压力(Pa) ; t —空气温度
• 然后令Ec=Ecr,就可解得所谓电晕起始电压或临 界电压 U = E r ln D = 49.3m m r lg D ( kV )
m m cr cr
r
1
2
r
• 对分裂导线,由于导线的分裂,减少了电场强 度,电晕临界电压改变为

电力线路参数与数学模型文章

电力线路参数与数学模型文章

电力线路参数与数学模型文章1. 电力线路参数与数学模型电力线路是电能传输的重要载体,其参数和特性对于保障电能传输的安全、稳定具有至关重要的作用。

通过对电力线路的参数进行分析和建模,可以更好地把握电力运行的规律和趋势,为电力运营提供科学决策的依据。

2. 电力线路的参数电力线路参数主要包括电阻、电感、电容等因素。

其中电阻是电流通过电线时的阻力,影响电线的传输能力和损耗;电感是电流经过电线时所形成的磁场,影响电压的稳定性和传输效率;电容则是电线之间或者电线和地之间所存在的电位差,影响系统的稳态和频率响应。

3. 电力线路的数学模型电力线路的数学模型一般采用传输线方程来描述,即利用电磁学和电路理论的基本原理,建立起电压与电流之间的传输关系,被称为传输线理论。

在传输线方程中,电压和电流的波动被看成是在长导体上沿着传输方向(通常是z方向)传播的电磁波,可以用时域或者频域的方法进行求解。

其中,时域方法主要包括矢量积分方程(VIE)、时域有限元法(FETD)、时域有限差分法(FDTD)等;频域方法主要包括矢量波动方程(VWE)、矢量谐波平衡(VBH)、矢量短路阻抗(VSZ)、矢量短路电流(VSC)等。

对于电力线路的建模和仿真,可以采用各种软件和工具,如MATLAB、PLECS、PSIM等,通过模拟电力线路的运行情况,得到电压、电流、功率等参数,为电力系统的设计和运营提供参考。

4. 电力线路建模的应用电力线路建模的应用涵盖了众多领域,如电力系统的规划、设计、运营和维护等。

其中,主要应用有以下几个方面:1. 电力系统的规划与设计通过对电力线路的建模和仿真,可以对电力系统的规划与设计进行优化和评估。

例如,可以通过模拟不同方案的运行情况,比较其安全性、稳定性、经济性等因素,实现电力系统的可持续发展和智能化提升。

2. 电力系统的运行和控制通过对电力线路的建模和仿真,可以进行电力系统的运行和控制。

例如,可以根据电力线路的建模结果,预测电力系统的负荷需求、电压稳态、频率响应等参数,提高电力系统的响应速度和效率。

第2章 电力网元件的参数和数学模型

第2章 电力网元件的参数和数学模型

2
2. 电抗
1)单相导线电抗
r Deq 为三相导线间的互几何间距 x0 0.1445lg Deq 0.0157 r ( / km)
Deq 3 D1 D2 D3
r 为导线的计算半径 μr 为导线材料的相对导磁系数,有色金属的相对导磁 系数为1。 在近似计算中,可以取架空线路的电抗为 0.40 / km
2 Pk1U N RT 1 , 2 1000 S N 2 Pk 2U N , 2 1000 S N 2 Pk 3U N 2 1000 S N
RT 2
RT 3
16
•对于100/50/100或100/100/50 首先,将含有不同容量绕组的短路损耗数据归算为额 定电流下的值。

额定容量比为 100/50/100
2)分裂导线线路的电纳
b1 7.58 10 6 (S/km) D lg m req
9
二、电力线路的数学模型
电力线路的数学模型是以电阻、电抗、电纳和电导来表示 线路的等值电路。 1、短线路(<35kv,<100km的架空线路、短电缆线路) 不考虑线路的分布参数特性,只用将线路参数简单地集中 起来的电路表示。
g1 Pg U2 10 3 (S / km)
7
实际上,在设计线路时,已检验了所选导线 的半径是否能满足晴朗天气不发生电晕的要
求,一般情况下可设
g=0
8
4. 电纳 1)单相导线电纳
其电容值为:
C1 0.0241 10 6 D lg m r
最常用的电纳计算公式:
7.58 10 6 (S/km) D lg m r 架空线路的电纳变化不大,一般为 2.85 10 6 S / km b1
3

2-5 电力网络的数学模型

2-5 电力网络的数学模型

Z SB =Z 2 Z∗ = ZB UB Y UB Y∗ = = Y YB SB
2
U U∗ = UB I 3UB I∗ = = I SB IB
式中:
Z∗、Y∗、U∗、I∗ ——阻抗、导纳、电压、电流
的标么值;
Z、Y、U、I
——归算到基本Leabharlann 的阻抗、导 纳、电压、电流的有名值;
Z B、YB、U B、I B、S B ——基本级的阻抗、导纳、电
2.5 电力网络的数学模型 2.5 Mathematical Model of Electric
System
1. 2.
3.
标幺值的折算 电压等级的归算以及电力网络 的数学模型 等值变压器模型
1. 标幺值的折算
一. 基本概念
1)
有名制:在电力系统计算时,采用有单位的阻 抗、导纳、电压、电流和功率等进行计算。 标幺制:在电力系统计算时,采用没有单位的 阻抗、导纳、电压、电流和功率等进行计算。 基准值:标幺制中,各量以相对值出现,该相 对值的相对基准称为基准值。
为什么?
1. 标幺值的折算
a) 单相电路 五个物理量满足:
U P = ZI , S P = U P I
对应的基准值为:
U P⋅ B = Z B I B ⎫ ⎬ S P⋅ B = U P⋅ B I B ⎭
1. 标幺值的折算
则在标幺制中,可以得到:
⎧U P⋅B = Z B I B 结论:只要基准值的选择满足 ⎨ ⎩ S P⋅ B = U P⋅ B I B
一.有名值的电压级归算 对于多电压等级网络,无论是标么制还是有 名制,都需将参数或变量归算至同一电压 级——基本级。 1 2 ′( B=B ) k1k2k3 ′ ( k1 k 2 k 3 ) 2 R=R 1 2 X = X ′ ( k1 k 2 k 3 ) G = G′( )2 k1k2k3 U = U ′ ( k1 k 2 k 3 ) 1 I = I ′( ) k1k2k3

电力线路的参数和数学模型

电力线路的参数和数学模型
分两种情况讨论: 1) 一般线路的等值电路 一般线路:中等及中等以下长度线路,对架空 线为300km;对电缆为100km。
一般线路的等值电路不考虑线路的分布参数 特性,只用将线路参数简单地集中起来的电 路表示。
Z
R rl 1 G g1l
X x1l B bl 1
Y/2
Y/2
2)长线路的等值电路 长线路:长度超过300km的架空线和超过100km的电缆。 精确型 根据双端口网络理论可得:
最常用的电纳计算公式:
b1 7.58 106 (S /k m ) D lg m r
6 架空线路的电纳变化不大,一般为 2.85 10 S / km
2.分裂导线线路的电纳
b1 7.58 10 6 (S /k m ) D lg m req
3.架空线路的电导
线路的电导取决于沿绝缘子串的泄漏和电晕 绝缘子串的泄漏:通常很小 电晕:强电场作用下导线周围空气的电离现象 导线周围空气电离的原因:是由于导线表面的电场强度 超过了某一临界值,以致空气中原有的离子具备了足够的动 能,使其他不带电分子离子化,导致空气部分导电。
d1n某根导线与其余n 1根导线间的距离
4. 电缆线路并由制造厂家提供。一般,电缆线路
的电阻略大于相同截面积的架空线路,而电抗则小 得多。
三.电力线路的导纳
1.三相架空线路的电纳
其电容值为:
C1 0.0241 10 6 D lg m r
7



再求内部磁链
r
x
dx
2 i ix Fx 2 x 2 1 2 1 r ir ix 2 1 ix Fx Hx 2 1 l ir 2x 2r 2 ix 7 B x x H x r 4 10 2r 2 r r r x 2 d x d x 2 1 B x dS 0 0 r 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力线路的数学模型
z电力线路的正序参数和等值电路z电力线路的零序阻抗
架空输电线路
架空线路的导线和避雷线
z架空线路的导线和避雷线都架设在空中,要承受自重、风力、冰雪等机械力的作用和空气中有害气体的侵蚀,同时还受温度变化的影响,运行条件相当恶劣。

因此它们的材料
应有相当高的机械强度和抗化学腐蚀能力,而且导线还应有良好的导电性能。

z导线主要由铝、钢、铜等材料制成。

避雷线则一般用钢线。

z由于多股线优于单股线,架空线路多半采用绞合的多股导线。

由于多股铝导线的机械性能差,往往将铝和钢结合起来制成钢芯铝绞线。

架空输电线路
z考虑导电性能,机械强度,抗腐蚀能力,主要材料包括铝、铜、钢等
架空输电线路
z杆塔
9木塔:较少采用
9钢筋混凝土杆:220 kV以下系统9铁塔:主要用于220 kV及以上系统
架空输电线路
z绝缘子
9针式:10 kV及以下线路
架空输电线路
9悬式:主要用于35 kV 及以上系统,根据电压等级的高低组成数目不同的绝缘子链.
架空输电线路9棒式:起到绝缘
和横担的作用,应用于10-35 kV 农网。

2.3.1 电力线路正负序参数与等值电路
一、电力线路的正(负)序参数
z三相电力线路的原始参数以单位长度的电路参数来表示
9单位长度线路的串联电阻r1
9单位长度线路的串联电抗x1
9单位长度线路的并联电导g1
9单位长度线路的并联电纳b1
z各参数可以通过计算或测量来确定
2.3.1 电力线路正负序参数与等值电路z串联电阻
9反映线路通过电流时产生的有功功率损耗效应,直流电阻通常小于交流电阻
¾集肤效应:导线交流电阻与直流电阻的比值随着频率的升高而增大,随导线截面积的增大而上升。

¾对铜、铝绞线,当截面积不是特别大时,频率50-60Hz的交流电阻与直流电阻相差甚微。

¾钢芯铝绞线的交流电阻与铝线部分的直流电阻差别很小
9一般电力系统计算中均可用直流电阻代替有效电阻
9电阻值与温度有关
¾产品手册提供温度为200C时单位长度的直流电阻;缺乏手册资料时,铜、铝导线和电缆200C时的单位长度电阻
由于电抗与几何间距、导线半径之间为对数关系,导线在杆塔上的布置的大小对线路电抗没有显著影响,所以架空线路的电抗
分裂导线
在高压和超高压电力系统中,为了防
止在高压作用下导线周围空气的游离
而发生电晕,往往采用分裂导线,即
每相用几根型号相同的导线并联而构
成复导线,各个导线的轴心对称地布
置在半径为R的圆周上(R远小于相间
距离),导线之间用支架支撑。

分裂导线等值地增大了导线半径,从
而可以减少导线表面的电场强度,避
免在正常运行情况下发生电晕。

更多时,费用将增加很多,而电抗的下降已不明显,因此一般很少
线路的并联电导
线路的电导是反映当导线上施加电压后的电晕现象和绝缘子中所产生泄漏电流的参数。

因为一般情况下线路的绝缘良好,所以沿绝缘子串的泄漏电流通常很小,可以忽略不计。

电晕是在强电场作用下导线周围空气的电离现象,它的产生不仅与导线本身而且还与导线周围的空气条件有关,当导线表面的电场强度超过了某一临界值(称为电晕起始电压或电晕临界电压),致使空气中原有的离子具备了足够的动能,撞击其它不带电分子,使后者发生离子化,最后形成了空气的部分导电。

在这个过程中,导线表面的某些部分可以看到蓝色的光环,并能听到“刺刺”的放电声和闻到臭氧味。

双回三相架空输电线的零序阻抗
z上面说明的是单回架空线路的零
序阻抗的计算问题,如果在平行
架设的两回三相架空输电线中通
过方向相同的零序电流时,不仅
第一回路的任意两相对第三相的
互感产生助磁作用,而且第二回
路的所有三相对第一回路的任意
一相的互感也产生助磁作用。


就使得线路的零序阻抗进一步增
大。

线路零序阻抗的实测
z由于架空线路路径长,沿线情况复杂,包括土壤电导系数、导线在杆塔上的布置、平行线路之间的距离等变化不一,采用理论计
算的方法计算其零序阻抗相当困难,而且计算结果也未必准确。

因此实用中一般通过实测确定其零序阻抗。

第2章电力系统各元件的数学模型
z同步发电机
z变压器
z输电线路
z负荷
负荷的数学模型
z负荷是电力系统的重要组成部分,电力系统的分析和计算必须要建立负荷模型。

9对某一具体的用电设备建立其负荷模型并不困难,但对电力系统分析中成千上万的负荷模型不可能逐一进行描述。

9负荷模型的特点:多样性、随机性和时变性。

9经验证明,负荷模型的精度对系统分析的结论具有很大的影响。

负荷的种类
z按用户的性质分:工业负荷、农业负荷、商业负荷、城镇居民负荷等。

z按用电设备类型分:感应电动机、同步电机、整流设备、照明、电热及空调等。

建立负荷模型的主要方法
z综合统计法:将节点负荷看成个别用户的集合,先将这些用户的用电器分类,并确定各种类型的用电器的平均特性,然后统计出各类用电器所占的比重,从而综合得出总的负荷模型。

z总体辨测法:先从现场采集测量数据,然后确定一个合适的负荷数学模型结构,再根据现场的测试数据辨识出模型中所含的参数值。

相关文档
最新文档