(湖北专用)2020届高考数学一轮复习 阶段检测五直线、圆及其位置关系 圆锥曲线与方程 理 新人教A版

合集下载

线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)

线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)


,两式相减得

+ −

+

+
=
+


=

− ,故

=



=
知识梳理·基础回归
知识点3:点差法

(2)运用类似的方法可以推出;若是双曲线

, ,则 =
= 1,①
= 1②
①-②得
1 +2 1 −2
16
+
1 +2 1 −2
12
= 0,

3
1
2
∵ 1 + 2 = 4,1 + 2 = 2,∴ = − = − 2,
1
∴此弦所在的直线方程为 − 1 =
【方法技巧】
点差法
3
− (
2
2
− 2),即3 + 2 − 8 = 0.
2

2
2
【解析】当 ≥ 0时,曲线 −
= 1,即 − =
9
4
9
4
3
一条渐近线方程为: = 2 ,直线与渐近线平行;
当 <
2
0时,曲线
9


4
=
2
1,即
9
2
+
4
画出曲线和直线的图像,如图所示:
根据图像知有2个公共点.
故选:B
1,双曲线右半部分;
= 1,椭圆的左半部分;
).
题型突破·考法探究
16
弦所在的直线方程为
2
+
12

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

·创 作人:历恰面 日 期: 2020年1月1日金版新学案?高考总复习配套测评卷——高三一轮数学『文科』卷(七)直线和圆的方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案个选项里面,只有一项是哪一项符合题目要求的)1.下面各组方程中,表示一样曲线的是( )A .y =x 与yx=1 B .|y |=|x |与y 2=x 2C .|y |=2x +4与y =2|x |+4D.⎩⎪⎨⎪⎧x =sin θ(θ为参数)y =cos 2θ与y =-x 2+12.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=03.“a =1”是“直线x +y =0和直线x -ay =0互相垂直〞的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.过点P (5,-2),且与直线x -y +5=0相交成45°角的直线l 的方程是( )A .y =-2B .y =2,x =5C .x =5D .y =-2,x =55.假设PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),那么直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =06.假设k ,-1,b 三个数成等差数列,那么直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)7.D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为( )A.π4B.π2C.3π4D.3π28.A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎪⎫225,0D.⎝⎛⎭⎪⎫0,2259.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,假设目的函数z =ax +by (a >0,b >0)的最大值为12,那么2a +3b的最小值为( )A.256B.83C.113D .410.在平面直角坐标系中,O 为坐标原点,A (3,1),B (-1,3),假设点C 满足|+|=|-|,那么C 点的轨迹方程是( )A .x +2y -5=0B .2x -y =0C .(x -1)2+(y -2)2=5 D .3x -2y -11=011.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=012.台风中心从A 地以每小时20千米的速度向东北方向挪动,离台风中心30千米内的地区为危险区,城B 在A 的正东40千米处,那么B 城处于危险区内的时间是为( )A .小时B .1小时C .小时D .2小时第二卷 (非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上) 13.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,那么所得直线的方程为________.14.在坐标平面内,与点A (1,3)的间隔 为2,且与点B (3,1)的间隔 为32的直线一共有__________条.15.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,那么△EOF (O 为坐标原点)的面积等于________.16.在直角坐标平面上,不等式组⎩⎪⎨⎪⎧x 2+y 2-4x -6y +4≤0,|x -2|+|y -3|≥3表示的平面区域的面积是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤)17.(本小题满分是10分)△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.18.(本小题满分是12分)如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上.(1)求BC 边所在直线的方程.(2)圆M 是△ABC 的外接圆,求圆M 的方程.19.(本小题满分是12分)△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0.AC 边上的高BH 所在直线为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.20.(本小题满分是12分)甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和元/吨,乙煤矿运往东车站和西车站的运费价格分别为元/吨和元/吨.要使总运费最少,煤矿应怎样编制调运方案?21.(本小题满分是12分)圆C :x 2+y 2=r 2(r >0)经过点(1,3). (1)求圆C 的方程;(2)是否存在经过点(-1,1)的直线l ,它与圆C 相交于A ,B 两个不同点,且满足=12+32(O 为坐标原点)关系的点M 也在圆C 上?假如存在,求出直线l 的方程;假如不存在,请说明理由.22.(本小题满分是12分)圆M 的方程为:x 2+y 2-2x -2y -6=0,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E 、F 两点,圆内的动点D 使得|DE |、|DO |、|DF |成等比数列,求·的取值范围;(3)过点M 作两条直线分别与圆N 相交于A 、B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?请说明理由. 答案:卷(七)一、选择题1.B 用排除法做.A 、C 易排除,∵点坐标范围明显不一致.D 中前者x ∈[-1,1],y ∈[0,1],后者x ∈R ,y ∈(-∞,1],故排除D.2.D 选D.由题意知所求直线与2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12(x -0),即x +2y +4=0.3.C 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1〞是“直线x +y =0与直线x -ay =0互相垂直〞的充要条件. 4.D (1)假设直线l 的斜率存在,设为k ,由题意,tan 45°=⎪⎪⎪⎪⎪⎪k -11+k ,得k =0,所求l 的直线方程为y =-2.(2)假设直线l 的斜率不存在,那么直线l 的方程为x =5,且与直线x -y +5=0相交成45°角.应选D.5.B 结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.6.A ∵k ,-1,b 成等差数列, ∴k +b =-2.∴当x =1时,y =k +b =-2. 即直线过定点(1,-2).7.B 如图阴影局部表示⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,确定的平面区域,所以劣弧AB 的弧长即为所求.∵k OB =-13,k OA =12,∴tan ∠BOA =12-⎝ ⎛⎭⎪⎫-131+12×⎝ ⎛⎭⎪⎫-13=1,∴∠BOA =π4.∴劣弧A B 的长度为2×π4=π2.8.B 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.9.A 不等式组表示的平面区域如下图阴影局部,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目的函数z =ax +by (a >0,b >0)获得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b=⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6 =136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2 =256, 应选A10.C 由|+|=|-|知⊥,所以C 点的轨迹是以两个端点A 、B 为直径的圆,圆心坐标为线段AB 的中点(1,2),半径等于5,所以C 点的轨迹方程是(x -1)2+(y -2)2=5.11.D 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直, 设圆心为O ,那么O (2,0), ∴K OM =2-01-2=-2.∴直线l 的斜率k =12,∴l 的方程为y -2=12(x -1).即x -2y +3=0.12.B 如图,以A 为坐标原点,建立平面直角坐标系,那么B (40,0),台风中心挪动的轨迹为射线y =x (x ≥0),而点B 到射线y =x 的间隔 d =402=202<30,故l =2302-(202)2=20,故B 城处于危险区内的时间是为1小时. 二、填空题13.【解析】 直线y =x +3-1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为3,故所求直线方程为y -3=3(x -1),即3x -y =0.【答案】3x -y =014.【解析】 以A (1,3)为圆心,以2为半径作圆A ,以B (3,1)为圆心,以32为半径作圆B .∵|AB |=(1-3)2+(3-1)2=22=32-2, ∴两圆内切, 公切线只有一条. 【答案】 1 15.【解析】 如图圆心O 1(2,-3)到直线l :x -2y -3=0的间隔 为5,那么|EF |=29-5=4,O 到l 的间隔 d =35,故S △OEF =12d |EF |=655.【答案】65516.【解析】 区域为圆面(x -2)2+(y -3)2=9内挖去了一个内接正方形. 【答案】 9π-18三、解答题17.【解析】 可以判断A 不在所给的两条高所在的直线上,那么可设AB ,AC 边上的高所在的直线方程分别为2x -3y +1=0,x +y =0,那么可求得AB ,AC 所在的直线方程为y-2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B (7,-7),由⎩⎪⎨⎪⎧y -x -1=02x -3y +1=0得C (-2,-1),所以直线BC 的方程为2x +3y +7=0. 18.【解析】 (1)设C (x 0,0), 那么k AB =-220-(-2)=- 2.k BC =0+22x 0-0=22x 0. ∵AB ⊥BC ,∴k AB ·k BC =-1, 即-2×22x 0=-1,∴x 0=4,∴C (4,0),∴k BC =22, ∴直线BC 的方程为y -0=22(x -4),即y =22x -2 2. (2)圆M 以线段AC 为直径,AC 的中点M 的坐标为(1,0),半径为3, ∴圆M 的方程为x 2+y 2-2x -8=0. 19.【解析】 直线AC 的方程为:y -1=-2(x -5),即2x +y -11=0,解方程组⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得⎩⎪⎨⎪⎧ x =4,y =3,那么C 点坐标为(4,3).设B (m ,n ),那么M (m +52,n +12),⎩⎪⎨⎪⎧ 2m +52-n +12-5=0m -2n -5=0, 整理得⎩⎪⎨⎪⎧ 2m -n -1=0m -2n -5=0, 解得⎩⎪⎨⎪⎧ m =-1n =-3那么B 点坐标为(-1,-3)直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.20.【解析】 设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+y +1.6(300-y )(万元),即z =780-x -y . x 、y 应满足⎩⎪⎨⎪⎧x ≥0,y ≥0,200-x ≥0,300-y ≥0,x +y ≤280,200-x +(300-y )≤360, 作出上面的不等式组所表示的平面区域如下图.设直线x +y =280与y 轴的交点为M ,那么M (0,280),把直线l :x +y =0向上平移至经过点M 时,z 的值最小. ∵点M 的坐标为(0,280),∴甲煤矿消费的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. 21.【解析】 (1)由圆C :x 2+y 2=r 2,再由点(1,3)在圆C 上,得r 2=12+(3)2=4所以圆C 的方程为 x 2+y 2=4;(2)假设直线l 存在,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)①假设直线l 的斜率存在,设直线l 的方程为:y -1=k (x +1),联立⎩⎪⎨⎪⎧ y =k (x +1)+1x 2+y 2-4=0消去y 得,(1+k 2)x 2+2k (k +1)x +k 2+2k -3=0,由韦达定理得x 1+x 2=-2k (k +1)1+k 2=-2+2-2k 1+k 2,x 1x 2=k 2+2k -31+k 2=1+2k -41+k 2, y 1y 2=k 2x 1x 2+k (k +1)(x 1+x 2)+(k +1)2=2k +41+k 2-3, 因为点A (x 1,y 1),B (x 2,y 2)在圆C 上,因此,得x 21+y 21=4,x 22+y 22=4, 由=12+32得x 0 =x 1+3x 22,y 0=y 1+3y 22,由于点M 也在圆C 上,那么⎝ ⎛⎭⎪⎫x 1+3x 222+⎝ ⎛⎭⎪⎫y 1+3y 222 =4,整理得,x 21+y 214+3x 22+y 224+32x 1x 2+123y 1y 2=4, 即x 1x 2+y 1y 2=0,所以1+2k -41+k 2+(2k +41+k2-3)=0, 从而得,k 2-2k +1=0,即k =1,因此,直线l 的方程为 y -1=x +1,即x -y +2=0,②假设直线l 的斜率不存在,那么A (-1,3),B (-1,-3),M ⎝ ⎛⎭⎪⎫-1-32,3-32 ⎝ ⎛⎭⎪⎫-1-322+⎝ ⎛⎭⎪⎫3-322 =4-3≠4,故点M 不在圆上与题设矛盾综上所知:k =1,直线方程为x -y +2=022.【解析】 圆M 的方程可整理为:(x -1)2+(y -1)2=8,故圆心M (1,1),半径R =2 2.(1)圆N 的圆心为(0,0),因为|MN |=2<22,所以点N 在圆M 内,故圆N 只能内切于圆M .设其半径为r .因为圆N 内切于圆M ,所以有:|MN |=R -r , 即2=22-r ,解得r = 2.所以圆N 的方程为x 2+y 2=2.(2)由题意可知:E (-2,0),F (2,0).设D (x ,y ),由|DE |、|DO |、|DF |成等比数列,得|DO |2=|DE |×|DF |, 即:(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得:x 2-y 2=1.而=(-2-x ,-y ),=(2-x ,-y ),·=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1,由于点D 在圆N 内,故有⎩⎪⎨⎪⎧ x 2+y 2<2x 2-y 2=1,由此得y 2<12,所以·∈[-1,0). (3)因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,那么直线MB 的斜率为-k .故直线MA 的方程为y -1=k (x -1),直线MB 的方程为 y -1=-k (x -1),由⎩⎪⎨⎪⎧ y -1=k (x -1)x 2+y 2=2, 得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点M 在圆N 上,故其横坐标x =1一定是该方程的解,可得x A =k 2-2k -11+k 2, 同理可得:x B =k 2+2k -11+k 2, 所以k AB =y B -y A x B -x A= -k (x B -1)-k (x A -1)x B -x A= 2k -k (x B +x A )x B -x A=1=k MN . 所以,直线AB 和MN 一定平行.。

直线和圆、圆锥曲线综合测试卷(新高考专用)(原卷版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷(新高考专用)(原卷版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷专练
(考试时间:120分钟;满分:150分)
注意事项:
1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷(选择题)
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤。

2024_2025学年高三数学新高考一轮复习专题直线与圆的位置关系强化训练含解析

2024_2025学年高三数学新高考一轮复习专题直线与圆的位置关系强化训练含解析

直线与圆的位置关系学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1.已知直线x+y-1=0与圆M:+-2ax-2y=0交于A,B两点,若AMB=4MAB,则a=()A. 2B. 1C. 2或-1D. 1或-22.已知直线l:x-y+4=0与x轴相交于点A,过直线l上的动点P作圆x2+y2=4的两条切线,切点分别为C,D两点,记M是CD的中点,则|AM|的最小值为( )A. B. 3 C. D. 33.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A. B. C. D.4.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有|+|≥||,那么k的取值范围是( )A. (,+∞)B. [,+∞)C. [,2)D. [,2)二、多选题(本大题共6小题,共30.0分。

在每小题有多项符合题目要求)5.已知圆,下列命题正确的是A. 为过点的圆C的一条切线B. 为过点的圆C的一条切线C. 为过点的圆C的一条切线D. 为过点的圆C的一条切线6.已知集合A={(x,y)|x-y+a=0},B={(x,y)|x=},若集合A⋂B中只有一个元素,则实数a的可能取值为()A. -1B. 1C.D.7.已知直线y=x+b与圆+=16交于A、B两点,且|+|=|-|(其中O为坐标原点),则实数b的值可以是()A. -4B. -2C. 2D. 48.已知圆O的方程为,过第一象限内的点作圆O的两条切线PA、PB,切点分别为A、B,下列结论中正确的有()A. 直线AB的方程为B. 四点O、A、P、B共圆C. 若P在直线上,则四边形OAPB的面积有最小值2D. 若,则的最大值为9.已知圆C过点A(1,3)、B(2,2),直线m:3x-2y=0平分圆C的面积,过点D(0,1)且斜率为k的直线l与圆C有两个不同的交点M、N,则( )A. 圆心的坐标为C(2,3)B. 圆C的方程为+=1C. k的取值范围为(,)D. 当k=时,弦MN的长为10.P是直线y=2上的一个动点,过点P作圆+=1的两条切线,A,B为切点,则()A. 弦长|AB|的最小值为B. 存在点P,使得APB=C. 直线AB经过一个定点D. 线段AB的中点在一个定圆上三、填空题(本大题共5小题,共25.0分)11.过点且与圆相切的直线方程为.12.已知点P(x,y)是直线l:kx-y+4=0(k>0)上的动点,过点P作圆C:x2+y2+2y=0的切线PA,A为切点,若|PA|最小为2时,圆M:x2+y2-my=0与圆C外切,且与直线l相切,则m 的值为.13.若在平面直角坐标系xOy中,直线x-y=2与直线x-y=4分别截圆+=(r>0)所得弦长之比为3:1,则r= .14.已知圆,点为直线上的一个动点,过点向圆引两条切线,为切点,则直线经过的定点的坐标为.15.已知圆C的方程为x2+y2=2,点P是直线x-2y-5=0上的一个动点,过点P作圆C的两条切线PA、PB,A、B为切点,则四边形PACB的面积的最小值为;直线AB 过定点.四、解答题(本大题共1小题,共12.0分。

2020版五三高中数学高考真题与考点分章精析9.2 直线、圆的位置关系

2020版五三高中数学高考真题与考点分章精析9.2 直线、圆的位置关系


,
∵所求直线与直线3x+4y-7=0垂直,
∴所求直线的斜率为k= 4 .
3
由点斜式得所求直线方程为y- 79 = 43 x
5 3

,
即4x-3y+9=0.
解法二:由垂直关系可设所求直线方程4x-3y+m=0,
由方程组
2 x
x3 3y
y 1 0, 40
知识拓展 (1)当两圆相交时,两圆方程相减,所得的直线方程即两圆公共弦所在的 直线方程,这一结论的前提是两圆相交,如果不确定两圆是否相交,两圆 方程相减得到的方程不一定是两圆公共弦所在的直线方程. (2)两圆公共弦的垂直平分线过两圆的圆心. (3)求公共弦长时,几何法比代数法简单且易求.
考向突破 考向 由两圆位置关系求参数范围 例 (2017福建福州模拟,6)已知点A(-2,0),B(2,0),若圆(x-3)2+y2=r2(r>0)上 存在点P(不同于点A,B)使得PA⊥PB,则实数r的取值范围是 ( ) A.(1,5) B.[1,5] C.(1,3] D.[3,5] 解析 根据直径所对的圆周角为90°,结合题意可得以AB为直径的圆和 圆 (x-3)2+y2=r2有交点, 显然两圆相切时不满足条件,故两圆相交. 易得以AB为直径的圆的方程为x2+y2=4,又两个圆的圆心距为3,故|r-2|<3 <|r+2|,得1<r<5,故选A.
直线与圆相交时,若l为弦长,d为弦心距,r为半径,则有r2=d2+ l2 ,即l=2 4
r2 d 2 ,求弦长或已知弦长求其他量时,一般用此公式.
考向突破 考向 直线与圆的位置关系的判断 例 直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是 ( ) A.相交 B.相切 C.相离 D.不确定

【新课改】2020版高考数学一轮复习课时跟踪检测:直线与圆锥曲线(含解析)

【新课改】2020版高考数学一轮复习课时跟踪检测:直线与圆锥曲线(含解析)

课时跟踪检测(五十二) 直线与圆锥曲线1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.2.(2019·张掖高三诊断)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( ) A.133B.143 C .5D.163解析:选D 过抛物线的焦点的弦长公式为|AB |=p +x 1+x 2.∵p =2,∴|AB |=2+103=163. 3.(2018·聊城二模)已知直线l 与抛物线C :y 2=4x 相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .y =x -1B .y =-2x +5C .y =-x +3D .y =2x -3解析:选D 设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②①-②得y 21-y 22=4(x 1-x 2),由题可知x 1≠x 2.∴y 1-y 2x 1-x 2=4y 1+y 2=42=2,即k AB =2,∴直线l 的方程为y -1=2(x -2),即2x -y -3=0.故选D.4.(2019·厦门模拟)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l与双曲线C 的交点情况是( )A .没有交点B .只有一个交点C .有两个交点且都在左支上D .有两个交点分别在左、右两支上解析:选D 直线l 的方程为y =33()x +13,代入C :x 24-y 29=1,整理得23x 2-813x -160=0,Δ=(-813)2+4×23×160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右两支上.5.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |=( )A .3B .4C .3 2D .4 2解析:选C 由题意可设l AB 为y =x +b ,代入y =-x 2+3得x 2+x +b -3=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,x 1x 2=b -3,y 1+y 2=x 1+b +x 2+b =-1+2b .所以AB 中点坐标为⎝ ⎛⎭⎪⎫-12,-12+b ,该点在x +y =0上,即-12+⎝ ⎛⎭⎪⎫-12+b =0,得b =1,所以|AB |=1+12·x 1+x 22-4x 1x 2=3 2.6.(2019·青岛模拟)已知点A 是抛物线C :x 2=2py (p >0)的对称轴与准线的交点,过点A 作抛物线C 的两条切线,切点分别为P ,Q ,若△AP Q 的面积为4,则p 的值为( )A.12 B .1 C.32D .2解析:选D 设过点A 与抛物线相切的直线方程为y =kx -p 2.由⎩⎪⎨⎪⎧y =kx -p 2,x 2=2py得x2-2pkx +p 2=0,由Δ=4k 2p 2-4p 2=0,可得k =±1, 则Q ⎝ ⎛⎭⎪⎫p ,p 2,P ⎝⎛⎭⎪⎫-p ,p 2,∴△AP Q 的面积为12×2p ×p =4,∴p =2.故选D.7.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2 B.32 C.355D.52解析:选B 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得:x 1+x 2x 1-x 2a2=y 1+y 2y 1-y 2b2,则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 25a 2.由直线AB 的斜率k =15-612-3=1,∴4b 25a 2=1,则b 2a 2=54,∴双曲线的离心率e =c a =1+b 2a 2=32. 8.(2019·福州模拟)已知抛物线E :y 2=2px (p >0)的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,线段AB 的垂直平分线交x 轴于点C ,MN ⊥y 轴于点N ,若四边形CMNF 的面积等于7,则E 的方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:选C F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 的方程为y =x -p2.联立得方程组⎩⎪⎨⎪⎧y 2=2px ,y =x -p2,可得x 2-3px +p 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3p , 则y 1+y 2=x 1+x 2-p =2p ,∴M ⎝ ⎛⎭⎪⎫3p 2,p ,∴N (0,p ),直线MC 的方程为y =-x +5p 2. ∴C ⎝ ⎛⎭⎪⎫5p 2,0,∴四边形CMNF 的面积为S 梯形OCMN -S △ONF =⎝ ⎛⎭⎪⎫3p 2+5p 2·p2-12·p 2·p =7p24=7, 又p >0,∴p =2,即抛物线E 的方程为y 2=4x .故选C.9.(2018·湖北十堰二模)如图,F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的两个分支分别交于点A ,B .若△ABF 2为等边三角形,则双曲线的离心率为( )A .4 B.7 C.233D. 3解析:选B ∵△ABF 2为等边三角形,∴|AB |=|AF 2|=|BF 2|,∠F 1AF 2=60°. 由双曲线的定义可得|AF 1|-|AF 2|=2a , ∴|BF 1|=2a .又|BF 2|-|BF 1|=2a ,∴|BF 2|=4a . ∴|AF 2|=4a ,|AF 1|=6a .在△AF 1F 2中,由余弦定理可得|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 2|·|AF 1|cos 60°, ∴(2c )2=(6a )2+(4a )2-2×4a ×6a ×12,即c 2=7a 2,∴e =c a =c 2a 2=7.故选B. 10.(2019·贵阳模拟)已知双曲线x 2-y 2=1的左、右顶点分别为A 1,A 2,动直线l :y =kx +m 与圆x 2+y 2=1相切,且与双曲线左、右两支的交点分别为P 1(x 1,y 1),P 2(x 2,y 2),则x 2-x 1的最小值为( )A .2 2B .2C .4D .3 2解析:选A ∵l 与圆相切, ∴原点到直线的距离d =|m |1+k2=1,∴m 2=1+k 2,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 2=1得(1-k 2)x 2-2mkx -(m 2+1)=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4m 2k 2+41-k2m 2+1=4m 2+1-k 2=8>0,x 1x 2=1+m 2k 2-1<0,∴k 2<1,∴-1<k <1,由于x 1+x 2=2mk 1-k 2,∴x 2-x 1=x 1+x 22-4x 1x 2=22|1-k 2|=221-k2,∵0≤k 2<1,∴当k 2=0时,x 2-x 1取最小值2 2.故选A.11.(2019·安庆模拟)设抛物线x 2=4y 的焦点为F ,点A ,B 在抛物线上,且满足AF ―→=λFB ―→,若|AF ―→|=32,则λ的值为________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线x 2=4y 得焦点F 的坐标为(0,1),准线方程为y =-1,∵|AF ―→|=32,∴y 1+1=32,解得y 1=12,∴x 1=±2,由抛物线的对称性取x 1=2, ∴A ⎝⎛⎭⎪⎫2,12,∴直线AF 的方程为y =-24x +1, 由⎩⎪⎨⎪⎧y =-24x +1,x 2=4y .解得⎩⎪⎨⎪⎧x =2,y =12或⎩⎨⎧x =-22,y =2,∴B (-22,2),∴|FB ―→|=2+1=3,∵AF ―→=λFB ―→,∴|AF ―→|=λ|FB ―→|,∴32=3λ,解得λ=12.答案:1212.(2019·武汉调研)已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线P Q 过原点O 且与直线MN 平行,直线P Q 与椭圆交于P ,Q 两点,则|P Q|2|MN |=________.解析:法一:由题意知,直线MN 的斜率不为0,设直线MN 的方程为x =my +1,则直线P Q 的方程为x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q(x 4,y 4).⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1⇒(m2+2)y 2+2my -1=0⇒y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|P Q|=1+m 2|y 3-y 4|=2 2 m 2+1m 2+2. 故|P Q|2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b2a=2,|P Q|=2b =2,则|P Q|2|MN |=2 2.答案:2 213.(2019·石家庄重中高中摸底)已知抛物线C :y 2=2px (p >0),直线l :y =3(x -1),l 与C 交于A ,B 两点,若|AB |=163,则p =________.解析:由⎩⎨⎧y 2=2px ,y =3x -1,消去y ,得3x 2-(2p +6)x +3=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=2p +63,x 1x 2=1,所以|AB |=2x 1+x 22-4x 1x 2=22p +629-4=163,所以p =2. 答案:214.(2018·深圳二模)设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则S △AB QS △ABO=________. 解析:设直线OP 的方程为y =kx (k ≠0),联立得⎩⎪⎨⎪⎧y =kx ,y 2=2px ,解得P ⎝⎛⎭⎪⎫2p k 2,2p k, 联立得⎩⎪⎨⎪⎧y =kx ,y 2=8px ,解得Q ⎝ ⎛⎭⎪⎫8p k2,8p k ,∴|OP |= 4p2k4+4p2k 2=2p 1+k2k 2, |P Q|= 36p2k 4+36p 2k2=6p 1+k2k2, ∴S △AB Q S △ABO =|P Q||OP |=3. 答案:315.已知抛物线E :y 2=2px (p >0)的焦点F ,E 上一点(3,m )到焦点的距离为4. (1)求抛物线E 的方程;(2)过F 作直线l ,交抛物线E 于A ,B 两点,若直线AB 中点的纵坐标为-1,求直线l 的方程.解:(1)抛物线E :y 2=2px (p >0)的准线方程为x =-p2,由抛物线的定义可知3-⎝ ⎛⎭⎪⎫-p 2 =4,解得p =2,∴抛物线E 的方程为y 2=4x .(2)法一:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,整理得y 2-y 1x 2-x 1 =4y 2+y 1(x 1≠x 2). ∵线段AB 中点的纵坐标为-1, ∴直线l 的斜率k AB =4y 2+y 1=4-1×2=-2, ∴直线l 的方程为y -0=-2(x -1),即2x +y -2=0. 法二:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0.设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2), ∵线段AB 中点的纵坐标为-1, ∴y 1+y 22 =4m2=-1,解得m =-12, ∴直线l 的方程为x =-12y +1,即2x +y -2=0.16.(2019·佛山模拟)已知直线l 过点P (2,0)且与抛物线E :y 2=4x 相交于A ,B 两点,与y 轴交于点C ,其中点A 在第四象限,O 为坐标原点.(1)当A 是PC 中点时,求直线l 的方程;(2)以AB 为直径的圆交直线OB 于点D ,求|OB |·|OD |的值. 解:(1)∵A 是PC 的中点,P (2,0),C 在y 轴上, ∴A 点的横坐标为1,又A 在第四象限,∴A (1,-2). ∴直线l 的方程为y =2x -4. (2)显然直线l 的斜率不为0, 设l的方程为x =my +2,A (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧x =my +2,y 2=4x ,消去x得y 2-4my -8=0,∴y 1y 2=-8,故x 1x 2=y 214·y 224=4,∵D 在以AB 为直径的圆上,且在直线OB 上,∴AD ―→⊥OD ―→, 设OD ―→=λOB ―→=(λx 2,λy 2),则AD ―→=OD ―→-OA ―→=(λx 2-x 1,λy 2-y 1), ∴AD ―→·OD ―→=(λx 2-x 1)λx 2+(λy 2-y 1)λy 2=0, 即λ2x 22-4λ+λ2y 22+8λ=0,易知λ≠0, ∴λ(x 22+y 22)=-4.∴|OB |·|OD |=x 22+y 22·λ2x 22+λ2y 22 =|λ|(x 22+y 22)=4.17.(2019·广州调研)如图,在直角坐标系xOy 中,椭圆C :y 2a 2+x 2b 2=1(a >b >0)的上焦点为F 1,椭圆C 的离心率为12,且过点⎝⎛⎭⎪⎫1,263. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若F 1B ―→·F 1H ―→=0,且|MO |=|MA |,求直线l 的方程.解:(1)因为椭圆C 的离心率为12,所以c a =12,即a =2c .又a 2=b 2+c 2,所以b 2=3c 2,即b 2=34a 2,所以椭圆C 的方程为y 2a 2+x 234a2=1.把点⎝⎛⎭⎪⎫1,263代入椭圆C 的方程中,解得a 2=4.所以椭圆C 的方程为y 24+x 23=1.(2)由(1)知,A (0,2),设直线l 的斜率为k (k ≠0),则直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 23+y24=1,得(3k 2+4)x 2+12kx =0.设B (x B ,y B ),得x B =-12k3k 2+4, 所以y B =-6k 2+83k 2+4,所以B ⎝ ⎛⎭⎪⎫-12k 3k 2+4,-6k2+83k 2+4.设M (x M ,y M ),因为|MO |=|MA |,所以点M 在线段OA 的垂直平分线上, 所以y M =1,因为y M =kx M +2,所以x M =-1k,即M ⎝ ⎛⎭⎪⎫-1k,1.设H (x H,0),又直线HM 垂直于直线l , 所以k MH =-1k,即1-1k-x H=-1k . 所以x H =k -1k,即H ⎝⎛⎭⎪⎫k -1k,0.又F 1(0,1),所以F 1B ―→=⎝ ⎛⎭⎪⎫-12k 3k 2+4,4-9k 23k 2+4,F 1H ―→=⎝ ⎛⎭⎪⎫k -1k ,-1.因为F 1B ―→·F 1H ―→=0,所以-12k 3k 2+4·⎝⎛⎭⎪⎫k -1k -4-9k 23k 2+4=0,解得k =±263.所以直线l 的方程为y =±263x +2.。

【新课改专版】2020年高考数学一轮复习课时练52《直线与圆锥曲线》附答案解析


D. 3
10.(2019·贵阳模拟)已知双曲线 x2-y2=1 的左、右顶点分别为 A1,A2,动直线 l:y=kx+m 与圆 x2+y2=1 相切,且与双曲线左、右两支的交点分别为 P1(x1,y1),P2(x2,y2),则 x2-x1 的最小 值为( )
A.2 2
B.2
2
C.4
D.3 2
11.(2019·安庆模拟)设抛物线 x2=4y 的焦点为 F,点 A,B 在抛物线上,且满足―A→F =λ―F→B , 若|―A→F |=3,则λ的值为________.
① ②
①-②得 y21-y22=4(x1-x2),由题可
知 x1≠x2.∴yx11--yx22=y1+4 y2=42=2,即 kAB=2,∴直线 l 的方程为 y-1=2(x-2),即 2x-y-3=0.
故选 D.
4.(2019·厦门模拟)过双曲线 C:x2-y2=1 的左焦点作倾斜角为π的直线 l,则直线 l 与双曲
-1,-1+b y2),则 x1+x2=-1,x1x2=b-3,y1+y2=x1+b+x2+b=-1+2b.所以 AB 中点坐标为 2 2 ,
该点在
x+y=0
上,即-1+
-1+b 2
=0,得
b=1,所以|AB|=
1+12·

2
x1+x2
2-4x1x2=3 2.
6.(2019·青岛模拟)已知点 A 是抛物线 C:x2=2py(p>0)的对称轴与准线的交点,过点 A 作抛 物线 C 的两条切线,切点分别为 P,Q,若△APQ 的面积为 4,则 p 的值为( )
49
6
线 C 的交点情况是( )
5
A.没有交点 B.只有一个交点 C.有两个交点且都在左支上 D.有两个交点分别在左、右两支上

2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)

直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。

(湖南专用)2020届高考数学一轮复习 阶段检测五 直线、圆及其位置关系 圆锥曲线与方程(含解析) 理

阶段检测五 直线、圆及其位置关系 圆锥曲线与方程(时间:120分钟,满分:150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.到直线3x -4y +1=0的距离为3且与此直线平行的直线方程是( ). A .3x -4y +4=0B .3x -4y +4=0或3x -4y -2=0C .3x -4y +16=0D .3x -4y +16=0或3x -4y -14=02.过点A (0,3),被圆(x -1)2+y 2=4截得的弦长为23的直线的方程是( ).A .y =-43x +3B .x =0或y =-43x +3C .x =0或y =43x +3 D .x =03.若曲线x 225+y 29=1与曲线y 2a +x 29=1的离心率互为倒数,则a 等于( ).A .16B .-16C .8116D .-81164.设圆C :x 2+y 2-2ax -2y +a 2=0(a 为常数)被y 轴所截得的弦为AB ,若弦AB 所对圆心角为π2,则实数a =( ).A .1B .±1C.22 D .±225.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ).A .2 3B .2 5C .4 3D .4 56.(2012辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ). A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 7.设A 1,A 2是椭圆x 29+y 24=1的长轴的两个端点,P 1,P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( ).A.x 29+y 24=1B.y 29+x 24=1C.x 29-y 24=1D.y 29-x 24=1 8.(2012浙江温州二模)抛物线y 2=2px (p >0)的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2p ,则双曲线的离心率为( ).A.102 B .2 C. 5 D.52二、填空题(本大题共7小题,每小题5分,共35分.将答案填在题中横线上)9.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为________.10.已知双曲线16y 2-m 2x 2=1(m >0)的一个顶点到它的一条渐近线的距离为15,则m 等于__________.11.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b2=1的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.12.“直线ax +2y +1=0和直线3x +(a -1)y +1=0平行”的充要条件是“a =__________”.13.与双曲线x 29-y 216=1有共同的渐近线,并且过点A (6,82)的双曲线的标准方程为__________.14.过抛物线y 2=2px (p >0)的焦点F 作直线l ,交抛物线于A ,B 两点,交其准线于C 点.若CB →=3BF →,则直线l 的斜率为__________.15.已知抛物线C 的方程为y 2=-8x ,设过点N (2,0)的直线l 的斜率为k ,且与抛物线C 相交于点S ,T ,若S ,T 两点只在第二象限内运动,线段ST 的垂直平分线交x 轴于Q 点,则Q 点横坐标的取值范围为__________.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(12分)已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.17.(12分)(2012天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.18.(12分)设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线l与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.19.(13分)已知动点P 到定点F (2,0)的距离与点P 到定直线l :x =22的距离之比为22. (1)求动点P 的轨迹C 的方程;(2)设M ,N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若EM →·FN →=0,求|MN |的最小值.20.(13分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,左、右焦点分别为F 1,F 2,抛物线y 2=42x 的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :x 2+y 2=23的切线l 与椭圆相交于A ,B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.21.(13分)已知中心在原点的椭圆C :x 2a 2+y 2b2=1的一个焦点为F 1(0,3),M (x,4)(x >0)为椭圆C 上一点,△MOF 1的面积为32.(1)求椭圆C 的方程;(2)是否存在平行于OM 的直线l ,使得直线l 与椭圆C 相交于A ,B 两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,说明理由.参考答案1.D 解析:设所求直线方程为3x -4y +m =0. 由|m -1|5=3,解得m =16或m =-14.即所求直线方程为3x -4y +16=0或3x -4y -14=0.2.B 解析:当过点A (0,3)且斜率不存在的直线与圆的相交弦长为23,此时,弦所在直线方程为x =0;当弦所在的直线斜率存在时,设弦所在直线l 的方程为y =kx +3,即kx -y +3=0. 因为弦长为23,圆的半径为2,所以弦心距为22-(3)2=1,由点到直线距离公式得|k +3|k 2+(-1)2=1,解得k =-43. 综上,所求直线方程为x =0或y =-43x +3.3.D 解析:∵曲线x 225+y 29=1的离心率为c a =45,∴曲线y 2a +x 29=1的离心率为54>1,∴该曲线为双曲线,a <0.∴e =9-a 3=54,解得a =-8116.4.D 解析:将已知圆的一般方程配方得(x -a )2+(y -1)2=1,由弦AB 所对圆心角为π2,可得|AB |=2R =2,从而可得圆心(a,1)到y 轴的距离为d =R 2-⎝⎛⎭⎪⎫|AB |22=22,故a=±22. 5.B 解析:双曲线左顶点A (-a,0),渐近线方程y =±b ax (a >0,b >0);抛物线焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线方程:x =-p 2(p >0).由题意知|AF |=4,∴a +p2=4. 又∵点(-2,-1)既在渐近线上又在抛物线的准线上, ∴-p2=-2,∴p =4,则a =2.又-1=b a·(-2),a =2,∴b =1,∴在双曲线中,c =a 2+b 2=5,∴双曲线的焦距为2 5.6.C 解析:圆x 2+y 2-2x -4y +1=0可化为标准方程(x -1)2+(y -2)2=4,要使直线平分此圆,则直线需过圆心(1,2).因此可通过代入法,看哪一条直线过圆心(1,2)即可.经检验,选项C 满足条件.故选C.7.C 解析:设交点为P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0).∵A 1,P 1,P 共线,∴y -y 0x -x 0=yx +3.①∵A 2,P 2,P 共线,∴y +y 0x -x 0=yx -3.② 由①②解得x 0=9x ,y 0=3yx,代入x 029+y 024=1,化简,得x 29-y 24=1.8.A 解析:由题意可得,抛物线焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线x =-p2,设点M 坐标为(x M ,y M ).由抛物线定义可得,x M -⎝ ⎛⎭⎪⎫-p 2=2p ,∴x M =3p 2.将x M =3p2代入抛物线方程得y M =±3p ,∴点M 坐标为⎝ ⎛⎭⎪⎫3p 2,±3p . 又∵抛物线准线经过双曲线的左顶点,∴-a =-p 2,即a =p2.将点M ⎝ ⎛⎭⎪⎫3p 2,±3p ,a =p 2代入双曲线方程得,b 2=3p 28,∴e =1+b 2a2=1+3p 28p 24=102.9.2 解析:∵双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0,∴a =2.10.3 解析:双曲线的标准方程为y 2116-x 21m2=1,一个顶点坐标为⎝ ⎛⎭⎪⎫0,14,渐近线方程为y =±m4x ,取其中一条mx +4y =0.由点到直线的距离1m 2+16=15, 又m >0,解得m =3.11.⎣⎢⎡⎦⎥⎤33,22 解析:设P (x ,y ),PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2+y2-c 2=c 2,所以,x 2+y 2=2c 2.又x 2a 2+y 2b 2=1,可得x 2+b 2-b 2a2x 2=2c 2, 整理得x 2=3c 2a 2-a 4c 2,而0≤x 2≤a 2, 故0≤3c 2a 2-a 4c 2≤a 2,解得33≤e ≤22.12.-2 解析:由⎩⎪⎨⎪⎧a (a -1)-2×3=0,(a -1)×1≠2×1,得a =-2,∴两直线平行的充要条件是“a =-2”.13.y 264-x 236=1 解析:设方程为x 29-y 216=λ,将A 点代入可得369-64×216=λ. ∴λ=-4,即y 264-x 236=1.14.±2 2 解析:由抛物线定义,|BF |等于B 到准线的距离|BB 1|,在△CBB 1中,sin∠BCB 1=|BF ||BC |=13, 故直线l 的斜率为k =±2 2. 15.(-∞,-6) 解析:设S (x 1,y 1),T (x 2,y 2),由题意得ST 的方程为y =k (x -2)(显然k ≠0),与y 2=-8x 联立消元得ky 2+8y +16k =0,则有y 1+y 2=-8k,y 1y 2=16.因为直线l 交抛物线C 于两点,则Δ=64-64k 2>0,再由y 1>0,y 2>0,则-8k>0,故-1<k <0,可求得线段ST 的中点B 的坐标为⎝ ⎛⎭⎪⎫-4k 2+2,-4k ,所以线段ST 的垂直平分线方程为y +4k =-1k ⎝⎛⎭⎪⎫x +4k2-2,令y =0,得点Q 的横坐标为x Q =-2-4k2<-6,所以Q 点横坐标的取值范围为(-∞,-6).16.解:由题意可知,l 2平行于x 轴,l 1与l 3互相垂直.三交点A ,B ,C 构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直径的圆.解方程组⎩⎪⎨⎪⎧ x -2y =0,y +1=0,得⎩⎪⎨⎪⎧x =-2,y =-1.所以点A 的坐标是(-2,-1).解方程组⎩⎪⎨⎪⎧2x +y -1=0,y +1=0,得⎩⎪⎨⎪⎧x =1,y =-1.所以点B 的坐标是(1,-1).线段AB 的中点坐标是⎝ ⎛⎭⎪⎫-12,-1, 又|AB |=(-2-1)2+(-1+1)2=3,所以所求圆的标准方程是⎝ ⎛⎭⎪⎫x +122+(y +1)2=94.17.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 02a 2+y 02b2=1,消去y 0并整理得x 02=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 02=a 2,整理得(1+k 2)x 02+2ax 0=0,而x 0≠0,故x 0=-2a 1+k2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =± 5.18.解:(1)设焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0,直线l 的方程为y =3(x -2).联立⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b2=1得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 2(2+2a )3a 2+b 2, y 2=-3b 2(2-2a )3a 2+b 2. 因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2, 得a =3.而a 2-b 2=4,所以b = 5. 故椭圆C 的方程为x 29+y 25=1.19.解:(1)设点P (x ,y ),依题意,有(x -2)2+y 2|x -22|=22. 整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1.(2)∵点E 与点F 关于原点O 对称, ∴点E 的坐标为(-2,0). ∵M ,N 是直线l 上的两个点,∴可设M (22,y 1),N (22,y 2)(不妨设y 1>y 2). ∵EM →·FN →=0,∴(32,y 1)·(2,y 2)=0,即6+y 1y 2=0,即y 2=-6y 1.由于y 1>y 2,则y 1>0,y 2<0,∴|MN |=y 1-y 2=y 1+6y 1≥2y 1·6y 1=2 6.当且仅当y 1=6,y 2=-6时,等号成立. 故|MN |的最小值为2 6.20.解:(1)∵椭圆C 的离心率e =22, ∴c a =22,即a =2c . ∵抛物线y 2=42x 的焦点F (2,0)恰好是该椭圆的一个顶点,∴a =2,∴c =1,b =1.∴椭圆C 的方程为x 22+y 2=1.(2)①当直线l 的斜率不存在时.∵直线l 与圆M 相切,故其中的一条切线方程为x =63. 由⎩⎪⎨⎪⎧ x =63,x 22+y 2=1,得A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫63,-63, 则以AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -632+y 2=23.②当直线l 的斜率为零时.∵直线l 与圆M 相切,故其中的一条切线方程为y =-63. 由⎩⎪⎨⎪⎧y =-63,x 22+y 2=1,得A ⎝⎛⎭⎪⎫63,-63,B ⎝ ⎛⎭⎪⎫-63,-63,则以AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +632=23.显然以上两圆的一个交点为O (0,0).③当直线l 的斜率存在且不为零时. 设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y 得(2k 2+1)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 2k 2+1,x 1·x 2=2m 2-22k 2+1.所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 22k 2+1.所以OA →·OB →=x 1x 2+y 1y 2=3m 2-2k 2-22k 2+1.① 因为直线l 和圆M 相切,所以圆心到直线l 的距离d =|m |1+k2=63,整理得m 2=23(1+k 2).②将②式代入①式,得OA →·OB →=0,显然以AB 为直径的圆经过定点O (0,0). 综上可知,以AB 为直径的圆过定点(0,0).21.解:(1)因为椭圆C 的一个焦点为F 1(0,3),所以b 2=a 2+9.则椭圆C 的方程为x 2a 2+y 2a 2+9=1.因为x >0,所以S △MOF 1=12×3×x =32,解得x =1.故点M 的坐标为(1,4). 因为M (1,4)在椭圆上,所以1a 2+16a 2+9=1,得a 4-8a 2-9=0,解得a 2=9或a 2=-1(不合题意,舍去),则b 2=9+9=18,所以椭圆C 的方程为x 29+y 218=1.(2)假设存在符合题意的直线l 与椭圆C 相交于A (x 1,y 1),B (x 2,y 2)两点, 其方程为y =4x +m (因为直线OM 的斜率k =4).由⎩⎪⎨⎪⎧y =4x +m ,x 29+y218=1,消去y 化简得18x 2+8mx +m 2-18=0.进而得到x 1+x 2=-8m 18,x 1x 2=m 2-1818.因为直线l 与椭圆C 相交于A ,B 两点,所以Δ=(8m )2-4×18×(m 2-18)>0,化简得m 2<162,解得-92<m <9 2. 因为以线段AB 为直径的圆恰好经过原点,所以OA →·OB →=0, 所以x 1x 2+y 1y 2=0.又y 1y 2=(4x 1+m )(4x 2+m )=16x 1x 2+4m (x 1+x 2)+m 2,x 1x 2+y 1y 2=17x 1x 2+4m (x 1+x 2)+m 2=17(m 2-18)18-32m 218+m 2=0.解得m =±102.由于±102∈(-92,92),所以符合题意的直线l 存在,且所求的直线l 的方程为y =4x +102或y =4x -102.。

高考数学一轮复习直线与圆锥曲线的位置关系课件理


4.椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,若
过原点与线段 AB 中点的直线的倾斜角为 30°,则ab的值为( )
3
3
A. 4 B. 3
3 C. 2 D. 3
解析:设 AB 的中点为 M(x0,y0),A(x1,y1),B(x2, y2),
由点差法得yx11- -yx22=-abxy00=-1,
解析:方法 1:设以 Q 为中点的弦 AB 端点坐标为 A(x1, y1),B(x2,y2),则有 y12=8x1,y22=8x2,
两式相减,得(y1-y2)(y1+y2)=8(x1-x2). 又 x1+x2=8,y1+y2=2, 则 k=xy22--xy11=y1+8 y2=4,
∴所求直线 AB 的方程为 y-1=4(x-4), 即 4x-y-15=0. 方法 2:设弦 AB 所在的直线方程为 y=k(x-4)+1,
由yy= 2=k8xx-4+1, 消去 x 整理,得 ky2-8y-32k+8=0. 设 A(x1,y1),B(x2,y2),
由韦达定理得 y1+y2=8k. 又∵Q 是 AB 中点,∴y1+2 y2=1,
∴8k=2,∴k=4. ∴弦 AB 所在直线方程为 4x-y-15=0.
点评:有关弦中点轨迹、中点弦所在直线的方程,中点坐 标的问题,有时采用“平方差”法,可优化解题方法,简化运 算.
=2 5m+20.
(3)设线段 AB 中点坐标为(x,y),则 x=x1+2 x2=-2, y=y1+2 y2=2x1+2 x2=-4. ∴AB 中点坐标为(-2,-4).
题型三 圆锥曲线的中点弦问题 例 3 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰被 Q 所平分, 求 AB 所在直线的方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段检测五 直线、圆及其位置关系 圆锥曲线与方程(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.到直线3x -4y +1=0的距离为3且与此直线平行的直线方程是( ). A .3x -4y +4=0 B .3x -4y +4=0或3x -4y -2=0 C .3x -4y +16=0 D .3x -4y +16=0或3x -4y -14=02.过点A (0,3),被圆(x -1)2+y 2=4截得的弦长为23的直线的方程是( ).A .y =-43x +3B .x =0或y =-43x +3C .x =0或y =43x +3 D .x =03.直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件为( ).A .m <1B .-3<m <1C .-4<m <2D .0<m <14.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b2=1的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是( ).A.⎣⎢⎡⎭⎪⎫33,1 B.⎣⎢⎡⎦⎥⎤13,12C.⎣⎢⎡⎦⎥⎤33,22D.⎝ ⎛⎦⎥⎤0,22 5.若曲线x 225+y 29=1与曲线y 2a +x 29=1的离心率互为倒数,则a 等于( ).A .16B .-16C .8116D .-81166.已知双曲线16y 2-m 2x 2=1(m >0)的一个顶点到它的一条渐近线的距离为15,则m 等于( ).A .1B .2C .3D .47.设圆C :x 2+y 2-2ax -2y +a 2=0(a 为常数)被y 轴所截得的弦为AB ,若弦AB 所对圆心角为π2,则实数a =( ).A .1B .±1C.22D .±228.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ).A .2 3B .2 5C .4 3D .4 59.(2012辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ). A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 10.设A 1,A 2是椭圆x 29+y 24=1的长轴的两个端点,P 1,P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( ).A.x 29+y 24=1B.y 29+x 24=1C.x 29-y 24=1D.y 29-x 24=1 二、填空题(本大题共5小题,每小题5分,共25分.将答案填在题中横线上)11.“直线ax +2y +1=0和直线3x +(a -1)y +1=0平行”的充要条件是“a =__________”.12.与双曲线x 29-y 216=1有共同的渐近线,并且过点A (6,82)的双曲线的标准方程为__________.13.过抛物线y 2=2px (p >0)的焦点F 作直线l ,交抛物线于A ,B 两点,交其准线于C 点.若CB →=3BF →,则直线l 的斜率为__________.14.已知抛物线C 的方程为y 2=-8x ,设过点N (2,0)的直线l 的斜率为k ,且与抛物线C 相交于点S ,T ,若S ,T 两点只在第二象限内运动,线段ST 的垂直平分线交x 轴于Q 点,则Q 点横坐标的取值范围为__________.15.抛物线y 2=2px (p >0)的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2p ,则双曲线的离心率为__________.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(12分)已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.17.(12分)(2012天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.18.(12分)设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线l与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.19.(12分)已知动点P 到定点F (2,0)的距离与点P 到定直线l :x =22的距离之比为22. (1)求动点P 的轨迹C 的方程;(2)设M ,N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若EM →·FN →=0,求|MN |的最小值.20.(13分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,左、右焦点分别为F 1,F 2,抛物线y 2=42x 的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :x 2+y 2=23的切线l 与椭圆相交于A ,B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.21.(14分)已知中心在原点的椭圆C :x 2a 2+y 2b2=1的一个焦点为F 1(0,3),M (x,4)(x >0)为椭圆C 上一点,△MOF 1的面积为32.(1)求椭圆C 的方程;(2)是否存在平行于OM 的直线l ,使得直线l 与椭圆C 相交于A ,B 两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,说明理由.参考答案1.D 解析:设所求直线方程为3x -4y +m =0. 由|m -1|5=3,解得m =16或m =-14.即所求直线方程为3x -4y +16=0或3x -4y -14=0.2.B 解析:当过点A (0,3)且斜率不存在的直线与圆的相交弦长为23,此时,弦所在直线方程为x =0;当弦所在的直线斜率存在时,设弦所在直线l 的方程为y =kx +3,即kx -y +3=0. 因为弦长为23,圆的半径为2,所以弦心距为22-(3)2=1,由点到直线距离公式得|k +3|k 2+(-1)2=1,解得k =-43. 综上,所求直线方程为x =0或y =-43x +3.3.D 解析:由⎩⎪⎨⎪⎧y =x +m ,x 2+y 2-2x -1=0,得x 2+(x +m )2-2x -1=0, 即2x 2+(2m -2)x +m 2-1=0,令Δ=(2m -2)2-4×2(m 2-1)=4m 2-8m +4-4×2m 2+8=-4m 2-8m +12>0,则m 2+2m -3<0,解得-3<m <1.所以所求的一个充分不必要条件是集合{m |-3<m <1}的真子集,故D 正确.4.C 解析:设P (x ,y ),PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2+y 2-c 2=c 2,所以,x 2+y 2=2c 2.又x 2a 2+y 2b 2=1,可得x 2+b 2-b 2a2x 2=2c 2, 整理得x 2=3c 2a 2-a 4c 2,而0≤x 2≤a 2, 故0≤3c 2a 2-a 4c 2≤a 2,解得33≤e ≤22.5.D 解析:∵曲线x 225+y 29=1的离心率为c a =45,∴曲线y 2a +x 29=1的离心率为54>1,∴该曲线为双曲线,a <0.∴e =9-a 3=54,解得a =-8116.6.C 解析:双曲线的标准方程为y 2116-x 21m2=1,一个顶点坐标为⎝ ⎛⎭⎪⎫0,14,渐近线方程为y=±m4x ,取其中一条mx +4y =0.由点到直线的距离1m 2+16=15,又m >0,解得m =3.7.D 解析:将已知圆的一般方程配方得(x -a )2+(y -1)2=1,由弦AB 所对圆心角为π2,可得|AB |=2R =2,从而可得圆心(a ,1)到y 轴的距离为d =R 2-⎝ ⎛⎭⎪⎫|AB |22=22,故a =±22. 8.B 解析:双曲线左顶点A (-a ,0),渐近线方程y =±b ax (a >0,b >0);抛物线焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线方程:x =-p2(p >0).由题意知|AF |=4,∴a +p2=4. 又∵点(-2,-1)既在渐近线上又在抛物线的准线上, ∴-p2=-2,∴p =4,则a =2.又-1=b a·(-2),a =2,∴b =1,∴在双曲线中,c =a 2+b 2=5,∴双曲线的焦距为2 5.9.C 解析:圆x 2+y 2-2x -4y +1=0可化为标准方程(x -1)2+(y -2)2=4,要使直线平分此圆,则直线需过圆心(1,2).因此可通过代入法,看哪一条直线过圆心(1,2)即可.经检验,选项C 满足条件.故选C.10.C 解析:设交点为P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0).∵A 1,P 1,P 共线,∴y -y 0x -x 0=yx +3.①∵A 2,P 2,P 共线,∴y +y 0x -x 0=yx -3.②由①②解得x 0=9x ,y 0=3yx,代入x 209+y 204=1,化简,得x 29-y 24=1.11.-2 解析:由⎩⎪⎨⎪⎧a (a -1)-2×3=0,(a -1)×1≠2×1,得a =-2,∴两直线平行的充要条件是“a =-2”.12.y 264-x 236=1 解析:设方程为x 29-y 216=λ,将A 点代入可得369-64×216=λ. ∴λ=-4,即y 264-x 236=1.13.±2 2 解析:由抛物线定义,|BF |等于B 到准线的距离|BB 1|,在△CBB 1中,sin∠BCB 1=|BF ||BC |=13,故直线l 的斜率为k =±2 2. 14.(-∞,-6) 解析:设S (x 1,y 1),T (x 2,y 2),由题意得ST 的方程为y =k (x -2)(显然k ≠0),与y 2=-8x 联立消元得ky 2+8y +16k =0,则有y 1+y 2=-8k,y 1y 2=16.因为直线l 交抛物线C 于两点,则Δ=64-64k 2>0,再由y 1>0,y 2>0,则-8k>0,故-1<k <0,可求得线段ST 的中点B 的坐标为⎝ ⎛⎭⎪⎫-4k 2+2,-4k ,所以线段ST 的垂直平分线方程为y +4k =-1k ⎝⎛⎭⎪⎫x +4k2-2,令y =0,得点Q 的横坐标为x Q =-2-4k2<-6,所以Q 点横坐标的取值范围为(-∞,-6).15.102 解析:由题意可得,抛物线焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线x =-p 2, 设点M 坐标为(x M ,y M ).由抛物线定义可得,x M -⎝ ⎛⎭⎪⎫-p 2=2p ,∴x M =3p 2.将x M =3p2代入抛物线方程得y M =±3p ,∴点M 坐标为⎝ ⎛⎭⎪⎫3p 2,±3p . 又∵抛物线准线经过双曲线的左顶点,∴-a =-p 2,即a =p2.将点M ⎝ ⎛⎭⎪⎫3p 2,±3p ,a =p 2代入双曲线方程得,b 2=3p 28,∴e =1+b 2a 2=1+3p 28p 24=102.16.解:由题意可知,l 2平行于x 轴,l 1与l 3互相垂直.三交点A ,B ,C 构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直径的圆.解方程组⎩⎪⎨⎪⎧x -2y =0,y +1=0,得⎩⎪⎨⎪⎧x =-2,y =-1. 所以点A 的坐标是(-2,-1).解方程组⎩⎪⎨⎪⎧2x +y -1=0,y +1=0,得⎩⎪⎨⎪⎧x =1,y =-1. 所以点B 的坐标是(1,-1).线段AB 的中点坐标是⎝ ⎛⎭⎪⎫-12,-1, 又|AB |=(-2-1)2+(-1+1)2=3,所以所求圆的标准方程是⎝ ⎛⎭⎪⎫x +122+(y +1)2=94.17.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58. 于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a2+y 20b2=1,消去y 0并整理得 x 20=a 2b 2k 2a 2+b 2.① 由|AQ |=|AO |,A (-a ,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =± 5.18.解:(1)设焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0,直线l 的方程为y =3(x -2).联立⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b2=1得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 2(2+2a )3a 2+b2, y 2=-3b 2(2-2a )3a 2+b 2. 因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2, 得a =3.而a 2-b 2=4,所以b = 5. 故椭圆C 的方程为x 29+y 25=1.19.解:(1)设点P (x ,y ),依题意,有(x -2)2+y 2|x -22|=22. 整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1.(2)∵点E 与点F 关于原点O 对称, ∴点E 的坐标为(-2,0). ∵M ,N 是直线l 上的两个点,∴可设M (22,y 1),N (22,y 2)(不妨设y 1>y 2). ∵EM →·FN →=0,∴(32,y 1)·(2,y 2)=0,即6+y 1y 2=0,即y 2=-6y 1.由于y 1>y 2,则y 1>0,y 2<0,∴|MN |=y 1-y 2=y 1+6y 1≥2y 1·6y 1=2 6.当且仅当y 1=6,y 2=-6时,等号成立. 故|MN |的最小值为2 6.20.解:(1)∵椭圆C 的离心率e =22, ∴c a =22,即a =2c . ∵抛物线y 2=42x 的焦点F (2,0)恰好是该椭圆的一个顶点,∴a =2,∴c =1,b =1.∴椭圆C 的方程为x 22+y 2=1.(2)①当直线l 的斜率不存在时.∵直线l 与圆M 相切,故其中的一条切线方程为x =63. 由⎩⎪⎨⎪⎧x =63,x 22+y 2=1,得A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫63,-63, 则以AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -632+y 2=23.②当直线l 的斜率为零时.∵直线l 与圆M 相切,故其中的一条切线方程为y =-63. 由⎩⎪⎨⎪⎧y =-63,x 22+y 2=1,得A ⎝⎛⎭⎪⎫63,-63,B ⎝ ⎛⎭⎪⎫-63,-63,则以AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +632=23.显然以上两圆的一个交点为O (0,0).③当直线l 的斜率存在且不为零时. 设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y 得(2k 2+1)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 2k 2+1,x 1·x 2=2m 2-22k 2+1.所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 22k 2+1.所以OA →·OB →=x 1x 2+y 1y 2=3m 2-2k 2-22k 2+1.① 因为直线l 和圆M 相切,所以圆心到直线l 的距离d =|m |1+k2=63,整理得m 2=23(1+k 2).②将②式代入①式,得OA →·OB →=0,显然以AB 为直径的圆经过定点O (0,0). 综上可知,以AB 为直径的圆过定点(0,0).21.解:(1)因为椭圆C 的一个焦点为F 1(0,3),所以b 2=a 2+9.则椭圆C 的方程为x 2a 2+y 2a 2+9=1.因为x >0,所以S △MOF 1=12×3×x =32,解得x =1.故点M 的坐标为(1,4). 因为M (1,4)在椭圆上,所以1a 2+16a 2+9=1,得a 4-8a 2-9=0,解得a 2=9或a 2=-1(不合题意,舍去),则b 2=9+9=18,所以椭圆C 的方程为x 29+y 218=1.(2)假设存在符合题意的直线l 与椭圆C 相交于A (x 1,y 1),B (x 2,y 2)两点, 其方程为y =4x +m (因为直线OM 的斜率k =4). 由⎩⎪⎨⎪⎧y =4x +m ,x 29+y 218=1,消去y 化简得18x 2+8mx +m 2-18=0.进而得到x 1+x 2=-8m 18,x 1x 2=m 2-1818.因为直线l 与椭圆C 相交于A ,B 两点,所以Δ=(8m )2-4×18×(m 2-18)>0,化简得m 2<162,解得-92<m <9 2. 因为以线段AB 为直径的圆恰好经过原点,所以OA →·OB →=0, 所以x 1x 2+y 1y 2=0.又y 1y 2=(4x 1+m )(4x 2+m )=16x 1x 2+4m (x 1+x 2)+m 2,x 1x 2+y 1y 2=17x 1x 2+4m (x 1+x 2)+m 2=17(m 2-18)18-32m 218+m 2=0.解得m =±102.由于±102∈(-92,92),所以符合题意的直线l 存在,且所求的直线l 的方程为y =4x +102或y =4x -102.。

相关文档
最新文档