专题05 解析几何【新课标版】(解析版)备战2020高考黄金30题系列之数学填空题压轴题【新课标版】
2020年高考数学(理)抢分秘籍05 平面解析几何(解析版)

秘籍05平面解析几何1.已知直线l1:ax+2y-1=0,直线l2:8x+ay+2-a=0,若l1∥l2,则实数a的值为( )A.4±B.-4C.4D.2±【答案】B解析:由2a-2×8=0,得a=±4.当a=4时,l1:4x+2y-1=0,l2:8x+4y-2=0,l1与l2重合.当a=-4时,l1:-4x+2y-1=0,l2:8x-4y+6=0,l1∥l2.综上所述,a=-4.故选:B由两直线平行或垂直求参数的值:在解这类问题时,一定要“前思后想”.“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案的正确性,看是否出现增解或漏解.2.过原点且倾斜角为60°的直线被圆x2+y2﹣4y=0所截得的弦长为()A.2√3B.2C.√6D.√3【答案】A【解析】:根据题意:直线方程为:y=√3x,∵圆x2+y2﹣4y=0,∴圆心为:(0,2),半径为:2,圆心到直线的距离为:d=1,∴弦长为2√4−1=2√3,故选:A.3.直线l 过点(﹣4,0)且与圆(x +1)2+(y ﹣2)2=25交于A 、B 两点,如果|AB|=8,那么直线l 的方程为( ) A .5x+12y+20=0 B .5x ﹣12y+20=0或x+4=0C .5x ﹣12y+20=0D .5x+12y+20=0或x+4=0【答案】D解析:当切线的斜率不存在时,直线l 的方程为 x+4=0,经检验,此直线和圆相切,满足条件. 当切线的斜率存在时,设直线l 的方程为 y ﹣0=k (x+4 ),即 kx ﹣y+4k=0, 则圆心(﹣1,2)到直线l 的距离为 d=|−k−2+4k|√k 2+1=|3k−2|√k 2+1.再由 d 2+(AB2)2=r 2,得|3k−2|√k 2+1=3,∴k=﹣512,∴直线l 的方程为 y ﹣0=﹣512(x+4),即 5x+12y+20=0. 故选:D .1.涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形,结合勾股定理222()2ld r +=求解;二是若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则212||1||AB k x x =+-.2.求两圆公共弦长一般有两种方法:一是联立两圆的方程求出交点坐标,再利用两点间的距离公式求解;二是求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题.4.己知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过点F 作圆222x y b +=的切线,若两条切线互相垂直,则椭圆C 的离心率为( ) A .12B 2C 2D 6 【答案】D 解析:如图,c =,则222b c =, 即2222()a c c -=,则2223a c =,∴2223c a =,即c e a ==故选:D .5.设椭圆22221(0)x y a b a b +=>>的焦点为1F ,2F ,P 是椭圆上一点,且123F PF π∠=,若△12F PF 的外接圆和内切圆的半径分别为R ,r ,当4R r =时,椭圆的离心率为( ) A .45B .23C .12D .25【答案】B【解析】:椭圆的焦点为1(,0)F c -,2(,0)F c ,12||2F F c =,根据正弦定理可得1212||22sin sin 3F F c R F PF π===∠,R ∴=,14r R ==. 设1||PF m =,2||PF n =,则2m n a +=, 由余弦定理得,2222242cos()3433c m n mn m n mn a mn π=+-=+-=-,224()3a c mn -∴=,121sin 23F PF S mn π∴==V121(2)2F PF S m n c r =++V g ,∴,即22230a c ac --=,故2320e e +-=, 解得:23e =或1e =-(舍).故选:B .椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法: (1)求出a ,c ,代入公式c e a=. (2)只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 或e 2的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( )A 23B 26C 3D .2【答案】A【解析】:双曲线22212x y a -=的一条渐近线的倾斜角为6π,则3tan6π=, 所以该条渐近线方程为3y =; 23, 解得6a所以226222c a b =+=+, 所以双曲线的离心率为22236c e a == 故选:A .7.双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,以1F 为圆心,12||F F 为半径的圆与C 的公共点为P ,若△12PF F 是直角三角形,则C 的离心率为( ) A 2-1B 51C 21D 51+【解析】:由题意知121||2||F F c PF ==,若△12PF F 是直角三角形,则122PF F π∠=,且2||22PF c =,又由双曲线的定义,可得21||||2PF PF a -=, 可得2||2222PF a c c =+=,即2(222)a c=-, 由121c e a ==-,解得21e =+, 故选:C .求双曲线的离心率一般有两种方法(1)由条件寻找,a c 满足的等式或不等式,一般利用双曲线中a b c ,,的关系222c a b =+将双曲线的离心率公式变形,即222211c b e a abc ==+=-,注意区分双曲线中a b c ,,的关系与椭圆中a b c ,,的关系,在椭圆中222a b c =+,而在双曲线中222c a b =+.(2)根据条件列含,a c 的齐次方程,利用双曲线的离心率公式ce a=转化为含e 或2e 的方程,求解可得,注意根据双曲线离心率的范围1()e ∈+∞,对解进行取舍.8.如图,抛物线的顶点在坐标原点,焦点为F ,过抛物线上一点A (3,y )作准线l 作垂线,垂直为B ,若△ABF 为等边三角形,则抛物线的标准方程是( )A .y 2=12xB .y 2=xC .y 2=2xD .y 2=4x【解析】:设直线l交x轴于点C∵AB⊥l,l⊥x轴,∴AB∥x轴,可得∠BFC=∠ABF=60°,Rt△BCF中,|CF|=|BF|cos60°=p,解得|BF|=2p,由AB⊥y轴,可得3+p2=2p,∴p=2,∴抛物线的标准方程是y2=4x.故选:D.9.已知抛物线C:y2=2px(p>0)的焦点为F,点P(a,4)在抛物线C上,O为坐标原点,|PF|=5,且|OP|>5.(1)求抛物线C的方程;(2)过焦点F,且斜率为1的直线l与抛物线C交于A,B两点,线段AB的垂直平分线l′交抛物线C于M,N 两点,求四边形AMBN的面积.【解析】(1)将P(a,4)代入抛物线的方程y2=2px,得a=8p ,所以P(8p,4),因为|PF|=5,所以8p +p2=5,整理得p2−10p+16=0,解得p=2或p=8,当p=2时,P(4,4),满足|OP|>5;当p=8时,P(1,4),|OP|<5,不符合题意,舍去.所以抛物线C的方程为y2=4x.(2)因为l的方程为x=y+1,代入C:y2=4x,得y2−4y−4=0.设A(x1,y1),B(x2,y2),则y1+y2=4,y1y2=−4,故AB的中点为D(3,2),|AB|=√12+1√(y1+y2)2−4y1y2=8.又因为l′的斜率为-1,所以l′的方程为y−2=−(x−3),即x=−y+5.将上式代入C:y2=4x,并整理得y2+4y−20=0.设M(x3,y3),N(x4,y4),则y3+y4=−4,y3y4=−20,故|MN|=√(−1)2+1√(y3+y4)2−4y3y4=8√3.所以四边形AMBN的面积S=12|AB|⋅|MN|=12×8×8√3=32√3.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.1.已知直线l1:x•sinα+y﹣1=0,直线l2:x﹣3y•cosα+1=0,若l1⊥l2,则sin2α=()A.23B.±35C.﹣35D.35【答案】D【解析】:因为l1⊥l2,所以sinα﹣3cosα=0,所以tanα=3,所以sin2α=2sinαcosα=2sinαcosαsin2α+cos2α=2tanα1+tan2α=35.故选:D.两条直线的位置关系斜截式→111222::l y k x b l y k x b =+=+一般式→11112222:0:0l A x B y C l A x B y C ++=++=1l 与2l 相交 12k k ≠12210A B A B -≠ 1l 与2l 垂直121k k =-12120A A B B +=1l 与2l 平行 12k k =且12b b ≠1221122100A B A B B C B C -=⎧⎨-≠⎩或122112210A B A B AC A C -=⎧⎨-≠⎩ 1l 与2l 重合 12k k =且12b b =1221122112210A B A B AC A C B C B C -=-=-=2.圆x 2+y 2-4x=0在点P (1,√3)处的切线方程为( )A.x +√3y-2=0 B .x +√3y-4=0 C .x-√3y +4=0 D .x-√3y +2=0 【答案】D【解析】:∵点P (1,√3)在圆x 2+y 2-4x=0上,∴点P 为切点.从而圆心与点P 的连线应与切线垂直. 又∵圆心为(2,0),设切线斜率为k ,∴0−√32−1·k=-1,解得k=√33. ∴切线方程为x-√3y +2=0.故选:D3.若直线10x y -+=与圆22()2x a y -+=相切,则a 等于( ) A .1或3- B .1-或3-C .1或3D .1-或3【答案】A【解析】:根据题意,圆22()2x a y -+=的圆心为(,0)a ,半径2r =, 若直线10x y -+=与圆22()2x a y -+=相切, 则圆心到直线的距离|1|22a d +==,即|1|2a +=,解可得:1a =或3-, 故选:A .1.求过圆上的一点00(,)x y 的切线方程:先求切点与圆心连线的斜率k ,若k 不存在,则由图形可写出切线方程为0y y =;若0k =,则由图形可写出切线方程为0x x =;若k 存在且k ≠0,则由垂直关系知切线的斜率为1k-,由点斜式方程可求切线方程. 2.求过圆外一点00(,)x y 的圆的切线方程: (1)几何方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径长,即可得出切线方程. (2)代数方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.3.在求过一定点的圆的切线方程时,应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线有两条;若点在圆内,则切线不存在.4.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为F 1,F 2,直线3y b =与双曲线C 的右支相交于P ,若122PF PF =,则双曲线C 的渐近线方程为 A .32y x =±B .23y x =±C .52y x =±D .255y x =±【答案】C【解析】由222231y b x y ab =-=⎧⎪⎨⎪⎩,解得P(2a,√3b),根据双曲线的定义有|PF 1|−|PF 2|=|PF 2|=2a ,双曲线的焦点F 2(c,0), 故|PF 2|=√(2a −c )2+(√3b)2=2a ,两边平方化简得4c 2−4ac −3a 2=0, 即4e 2−4e −3=0,解得e =32, 故(b a )2=e 2−1=54,所以b a=√52,即双曲线的渐近线方程为y =±√52x .故选C .对于双曲线的渐近线,有下面两种考查方式: (1)已知双曲线的方程求其渐近线方程;(2)给出双曲线的渐近线方程求双曲线方程,由渐近线方程可确定a ,b 的关系,结合已知条件可解.4.已知椭圆E : 22221(0)x y a b a b+=>>与y 轴的正半轴相交于点M ,点F 1,F 2为椭圆的焦点,且12△MF F 是边长为2的等边三角形,若直线l :y =kx+2√3与椭圆E 交于不同的两点A ,B . (1)直线MA ,MB 的斜率之积是否为定值?若是,请求出该定值,若不是,请说明理由; (2)求△ABM 的面积的最大值.【解析】(1)因为12△MF F 是边长为2的等边三角形,所以2c =2,b =√3c ,a =2, 所以a =2,b =√3,所以椭圆E :x 24+y 23=1,点M (0,√3).将直线l :y =kx+2√3代入椭圆E 的方程, 整理得(3+4k 2)x 2+16√3kx+36=0. (*) 设A (x 1,y 1),B (x 2,y 2),则由(*)式可得Δ=(16√3k )2-4(3+4k 2)×36=48(4k 2-9)>0, 所以k ∈(-∞,-32)∪(32,+∞),x 1+x 2=x 1x 2=23634k +. 则直线MA ,MB 的斜率之积为k MA ·k MB(121212kx kx x x=()122123x x k x x ++=+2233634k k ⋅+⎝⎭=++=k 2+9−36k 236=14, 所以直线MA ,MB 的斜率之积是定值14. (2)记直线l :y =kx+2√3与y 轴的交点为N (0,2√3), 则S △ABM =|S △ANM -S △BNM |=12|MN|·|x 2-x 1|= 612===≤当且仅当4k 2-9=12,即k=±2∈(-∞,-32)∪(32,+∞)时等号成立,所以△ABM 的面积的最大值为32. 5.已知抛物线C :y 2=2px(p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与抛物线C 的交点为Q ,且|QF|=2|PQ|.(1)求p 的值;(2)已知点T(t,−2)为C 上一点,M,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为−83,证明直线MN 恒过定点,并求出定点的坐标.【解析】(1)设()0,4Q x ,由抛物线的定义,得02pQF x =+, 又2QF PQ =,即0022p x x =+,解得02p x =, 将点,42p Q ⎛⎫⎪⎝⎭代入抛物线方程,解得4p =. (2)由(1)知C 的方程为28y x =,所以点T 的坐标为1,22⎛⎫-⎪⎝⎭, 设直线MN 的方程为x my n =+,点221212,,,88y y M y N y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, 由28x my ny x=+=⎧⎨⎩得2880y my n --=,所以12128,8y y m y y n +==-,所以12221212228811228282MT NT y y k k y y y y +++=+=+---- ()()121212832643282481643y y m y y y y n m +--===--++--+,解得1n m =-,所以直线MN 的方程为x +1=m(y +1),恒过点(−1,−1).定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.与直线 3x −2y =0 平行,且过点 (−4,3) 的直线方程为 ( ) A. y −3=−32(x +4) B. y +3=32(x −4) C. y −3=32(x +4)D. y +3=−32(x −4)2. 已知直线 l :y =x +b 与曲线 C :y =3−√4x −x 2 有公共点,则 b 的取值范围为 ( ) A. [−3,3] B. [3,1+2√2] C. [1−2√2,3]D. [1−2√2,1+2√2]3.圆 C:(x −1)2+y 2=25,过点 P (2,−1) 作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是 ( ) A. 10√3 B. 9√21 C. 10√23 D. 9√114.若当方程 x 2+y 2+kx +2y +k 2=0 所表示的圆取得最大面积时,则直线 y =(k −1)x +2 的倾斜角 α= ( ) A.3π4 B. π4C.3π2D.5π45.已知A (3,﹣1),B (5,﹣2),点P 在直线x+y=0上,若使|PA|+|PB|取最小值,则点P 的坐标是( ) A .(1,﹣1) B .(﹣1,1)C .(135,﹣135)D .(﹣2,2)6.已知过点M (﹣3,﹣3)的直线l 被圆x 2+y 2+12x +4y +15=0截得的弦长为8,则直线l 的方程为( ) A .y=﹣3或4x ﹣3y+3=0 B .y=﹣3或4x+3y+21=0C .x=﹣3或4x ﹣3y+3=0D .x=﹣3或4x+3y+21=07.已知⊙C :x 2+y 2﹣4x ﹣6y ﹣3=0,点 M (﹣2,0)是⊙C 外一点,则过点 M 的圆的切线的 方程是( )A .x+2=0,7x ﹣24y+14=0B .y+2=0,7x+24y+14=0C .x+2=0,7x+24y+14=0D .y+2=0,7x ﹣24y+14=08.平面内,已知点A 为定圆O 外的一个定点,点B 为圆O 上的一个动点,点A 关于点B 的对称点为点C ,若BD ⊥AC 且CD ∥OB ,则点D 的轨迹是( ) A .抛物线 B .双曲线C .椭圆D .圆9.若直线l:ax −by =2(a >0,b >0)平分圆x 2+y 2−2x +4y =0,则1a+1b的最小值为 A .2√2 B .2 C .12(3+2√2)D .3+2√210.圆x 2+(y+1)2=3绕直线kx-y-1=0旋转一周所得的几何体的表面积为( ) A.36πB.12πC.4√3πD.4π11.己知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过点F 作圆222x y b +=的切线,若两条切线互相垂直,则椭圆C 的离心率为( )A .12B C D12.椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,A 为椭圆上一动点(异于左右顶点),若△12AF F的周长为6( )A .22143x y +=B .22132x y +=C .2212x y +=D .2214x y +=13.已知椭圆22:186x y C +=的左、右顶点分别为A 、B ,点P 为椭圆C 上不同于A 、B 两点的动点,若直线PA 斜率的取值范围是[1,2],则直线PB 斜率的取值范围是( ) A .[2-,1]-B .3[2-,3]4-C .[1-,1]2-D .3[4-,3]8-14.已知双曲线22214x y b -=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离为()A .B C .3D .515.已知双曲线221(0)x y m n m n -=>>和椭圆22154x y +=有相同的焦点,则14m n +的最小值为( )A .2B .4C .6D .916.已知双曲线22:1(0)3x C y x -=>,点(2,0)F ,点M 是曲线C 上的一个动点,点N 满足0NM NF =u u u u r u u u r g ,则点N 到原点的最短距离为( ) A.2B C D .117.双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,以1F 为圆心,12||F F 为半径的圆与C 的公共点为P ,若△12PF F 是直角三角形,则C 的离心率为( ) AB 1C 1D 118.设双曲线2222:1(0,0)x y E a b a b-=>>,命题p :双曲线E 离心率e =q :双曲线E 的渐近线互相垂直,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件19.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则||||PM PF +的最小值为( ) A .3B .2C .4D .20. 若直线 l 过抛物线 y 2=4x 的焦点,与抛物线交于 A ,B 两点,且线段 AB 中点的横坐标为 2,则弦AB 的长为 ( ) A. 2 B. 4 C. 6 D. 821.已知A ,B 为抛物线C :y2=4x 上的不同两点,F 为抛物线C 的焦点,若AB →=5FB →,则|AB|=( )A .252B .10C .254 D .622.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度是( )A .3√2B .2√3C .√303D .3√6223.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A,B 两点,则直线AB 的方程是 . 24.已知动圆C 与圆22(1)1x y ++=及圆22(1)25x y -+=都内切,则动圆圆心C 的轨迹方程为 .25.与曲线2212449x y +=共焦点,而与曲线2213664x y -=共渐近线的双曲线方程为26.在椭圆x 216+y 24=1内以点P (﹣2,1)为中点的弦所在的直线方程为27.过椭圆C :x 225+y 29=1右焦点F 的直线l 交C 于两点A (x 1,y 1),B (x 2,y 2),且A 不在x 轴上. (Ⅰ)求|y 1y 2|的最大值; (Ⅱ)若|AF||FB|=14,求直线l 的方程.28. 已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线为 y =√3x ,右焦点 F (4,0),左右顶点分别为 A 1,A 2,P 为双曲线上一点(不同于 A 1,A 2),直线 A 1P ,A 2P 分别与直线 x =1 交于 M ,N 两点;(1)求双曲线的方程;(2)求证:FM ⃗⃗⃗⃗⃗⃗ ⋅FN ⃗⃗⃗⃗⃗ 为定值,并求此定值.29.已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的离心率 e =2√33,直线 l 过 A (a,0) 、 B (0,−b ) 两点,原点O 到直线 l 的距离是√32. (1)求双曲线的方程;(2)过点 B 作直线 m 交双曲线于 M 、 N 两点,若 OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗ =−23,求直线 m 的方程.30. 已知椭圆 E 的方程是x 24+y 23=1,左、右焦点分别是 F 1,F 2,在椭圆 E 上有一动点 A ,过 A ,F 1 作一个平行四边形,使顶点 A ,B ,C ,D 都在椭圆 E 上,如图所示.(1)判断四边形ABCD能否为菱形,并说明理由.(2)当四边形ABCD的面积取到最大值时,判断四边形ABCD的形状,并求出其最大值.1.【答案】C【解析】因为所求直线与直线3x−2y=0的斜率相等,即为k=32,直线经过点(−4,3),所以y−3=3 2[x−(−4)]=32(x+4).2. 【答案】C3.【答案】C【解析】提示:最长弦为过点P的直径,最短弦经过点P且与CP垂直.4. 【答案】A【解析】方程x2+y2+kx+2y+k2=0表示的圆的半径r=√4−3k22,当k=0时,r有最大值,这时圆的面积也取得最大值,所以直线y=(k−1)x+2的斜率为−1,从而倾斜角为3π4.5.【答案】C【解析】:如下图所示:点A (3,﹣1),关于直线l :x+y=0的对称点为C (1,﹣3)点, 由BC 的方程为:x−14=y+31,即x ﹣4y ﹣13=0,可得直线BC 与直线l 的交点坐标为:(135,﹣135), 即P 点坐标为:(135,﹣135)时,|PA|+|PB|最小. 故选:C . 6.【答案】C【解析】:圆x 2+y 2+12x +4y +15=0的圆心C (﹣6,﹣2),半径r=5, 若过点M (﹣3,﹣3)的直线l 被圆x 2+y 2+12x +4y +15=0截得的弦长为8, 则圆心C 到直线l 的距离d=3, 由直线l 过点M (﹣3,﹣3),当直线斜率不存在时,直线l 的方程为x=﹣3满足要求;当直线斜率存在时,设直线l 的方程为y+3=k (x+3),即kx ﹣y+3k ﹣3=0, 则2=3,解得:k=43,故直线l 的方程为43x ﹣y+1=0,即4x ﹣3y+3=0 故选:C . 7.【答案】C【解析】:⊙C :x 2+y 2﹣4x ﹣6y ﹣3=0, 即(x ﹣2)2+(y ﹣3)2=16,故圆心是(2,3),半径是4, 点 M (﹣2,0)是⊙C 外一点, 显然x+2=0是过点 M 的圆的一条切线, 设另一条切线和圆相切于P (a ,b ), 则MP 的斜率是ba+2,直线直线MP 的方程是:bx ﹣(a+2)y+2b=0, 故{3−b2−a ⋅ba+2=−1√b 2+(a+2)2=4,解得:{a =−26b =7,故切线方程是7x+24y+14=0, 故选:C . 8.【答案】B【解析】:如图:延长DC ,交直线OA 与A ′,因为点A 关于点B 的对称点为点C ,若BD ⊥AC 且CD ∥OB ,所以OB ∥CA ′,BC=12CA ′, CD=DA ,所以DA ′﹣DA=CA ′=2OB 定值.2OB <AA ′,所求的D 轨迹是双曲线. 故选:B .9.【答案】C【解析】将x 2+y 2−2x +4y =0化为(x −1)2+(y +2)2=5, 因为直线l:ax −by =2平分圆x 2+y 2−2x +4y =0, 所以a +2b =2,又a >0,b >0,则1a+1b=12(a +2b)(1a+1b)=12(3+2b a+ab)≥3+2√22, 当且仅当2ba =ab ,即a =√2b 时取等号. 故选C .【名师点睛】本题考查直线和圆的位置关系、基本不等式等知识,意在考查学生的逻辑思维能力和基本运算能力. 10.【答案】B【解析】由题意,圆心为(0,-1).又直线kx-y-1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=4π(√3)2=12π. 故选:B . 11.【答案】D 【解答】:如图,c =,则222b c =, 即2222()a c c -=,则2223a c =,∴2223c a =,即c e a ==故选:D . 12.【答案】A【解答】:由椭圆的定义可得2()6a c +=, 所以3a c +=①,当A 在上(或下)顶点时,△12AF F 的面积取得最大值,即最大值为bc =,由①②及222a c b =+联立求得2a =,b =1c =,可得椭圆方程为22143x y +=,故选:A . 13.【答案】D【解答】:设椭圆22221(0)x y a b a b+=>>的左右顶点分别为(,0)A a -,(,0)B a ,0(P x ,0)y 为椭圆上不同于A ,B 的任意一点,则00PA y k x a =+,00PB y k x a=-, ∴20220PA PBy k k x a =-g ,由P 在椭圆上,得2200221x y a b+=, 则2202220y b x a a=--. 由椭圆22:186x y C +=,得6384PA PB k k =-=-g ,[1PA k ∈Q ,2],∴33[44PB PA k k =-∈-,3]8-. 故选:D . 14.【答案】B【解析】:Q 抛物线212y x =的焦点坐标为(3,0), 依题意,249b +=, 25b ∴=.∴双曲线的方程为:22145x y -=,∴其渐近线方程为:y =, ∴双曲线的一个焦点(3,0)F到其渐近线的距离等于d ==故选:B . 15.【答案】D【解析】:椭圆22154x y +=是焦点在x 轴上的椭圆,且2541c =-=. Q 双曲线221(0)x y m n m n -=>>和椭圆22154x y +=有相同的焦点,1(0)m n m n ∴+=>>,∴14144()()559n m m n m n m n m n +=++=+++=…. 当且仅当4n mm n=,即13m =,23n =时取等号.∴14m n+的最小值为9. 故选:D . 16.【答案】B【解析】:由0NM NF =u u u u r u u u rg ,得点N 的轨迹是以MF 为直径的圆,设||2MF r =,1O 为MF 的中点,(2,0)F '-,则点N 到原点的最短距离为1111||||||2222O O r MF MF a a '-=-=⨯==, 故选:B .17.【答案】C【解析】:由题意知121||2||F F c PF ==,若△12PF F 是直角三角形,则122PF F π∠=,且2||PF =,又由双曲线的定义,可得21||||2PF PF a -=,可得2||22PF a c =+=,即22)a c =,由c e a ==,解得1e , 故选:C . 18.【答案】C【解析】:双曲线2222:1(0,0)x y E a b a b-=>>的渐近线方程为b y x a =±,离心率为ce a=,由e c =,即有22222c a a b ==+,可得a b =, 即有渐近线方程为y x =±,可得两渐近线垂直;若两渐近线垂直,可得a b =,可得e即有p 是q 的充要条件, 故选:C . 19.【答案】A【解析】:抛物线标准方程24x y =,2p =,焦点(0,1)F , 准线方程为1y =-.设p 到准线的距离为PA ,(即PA 垂直于准线,A 为垂足), 则||||||||||3PM PF PA PM AM +=+=…, (当且仅当P 、A 、M 共线时取等号), 故选:A . 20.【答案】C【解析】因为抛物线为 y 2=4x ,所以 p =2, 设 A ,B 两点横坐标分别为 x 1,x 2, 因为线段 AB 中点的横坐标为 2,则 x 1+x 22=2,即 x 1+x 2=4,故 ∣AB ∣=x 1+x 2+p =4+2=6. 故选:C 21.【答案】C【解析】:设A (x1,y1),B (x2,y2),则|AB|=(x2﹣x1,y2﹣y1), 又F (1,0),∴FB →=(x 2−1,y 2),∴x2﹣x1=5x2﹣5,y2﹣y1=5y2, ∴{x 1=5−4x 2y 1=−4y 2,由{y 22=4x 2(−4y 2)2=4(5−4x 2),得x 2=14,x 1=4, ∴|AB|=x 1+x 2+2=254.故选:C . 22.【答案】C【解析】:设弦的两端的端点为(a ,b )和(2﹣a ,2﹣b ) 列方程组{a 2+2b 2=4(2−a)2+2(2−b)2=4解得a=1+√63,b=1﹣√66或a=1﹣√63,b=1+√66两端点的坐标为(1﹣√63,1+√66)和(1+√63,1﹣√66)弦长为√63)√63)]√66√66)]=√303.故选:C .23.【答案】:3x -3y -10=0解析:两圆的方程相减得-6x+6y+20=0,即3x -3y -10=0.24.【答案】.22143x y +=【解析】:设圆22(1)1x y ++=的圆心1(1,0)O -,半径11r =;圆22(1)25x y -+=的圆心2(1,0)O ,半径25r =. 设动圆C 的圆心(,)C x y ,半径R .Q 动圆C 与圆22(1)1x y ++=及圆22(1)25x y -+=都内切,1||1O C R ∴=-,2||5O C R =-. 1212||||514||2O C O C O O ∴+=-=>=,因此动点C 的轨迹是椭圆,设其标准方程为:22221x y a b+=.则24a =,22c =,解得2a =,1c =,2223b a c ∴=-=.因此动圆圆心C 的轨迹方程是22143x y +=.故答案为:22143x y +=.25.【答案】221169y x -=【解析】:由题意得,曲线2212449x y +=是焦点在y 轴上的椭圆,且5c ===, 所以双曲线焦点的坐标是(0、5)、(0,5)-,因为双曲线与曲线2213664x y -=共渐近线,所以设双曲线方程为22(0)3664x y λλ-=<, 即2216436y x λλ-=--,则643625λλ--=,解得14λ=-, 所以双曲线方程为221169y x -=. 26.【答案】x ﹣2y+4=0【解析】:设以点P (﹣2,1)为中点的弦所在的直线与椭圆x 216+y 24=1交于A (x 1,y 1),B (x 2,y 2), ∵点P (﹣2,1)是线段AB 的中点, ∴{x 1+x 2=−4y 1+y 2=2, 把A (x 1,y 1),B (x 2,y 2)代入椭圆x 2+4y 2=16,得{x 12+4y 12=16①x 22+4y 22=16②,①﹣②得(x 1+x 2)(x 1﹣x 2)+4(y 1+y 2)(y 1﹣y 2)=0, ∴﹣4(x 1﹣x 2)+8(y 1﹣y 2)=0, k=y 1−y 2x 1−x 2=12,∴以点P (﹣2,1)为中点的弦所在的直线方程为y −1=12(x +2), 整理,得x ﹣2y+4=0. 故答案为:x ﹣2y+4=0.27.【解析】:(Ⅰ)椭圆C :x 225+y 29=1右焦点F 为(4,0),设AB 的直线方程为x=ky+4,由{x 225+y 29=1x =ky +4,消x 可得(9k 2+25)y 2+72ky ﹣81=0, ∴|y 1y 2|=819k 2+25,当k=0时,|y 1y 2|有最大值,最大值为8125, (Ⅱ)∵|AF||FB|=14, ∴|FB|=4|AF|, ∴FB →=4AF →, ∴y 2=﹣4y 1, 由(Ⅰ)可得y 1y 2=﹣819k 2+25=﹣4y 12,y 1+y 2=﹣72k9k 2+25=﹣3y 1,∴(24k)2(9k 2+25)2=814(9k 2+25),解得k=±3√77, ∴直线方程为x=±3√77y+4,∴√7x ±3y ﹣4√7=0. 28. 【解析】(1) 由已知可得{c =4,ba =√3,c 2=a 2+b 2,⇒{a =2,b =2√3. 故双曲线方程为 x 24−y 212=1.(2) 设 P (x 0,y 0),则 A 1P:y =y 0x 0+2(x +2),A 2P:y =y 0x 0−2(x −2),所以 M (1,3y 0x 0+2),N (1,−y 0x 0−2),所以FM ⃗⃗⃗⃗⃗⃗ ⋅FN⃗⃗⃗⃗⃗ =(−3,3y 0x 0+2)⋅(−3,−y 0x0−2)=9−3y 02x 02−4=9−3y 02y 023=0.即 FM ⃗⃗⃗⃗⃗⃗ ⋅FN⃗⃗⃗⃗⃗ 为定值 0. 29.【解析】 (1) 依题意,l 的方程为 xa +y−b =1,即 bx −ay −ab =0, 由原点 O 到直线 l 的距离为 √32,得 √a 2+b2=ab c=√32, 又 e =ca =2√33,所以 b =1,a =√3.故所求双曲线方程为x 23−y 2=1.(2) 显然直线 m 不与 x 轴垂直,设 m 方程为 y =kx −1,则点 M 、 N 坐标 (x 1,y 1) 、 (x 2,y 2) 是方程组 {y =kx −1x 23−y 2=1 的解,消去 y ,得(1−3k 2)x 2+6kx −6=0 ⋯⋯① 依题意,1−3k 2≠0,由根与系数关系知x 1+x 2=6k 3k 2−1,x 1x 2=63k 2−1.OM⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗ =(x 1,y 1)⋅(x 2,y 2)=x 1x 2+y 1y 2=x 1x 2+(kx 1−1)(kx 2−1)=(1+k 2)x 1x 2−k (x 1+x 2)+1=6(1+k 2)3k 2−1−6k 23k 2−1+1=63k 2−1+1.因为 OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗ =−23,所以 63k −1+1=−23,k =±12. 当 k =±12 时,方程 ① 有两个不等的实数根. 故直线 m 的方程为 x −2y −2=0 或 x +2y +2=0. 30. 【解析】(1) 由椭圆方程:x 24+y 23=1,F 1(−1,0),如图,直线 AB 的斜率存在且不为 0,设直线 AB 的方程为 x =my −1,点 A (x 1,y 1),B (x 2,y 2), 联立方程,{3x 2+4y 2−12=0,x =my −1, 得 (3m 2+4)y 2−6my −9=0,所以 y 1+y 2=6m3m 2+4,y 1y 2=−93m 2+4, 若四边形 ABCD 为菱形,则 OA ⊥OB ,即 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =0,所以 x 1x 2+y 1y 2=0, 又 x 1x 2=(my 1−1)(my 2−1)=m 2y 1y 2−m (y 1+y 2)+1, 所以 (m 2+1)y 1y 2−m (y 1+y 2)+1=0,得到 −12m 2−53m +4=0,显然这个方程没有实数解,故四边形 ABCD 不能是菱形.(2) 由题 S ABCD =4S △AOB ,而 S △AOB =12∣OF 1∣∣y 1−y 2∣, 又 ∣OF 1∣=1,即 S ABCD =2∣OF 1∣∣y 1−y 2∣=2√(y 1+y 2)2−4y 1y 2, 由(1)知 y 1+y 2=6m3m 2+4,y 1y 2=−93m 2+4, 所以S ABCD =2√36m 2+36(3m 2+4)(3m 2+4)2=24√m 2+13m +4=24√19(m 2+1)+1m 2+1+6,因为函数 f (t )=9t +1t ,t ∈[1,+∞),在 t =1 时,f (t )min =10, 所以 S ABCD 的最大值为 6,此时 m 2+1=1,即 m =0 时, 此时直线 AB ⊥x 轴,即四边形 ABCD 是矩形.。
高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习及答案解析版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A . 54B .45C .254D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32 B .2 C .2 D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( ) A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为 A 、 B 、、 C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23-22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( ) A.B.C. D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( ) A .1 B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r = 29.F 1、F 2是双曲线C :x 2-22y b=1的两个焦点,P 是C 上一点,且△F 1PF 2是等腰直角三角形,则双曲线C 的离心率为 A .12 B .22C .32D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图,轴截面为边长为34等边三角形的圆锥,过底面圆周上任一点作一平面α,且α与底面所成二面角为6π,已知α与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点,F 为C的焦点,若2FA FB=,则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C ,过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点,若3=,则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM MB =,则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹方程是 ( )A.y 2=8xB.y 2=-8xC.y 2=4xD.y 2=-4x36.若R k ∈,则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k37.点(-1,2)关于直线y =x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2)38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( )A .直线与圆相交但不过圆心.B . 相切.C .直线与圆相交且过圆心.D . 相离40.椭圆的长轴为A1A2,B 为短轴的一个端点,若∠A1BA2=120°,则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=142.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为( )A.3y x = B .3y x = C .33y x =D .3y x =43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时,实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =,则双曲线离心率的取值范围是( )A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点,O 为坐标原点,1(,0)2OA =,则OA OP ⋅的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <,则直线0Ax By C ++=一定不经过( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 47.[2012·课标全国卷]等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( ) A.2 B.22 C.4 D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。
2020年高考数学大题分解专题05--解析几何

2020年高考数学(理)大题分解专题05--解析几何(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=.【肢解2】若3AP PB =,求||AB .大题肢解一直线与抛物线【解析】设直线l 方程为23x y t =+,联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距. 【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <, 所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y , 所以直线l 在y 轴上的截距为21-.【拓展2】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+, 联立2233x y ty x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t ,所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132, 直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d , 所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(, 易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意, 所以可设直线AB 的方程为)0)(1(≠-=k x k y , 与x y 42=联立,消去x 得0442=--k y ky , 设),(11y x A ,),(22y x B ,由韦达定理知k y y 421=+,421-=y y , 变式训练一所以1616||221+=-k y y , 所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k , 所以6||11||212=-⋅+=y y kAB . 2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x =+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB =,所以213y y -=,即312=m ,所以直线AB 的斜率为3或3-. (2)2212121212122()4161642OACB AOB S S OF y y y y y y y y m ∆==⋅⋅-=-=+-=+≥, 当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.大题肢解二【肢解1】求椭圆C 的方程; 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =, 所以椭圆:C 2214x y +=.【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.由韦达定理得122x x m +=-,21222x x m =-.()()22221212124442284x x x x x x m m m -=+-=--=-242121222OPQ S m x x m m m m ∆=-=-=-+. 由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值.【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎫⎪⎭两点得()22222221011321m n n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+= 解得21n =,24m =. 所以椭圆:C 2214x y +=.(2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=. 变式训练二所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m , 因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去). 所以1=m .【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x . (2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x , 由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m , 由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=, 所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m ,所以所求直线方程为3+=x y 或3-=x y .1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ; (2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A 的纵坐标为2(52)A y =, 结合抛物线定义得||2522A pAF y =+=. (2)由22x py =得22x y p =,x y p'=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p-=-.即000x x py py --=. 又由0220||2py ON x p -==+得02084y p y =-且240y ->, 所以2222200||||||4MN OM ON x y =-=+- 220000020824244y py y y y y =+-=+-- ()2202200022001644164444y y y y y y -+=+-=+--- 2020641644y y =++--.令24t y =-,0[3,4]y ∈,则[5,12]t ∈,令64()16f t t t =++,则264()1f t t'=-; 当[5,8]t ∈时()0f t '≤,()f t 单调递减, 当(8,12]t ∈时()0f t '>,()f t 单调递增, 又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--. (1)求椭圆C 的方程;(2)设直线l 过定点1(0,)2-,且斜率为()10k k -≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=, 所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++, 所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+,将00,x y 代入直线l 方程112y x k =--,可得2122k m += ……… ②,由①②可得232k <,又0k ≠,所以((0,22k ∈-⋃,又AB ==且原点O 到直线AB的距离d =所以2122(12)AOB m S AB d k ∆==+== 所以1m =时,AOB S ∆最大值2,此时2k =±,所以2k =±时,AOB S ∆最大值2.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F,1(2Q 在抛物线C 上,且32QF. (1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且3AOBMONSS,求直线l 的方程.【解析】(1)因为3||2QF ,所以13222p ,所以2p =, 抛物线C 的方程为:24y x =, 将1(2Q 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M ,显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k ,得12k <且0k ≠, 所以1212224(1)4,k x x x x k k -+==, 因为ΔΔ3AOBMON S S ,所以||3||AB MN ,所以1200x -=-,即120x x x -=, 因为N 是AB 的中点,所以1202x x x +=, 所以22121212()()434x x x x x x ,整理得21212()16x x x x +=所以2224(1)64[]k k k ,解得1211,3k k =-=, 所以直线l 的方程为:2y x =-+或123y x =+.4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E:22221x y a b+=(a>b>0)的离心率为F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 【解析】(1)设(),0F c ,因为直线AF()0,2A-, 所以23c =,c =又222,2c b a c a ==-,解得2,1a b ==, 所以椭圆E 的方程为2214x y +=.(2)设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立22142,x y y kx +==-⎧⎪⎨⎪⎩,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,所以k <或k >由韦达定理知1212221612,1414k x x x x k k+==++.所以PQ ===, 点O 到直线l 的距离d =12OPQS d PQ ∆==设0t =>,则2243k t =+,所以244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号,满足234k >, 所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度. 【解析】(1)由题意得12c e a ==,2223121ab ⎛⎫ ⎪⎝⎭+=,结合222a bc =+, 解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=. (2)易知定直线1l0y +=.联立22143y kxx y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得x =令M 点的坐标为221212,3434k k k ⎛⎫⎪ ⎪++⎝⎭. 因为14OP MN =,由对称性可知,点P 为OM 的中点,故2212123434(,)22k k k P ++, 又P 在直线1l :330x y +-=上,故221212343433022k k k ++⨯+-=, 解得10k =,2233k =,所以M 点的坐标为()2,0或643,55⎛⎫ ⎪ ⎪⎝⎭, 所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A 、B 两点,分别过A 、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P .(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l :3y kx =+E 交于M 、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围. 【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=.(2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭,即1322<<,解得21,113k ⎛⎫∈ ⎪⎝⎭,联立方程2214y kx y x ⎧=+⎪⎨+=⎪⎩得()22410k x ++-=, 设()11,M x y ,()22,N x y ,则12x x +=,12214x x k =-+, 所以MN ==()2224134144k k k +⎛⎫==- ⎪++⎝⎭, 则1616,135MN ⎛⎫∈ ⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于A B 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若2AM MB =,求OAB ∆面积的最大值. 【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PBy k k x ==--. 又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =. 所以椭圆C 的标准方程为:2214x y +=.(2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t y mty m +++-=, 由韦达定理知12224mty y t+=-+,212244m y y t -=+, 因为2AM MB =,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+.所以OAB ∆的面积12213|()|||22S m y y my =-=,22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯⨯=⨯++++.所以212||1214949||||t S t t t ==++,当且仅当249t =时取等号. 所以OAB ∆面积的最大值为1.。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
2020年高考数学(理)抢分秘籍05 平面解析几何(解析版)

秘籍05平面解析几何1.已知直线l1:ax+2y-1=0,直线l2:8x+ay+2-a=0,若l1∥l2,则实数a的值为( )A.4±B.-4C.4D.2±【答案】B解析:由2a-2×8=0,得a=±4.当a=4时,l1:4x+2y-1=0,l2:8x+4y-2=0,l1与l2重合.当a=-4时,l1:-4x+2y-1=0,l2:8x-4y+6=0,l1∥l2.综上所述,a=-4.故选:B由两直线平行或垂直求参数的值:在解这类问题时,一定要“前思后想”.“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案的正确性,看是否出现增解或漏解.2.过原点且倾斜角为60°的直线被圆x2+y2﹣4y=0所截得的弦长为()A.2√3B.2C.√6D.√3【答案】A【解析】:根据题意:直线方程为:y=√3x,∵圆x2+y2﹣4y=0,∴圆心为:(0,2),半径为:2,圆心到直线的距离为:d=1,∴弦长为2√4−1=2√3,故选:A.3.直线l 过点(﹣4,0)且与圆(x +1)2+(y ﹣2)2=25交于A 、B 两点,如果|AB|=8,那么直线l 的方程为( ) A .5x+12y+20=0 B .5x ﹣12y+20=0或x+4=0C .5x ﹣12y+20=0D .5x+12y+20=0或x+4=0【答案】D解析:当切线的斜率不存在时,直线l 的方程为 x+4=0,经检验,此直线和圆相切,满足条件. 当切线的斜率存在时,设直线l 的方程为 y ﹣0=k (x+4 ),即 kx ﹣y+4k=0, 则圆心(﹣1,2)到直线l 的距离为 d=|−k−2+4k|√k 2+1=|3k−2|√k 2+1.再由 d 2+(AB2)2=r 2,得|3k−2|√k 2+1=3,∴k=﹣512,∴直线l 的方程为 y ﹣0=﹣512(x+4),即 5x+12y+20=0. 故选:D .1.涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形,结合勾股定理222()2ld r +=求解;二是若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则212||1||AB k x x =+-.2.求两圆公共弦长一般有两种方法:一是联立两圆的方程求出交点坐标,再利用两点间的距离公式求解;二是求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题.4.己知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过点F 作圆222x y b +=的切线,若两条切线互相垂直,则椭圆C 的离心率为( ) A .12B .22C .23D .63【答案】D 解析:如图,由题意可得,2b c =,则222b c =, 即2222()a c c -=,则2223a c =,∴2223c a =,即63c e a ==.故选:D .5.设椭圆22221(0)x y a b a b +=>>的焦点为1F ,2F ,P 是椭圆上一点,且123F PF π∠=,若△12F PF 的外接圆和内切圆的半径分别为R ,r ,当4R r =时,椭圆的离心率为( ) A .45B .23C .12D .25【答案】B【解析】:椭圆的焦点为1(,0)F c -,2(,0)F c ,12||2F F c =, 根据正弦定理可得1212||2432sin 3sin 3F F c cR F PF π===∠, 233c R ∴=,1346cr R ==. 设1||PF m =,2||PF n =,则2m n a +=, 由余弦定理得,2222242cos()3433c m n mn m n mn a mn π=+-=+-=-,224()3a c mn -∴=, 122213()sin 233F PF a c S mn π-∴==V ,又1213()(2)26F PF c a c S m n c r +=++=V g , ∴223()3()36a c a c c-+=,即22230a c ac --=,故2320e e +-=, 解得:23e =或1e =-(舍).故选:B .椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法: (1)求出a ,c ,代入公式c e a=. (2)只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 或e 2的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( )A .233B .263C .3D .2【答案】A【解析】:双曲线22212x y a -=的一条渐近线的倾斜角为6π,则3tan63π=, 所以该条渐近线方程为33y x =; 所以233a =, 解得6a =;所以226222c a b =+=+=, 所以双曲线的离心率为222336c e a ===. 故选:A .7.双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,以1F 为圆心,12||F F 为半径的圆与C 的公共点为P ,若△12PF F 是直角三角形,则C 的离心率为( ) A .2-1B .51-C .21+D .51+【解析】:由题意知121||2||F F c PF ==,若△12PF F 是直角三角形,则122PF F π∠=,且2||22PF c =,又由双曲线的定义,可得21||||2PF PF a -=, 可得2||2222PF a c c =+=,即2(222)a c=-, 由121c e a ==-,解得21e =+, 故选:C .求双曲线的离心率一般有两种方法(1)由条件寻找,a c 满足的等式或不等式,一般利用双曲线中a b c ,,的关系222c a b =+将双曲线的离心率公式变形,即2222111c b e a abc ==+=-,注意区分双曲线中a b c ,,的关系与椭圆中a b c ,,的关系,在椭圆中222a b c =+,而在双曲线中222c a b =+.(2)根据条件列含,a c 的齐次方程,利用双曲线的离心率公式ce a=转化为含e 或2e 的方程,求解可得,注意根据双曲线离心率的范围1()e ∈+∞,对解进行取舍.8.如图,抛物线的顶点在坐标原点,焦点为F ,过抛物线上一点A (3,y )作准线l 作垂线,垂直为B ,若△ABF 为等边三角形,则抛物线的标准方程是( )A .y 2=12xB .y 2=xC .y 2=2xD .y 2=4x【解析】:设直线l交x轴于点C∵AB⊥l,l⊥x轴,∴AB∥x轴,可得∠BFC=∠ABF=60°,Rt△BCF中,|CF|=|BF|cos60°=p,解得|BF|=2p,由AB⊥y轴,可得3+p2=2p,∴p=2,∴抛物线的标准方程是y2=4x.故选:D.9.已知抛物线C:y2=2px(p>0)的焦点为F,点P(a,4)在抛物线C上,O为坐标原点,|PF|=5,且|OP|>5.(1)求抛物线C的方程;(2)过焦点F,且斜率为1的直线l与抛物线C交于A,B两点,线段AB的垂直平分线l′交抛物线C于M,N 两点,求四边形AMBN的面积.【解析】(1)将P(a,4)代入抛物线的方程y2=2px,得a=8p ,所以P(8p,4),因为|PF|=5,所以8p +p2=5,整理得p2−10p+16=0,解得p=2或p=8,当p=2时,P(4,4),满足|OP|>5;当p=8时,P(1,4),|OP|<5,不符合题意,舍去.所以抛物线C的方程为y2=4x.(2)因为l的方程为x=y+1,代入C:y2=4x,得y2−4y−4=0.设A(x1,y1),B(x2,y2),则y1+y2=4,y1y2=−4,故AB的中点为D(3,2),|AB|=√12+1√(y1+y2)2−4y1y2=8.又因为l′的斜率为-1,所以l′的方程为y−2=−(x−3),即x=−y+5.将上式代入C:y2=4x,并整理得y2+4y−20=0.设M(x3,y3),N(x4,y4),则y3+y4=−4,y3y4=−20,故|MN|=√(−1)2+1√(y3+y4)2−4y3y4=8√3.所以四边形AMBN的面积S=12|AB|⋅|MN|=12×8×8√3=32√3.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.1.已知直线l1:x•sinα+y﹣1=0,直线l2:x﹣3y•cosα+1=0,若l1⊥l2,则sin2α=()A.23B.±35C.﹣35D.35【答案】D【解析】:因为l1⊥l2,所以sinα﹣3cosα=0,所以tanα=3,所以sin2α=2sinαcosα=2sinαcosαsin2α+cos2α=2tanα1+tan2α=35.故选:D.两条直线的位置关系斜截式→111222::l y k x b l y k x b =+=+一般式→11112222:0:0l A x B y C l A x B y C ++=++=1l 与2l 相交 12k k ≠12210A B A B -≠ 1l 与2l 垂直121k k =-12120A A B B +=1l 与2l 平行 12k k =且12b b ≠1221122100A B A B B C B C -=⎧⎨-≠⎩或122112210A B A B AC A C -=⎧⎨-≠⎩ 1l 与2l 重合 12k k =且12b b =1221122112210A B A B AC A C B C B C -=-=-=2.圆x 2+y 2-4x=0在点P (1,√3)处的切线方程为( )A.x +√3y-2=0 B .x +√3y-4=0 C .x-√3y +4=0 D .x-√3y +2=0 【答案】D【解析】:∵点P (1,√3)在圆x 2+y 2-4x=0上,∴点P 为切点.从而圆心与点P 的连线应与切线垂直. 又∵圆心为(2,0),设切线斜率为k ,∴0−√32−1·k=-1,解得k=√33. ∴切线方程为x-√3y +2=0.故选:D3.若直线10x y -+=与圆22()2x a y -+=相切,则a 等于( ) A .1或3- B .1-或3-C .1或3D .1-或3【答案】A【解析】:根据题意,圆22()2x a y -+=的圆心为(,0)a ,半径2r =, 若直线10x y -+=与圆22()2x a y -+=相切, 则圆心到直线的距离|1|22a d +==,即|1|2a +=,解可得:1a =或3-, 故选:A .1.求过圆上的一点00(,)x y 的切线方程:先求切点与圆心连线的斜率k ,若k 不存在,则由图形可写出切线方程为0y y =;若0k =,则由图形可写出切线方程为0x x =;若k 存在且k ≠0,则由垂直关系知切线的斜率为1k-,由点斜式方程可求切线方程. 2.求过圆外一点00(,)x y 的圆的切线方程: (1)几何方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径长,即可得出切线方程. (2)代数方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.3.在求过一定点的圆的切线方程时,应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线有两条;若点在圆内,则切线不存在.4.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为F 1,F 2,直线3y b =与双曲线C 的右支相交于P ,若122PF PF =,则双曲线C 的渐近线方程为 A .32y x =±B .23y x =±C .52y x =±D .255y x =±【答案】C【解析】由222231y b x y ab =-=⎧⎪⎨⎪⎩,解得P(2a,√3b),根据双曲线的定义有|PF 1|−|PF 2|=|PF 2|=2a ,双曲线的焦点F 2(c,0), 故|PF 2|=√(2a −c )2+(√3b)2=2a ,两边平方化简得4c 2−4ac −3a 2=0, 即4e 2−4e −3=0,解得e =32, 故(b a )2=e 2−1=54,所以b a=√52,即双曲线的渐近线方程为y =±√52x .故选C .对于双曲线的渐近线,有下面两种考查方式: (1)已知双曲线的方程求其渐近线方程;(2)给出双曲线的渐近线方程求双曲线方程,由渐近线方程可确定a ,b 的关系,结合已知条件可解.4.已知椭圆E : 22221(0)x y a b a b+=>>与y 轴的正半轴相交于点M ,点F 1,F 2为椭圆的焦点,且12△MF F 是边长为2的等边三角形,若直线l :y =kx+2√3与椭圆E 交于不同的两点A ,B . (1)直线MA ,MB 的斜率之积是否为定值?若是,请求出该定值,若不是,请说明理由; (2)求△ABM 的面积的最大值.【解析】(1)因为12△MF F 是边长为2的等边三角形,所以2c =2,b =√3c ,a =2, 所以a =2,b =√3,所以椭圆E :x 24+y 23=1,点M (0,√3).将直线l :y =kx+2√3代入椭圆E 的方程, 整理得(3+4k 2)x 2+16√3kx+36=0. (*) 设A (x 1,y 1),B (x 2,y 2),则由(*)式可得Δ=(16√3k )2-4(3+4k 2)×36=48(4k 2-9)>0, 所以k ∈(-∞,-32)∪(32,+∞),x 1+x 2=216334kk-+,x 1x 2=23634k +. 则直线MA ,MB 的斜率之积为k MA ·k MB =()()121212123333kx kx y y x x x x ++--⋅=()1221233k x x k x x ++=+22216333343634k k k k k ⎛⎫-⋅+ ⎪+⎝⎭=++=k 2+9−36k 236=14, 所以直线MA ,MB 的斜率之积是定值14. (2)记直线l :y =kx+2√3与y 轴的交点为N (0,2√3), 则S △ABM =|S △ANM -S △BNM |=12|MN|·|x 2-x 1|= 2221212222223316336649()4()42234343463,1224949k k x x x x k k k k k --+-=-⋅=+++=≤-+-当且仅当4k 2-9=12,即k =±212∈(-∞,-32)∪(32,+∞)时等号成立,所以△ABM 的面积的最大值为32. 5.已知抛物线C :y 2=2px(p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与抛物线C 的交点为Q,且|QF|=2|PQ|.(1)求p 的值;(2)已知点T(t,−2)为C 上一点,M,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为−83,证明直线MN 恒过定点,并求出定点的坐标.【解析】(1)设()0,4Q x ,由抛物线的定义,得02pQF x =+, 又2QF PQ =,即0022p x x =+,解得02p x =, 将点,42p Q ⎛⎫⎪⎝⎭代入抛物线方程,解得4p =. (2)由(1)知C 的方程为28y x =,所以点T 的坐标为1,22⎛⎫-⎪⎝⎭, 设直线MN 的方程为x my n =+,点221212,,,88y y M y N y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, 由28x my ny x=+=⎧⎨⎩得2880y my n --=,所以12128,8y y m y y n +==-,所以12221212228811228282MT NT y y k k y y y y +++=+=+---- ()()121212832643282481643y y m y y y y n m +--===--++--+,解得1n m =-,所以直线MN 的方程为x +1=m(y +1),恒过点(−1,−1).定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.与直线 3x −2y =0 平行,且过点 (−4,3) 的直线方程为 ( ) A. y −3=−32(x +4) B. y +3=32(x −4) C. y −3=32(x +4)D. y +3=−32(x −4)2. 已知直线 l :y =x +b 与曲线 C :y =3−√4x −x 2 有公共点,则 b 的取值范围为 ( ) A. [−3,3] B. [3,1+2√2] C. [1−2√2,3]D. [1−2√2,1+2√2]3.圆 C:(x −1)2+y 2=25,过点 P (2,−1) 作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是 ( ) A. 10√3 B. 9√21 C. 10√23 D. 9√114.若当方程 x 2+y 2+kx +2y +k 2=0 所表示的圆取得最大面积时,则直线 y =(k −1)x +2 的倾斜角 α= ( ) A.3π4 B. π4C.3π2D.5π45.已知A (3,﹣1),B (5,﹣2),点P 在直线x+y=0上,若使|PA|+|PB|取最小值,则点P 的坐标是( ) A .(1,﹣1) B .(﹣1,1)C .(135,﹣135)D .(﹣2,2)6.已知过点M (﹣3,﹣3)的直线l 被圆x 2+y 2+12x +4y +15=0截得的弦长为8,则直线l 的方程为( ) A .y=﹣3或4x ﹣3y+3=0 B .y=﹣3或4x+3y+21=0C .x=﹣3或4x ﹣3y+3=0D .x=﹣3或4x+3y+21=07.已知⊙C :x 2+y 2﹣4x ﹣6y ﹣3=0,点 M (﹣2,0)是⊙C 外一点,则过点 M 的圆的切线的 方程是( )A.x+2=0,7x﹣24y+14=0 B.y+2=0,7x+24y+14=0C.x+2=0,7x+24y+14=0 D.y+2=0,7x﹣24y+14=08.平面内,已知点A为定圆O外的一个定点,点B为圆O上的一个动点,点A关于点B的对称点为点C,若BD⊥AC且CD∥OB,则点D的轨迹是()A.抛物线B.双曲线C.椭圆D.圆9.若直线l:ax−by=2(a>0,b>0)平分圆x2+y2−2x+4y=0,则1a +1b的最小值为A.2√2B.2C.12(3+2√2)D.3+2√210.圆x2+(y+1)2=3绕直线kx-y-1=0旋转一周所得的几何体的表面积为()A.36πB.12πC.4√3πD.4π11.己知椭圆2222:1(0)x yC a ba b+=>>的右焦点为F,过点F作圆222x y b+=的切线,若两条切线互相垂直,则椭圆C的离心率为()A.12B.22C.23D.6312.椭圆22221(0)x ya ba b+=>>的左右焦点分别为1F,2F,A为椭圆上一动点(异于左右顶点),若△12AF F的周长为6且面积的最大值为3,则椭圆的标准方程为()A.22143x y+=B.22132x y+=C.2212xy+=D.2214xy+=13.已知椭圆22:186x yC+=的左、右顶点分别为A、B,点P为椭圆C上不同于A、B两点的动点,若直线PA斜率的取值范围是[1,2],则直线PB斜率的取值范围是()A.[2-,1]-B.3[2-,3]4-C.[1-,1]2-D.3[4-,3]8-14.已知双曲线22214x yb-=的右焦点与抛物线212yx=的焦点重合,则该双曲线的焦点到其渐近线的距离为()A.42B.5C.3D.515.已知双曲线221(0)x ym nm n-=>>和椭圆22154x y+=有相同的焦点,则14m n+的最小值为()A.2B.4C.6D.916.已知双曲线22:1(0)3x C y x -=>,点(2,0)F ,点M 是曲线C 上的一个动点,点N 满足0NM NF =u u u u r u u u r g ,则点N 到原点的最短距离为( ) A .2B .3C .2D .117.双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,以1F 为圆心,12||F F 为半径的圆与C 的公共点为P ,若△12PF F 是直角三角形,则C 的离心率为( ) A .2-1B .51-C .21+D .51+18.设双曲线2222:1(0,0)x y E a b a b-=>>,命题p :双曲线E 离心率2e =,命题q :双曲线E 的渐近线互相垂直,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件19.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则||||PM PF +的最小值为( ) A .3B .2C .4D .2320. 若直线 l 过抛物线 y 2=4x 的焦点,与抛物线交于 A ,B 两点,且线段 AB 中点的横坐标为 2,则弦AB 的长为 ( ) A. 2 B. 4 C. 6 D. 821.已知A ,B 为抛物线C :y2=4x 上的不同两点,F 为抛物线C 的焦点,若AB →=5FB →,则|AB|=( )A .252B .10C .254 D .622.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度是( )A .3√2B .2√3C .√303D .3√6223.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A,B 两点,则直线AB 的方程是 . 24.已知动圆C 与圆22(1)1x y ++=及圆22(1)25x y -+=都内切,则动圆圆心C 的轨迹方程为 .25.与曲线2212449x y +=共焦点,而与曲线2213664x y -=共渐近线的双曲线方程为26.在椭圆x 216+y 24=1内以点P (﹣2,1)为中点的弦所在的直线方程为27.过椭圆C :x 225+y 29=1右焦点F 的直线l 交C 于两点A (x 1,y 1),B (x 2,y 2),且A 不在x 轴上. (Ⅰ)求|y 1y 2|的最大值; (Ⅱ)若|AF||FB|=14,求直线l 的方程.28. 已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线为 y =√3x ,右焦点 F (4,0),左右顶点分别为 A 1,A 2,P 为双曲线上一点(不同于 A 1,A 2),直线 A 1P ,A 2P 分别与直线 x =1 交于 M ,N 两点;(1)求双曲线的方程;(2)求证:FM ⃗⃗⃗⃗⃗⃗ ⋅FN ⃗⃗⃗⃗⃗ 为定值,并求此定值.29.已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的离心率 e =2√33,直线 l 过 A (a,0) 、 B (0,−b ) 两点,原点O 到直线 l 的距离是√32. (1)求双曲线的方程;(2)过点 B 作直线 m 交双曲线于 M 、 N 两点,若 OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗ =−23,求直线 m 的方程.30. 已知椭圆 E 的方程是x 24+y 23=1,左、右焦点分别是 F 1,F 2,在椭圆 E 上有一动点 A ,过 A ,F 1 作一个平行四边形,使顶点 A ,B ,C ,D 都在椭圆 E 上,如图所示.(1)判断四边形ABCD能否为菱形,并说明理由.(2)当四边形ABCD的面积取到最大值时,判断四边形ABCD的形状,并求出其最大值.1.【答案】C【解析】因为所求直线与直线3x−2y=0的斜率相等,即为k=32,直线经过点(−4,3),所以y−3=3 2[x−(−4)]=32(x+4).2. 【答案】C3.【答案】C【解析】提示:最长弦为过点P的直径,最短弦经过点P且与CP垂直.4. 【答案】A【解析】方程x2+y2+kx+2y+k2=0表示的圆的半径r=√4−3k22,当k=0时,r有最大值,这时圆的面积也取得最大值,所以直线y=(k−1)x+2的斜率为−1,从而倾斜角为3π4.5.【答案】C【解析】:如下图所示:点A (3,﹣1),关于直线l :x+y=0的对称点为C (1,﹣3)点, 由BC 的方程为:x−14=y+31,即x ﹣4y ﹣13=0,可得直线BC 与直线l 的交点坐标为:(135,﹣135), 即P 点坐标为:(135,﹣135)时,|PA|+|PB|最小. 故选:C . 6.【答案】C【解析】:圆x 2+y 2+12x +4y +15=0的圆心C (﹣6,﹣2),半径r=5, 若过点M (﹣3,﹣3)的直线l 被圆x 2+y 2+12x +4y +15=0截得的弦长为8, 则圆心C 到直线l 的距离d=3, 由直线l 过点M (﹣3,﹣3),当直线斜率不存在时,直线l 的方程为x=﹣3满足要求;当直线斜率存在时,设直线l 的方程为y+3=k (x+3),即kx ﹣y+3k ﹣3=0, 则|−6k+2+3k−3|√k 2+1=3,解得:k=43,故直线l 的方程为43x ﹣y+1=0,即4x ﹣3y+3=0 故选:C . 7.【答案】C【解析】:⊙C :x 2+y 2﹣4x ﹣6y ﹣3=0, 即(x ﹣2)2+(y ﹣3)2=16,故圆心是(2,3),半径是4, 点 M (﹣2,0)是⊙C 外一点, 显然x+2=0是过点 M 的圆的一条切线, 设另一条切线和圆相切于P (a ,b ), 则MP 的斜率是ba+2,直线直线MP 的方程是:bx ﹣(a+2)y+2b=0, 故{3−b2−a ⋅ba+2=−12b−3(a+2)+2b √b 2+(a+2)2=4,解得:{a =−26b =7,故切线方程是7x+24y+14=0, 故选:C . 8.【答案】B【解析】:如图:延长DC ,交直线OA 与A ′,因为点A 关于点B 的对称点为点C ,若BD ⊥AC 且CD ∥OB ,所以OB ∥CA ′,BC=12CA ′, CD=DA ,所以DA ′﹣DA=CA ′=2OB 定值.2OB <AA ′,所求的D 轨迹是双曲线. 故选:B .9.【答案】C【解析】将x 2+y 2−2x +4y =0化为(x −1)2+(y +2)2=5, 因为直线l:ax −by =2平分圆x 2+y 2−2x +4y =0, 所以a +2b =2,又a >0,b >0,则1a+1b=12(a +2b)(1a+1b)=12(3+2b a+ab)≥3+2√22, 当且仅当2ba =ab ,即a =√2b 时取等号. 故选C .【名师点睛】本题考查直线和圆的位置关系、基本不等式等知识,意在考查学生的逻辑思维能力和基本运算能力. 10.【答案】B【解析】由题意,圆心为(0,-1).又直线kx-y-1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=4π(√3)2=12π. 故选:B . 11.【答案】D 【解答】:如图,由题意可得,2b c =,则222b c =, 即2222()a c c -=,则2223a c =,∴2223c a =,即63c e a ==.故选:D . 12.【答案】A【解答】:由椭圆的定义可得2()6a c +=, 所以3a c +=①,当A 在上(或下)顶点时,△12AF F 的面积取得最大值, 即最大值为3bc =②,由①②及222a c b =+联立求得2a =,3b =,1c =,可得椭圆方程为22143x y +=,故选:A . 13.【答案】D【解答】:设椭圆22221(0)x y a b a b+=>>的左右顶点分别为(,0)A a -,(,0)B a ,0(P x ,0)y 为椭圆上不同于A ,B 的任意一点,则00PA y k x a =+,00PB y k x a=-, ∴20220PA PBy k k x a =-g ,由P 在椭圆上,得2200221x y a b+=, 则2202220y b x a a=--. 由椭圆22:186x y C +=,得6384PA PB k k =-=-g ,[1PA k ∈Q ,2],∴33[44PB PA k k =-∈-,3]8-. 故选:D . 14.【答案】B【解析】:Q 抛物线212y x =的焦点坐标为(3,0), 依题意,249b +=, 25b ∴=.∴双曲线的方程为:22145x y -=,∴其渐近线方程为:52y x =±, ∴双曲线的一个焦点(3,0)F 到其渐近线的距离等于|530|554d ±⨯-==+.故选:B . 15.【答案】D【解析】:椭圆22154x y +=是焦点在x 轴上的椭圆,且2541c =-=. Q 双曲线221(0)x y m n m n -=>>和椭圆22154x y +=有相同的焦点,1(0)m n m n ∴+=>>,∴141444()()5529n m n m m n m n m n m n m n+=++=+++=g …. 当且仅当4n mm n=,即13m =,23n =时取等号.∴14m n+的最小值为9. 故选:D . 16.【答案】B【解析】:由0NM NF =u u u u r u u u rg ,得点N 的轨迹是以MF 为直径的圆,设||2MF r =,1O 为MF 的中点,(2,0)F '-, 则点N 到原点的最短距离为1111||||||23222O O r MF MF a a '-=-=⨯==, 故选:B .17.【答案】C【解析】:由题意知121||2||F F c PF ==,若△12PF F 是直角三角形,则122PF F π∠=,且2||22PF c =,又由双曲线的定义,可得21||||2PF PF a -=, 可得2||2222PF a c c =+=,即2(222)a c =-, 由121c e a ==-,解得21e =+, 故选:C . 18.【答案】C【解析】:双曲线2222:1(0,0)x y E a b a b-=>>的渐近线方程为b y x a =±,离心率为ce a=,由2e =,可得2c a =,即有22222c a a b ==+,可得a b =, 即有渐近线方程为y x =±,可得两渐近线垂直; 若两渐近线垂直,可得a b =,可得2e =,即有p 是q 的充要条件, 故选:C . 19.【答案】A【解析】:抛物线标准方程24x y =,2p =,焦点(0,1)F , 准线方程为1y =-.设p 到准线的距离为PA ,(即PA 垂直于准线,A 为垂足), 则||||||||||3PM PF PA PM AM +=+=…, (当且仅当P 、A 、M 共线时取等号), 故选:A . 20.【答案】C【解析】因为抛物线为 y 2=4x ,所以 p =2, 设 A ,B 两点横坐标分别为 x 1,x 2, 因为线段 AB 中点的横坐标为 2,则 x 1+x 22=2,即 x 1+x 2=4,故 ∣AB ∣=x 1+x 2+p =4+2=6. 故选:C 21.【答案】C【解析】:设A (x1,y1),B (x2,y2),则|AB|=(x2﹣x1,y2﹣y1), 又F (1,0),∴FB →=(x 2−1,y 2),∴x2﹣x1=5x2﹣5,y2﹣y1=5y2, ∴{x 1=5−4x 2y 1=−4y 2,由{y 22=4x 2(−4y 2)2=4(5−4x 2),得x 2=14,x 1=4, ∴|AB|=x 1+x 2+2=254.故选:C . 22.【答案】C【解析】:设弦的两端的端点为(a ,b )和(2﹣a ,2﹣b ) 列方程组{a 2+2b 2=4(2−a)2+2(2−b)2=4解得a=1+√63,b=1﹣√66或a=1﹣√63,b=1+√66两端点的坐标为(1﹣√63,1+√66)和(1+√63,1﹣√66)弦长为√[(1−√63)−(1+√63)]2+[(1+√66)−(1−√66)]2=√303.故选:C .23.【答案】:3x -3y -10=0解析:两圆的方程相减得-6x+6y+20=0,即3x -3y -10=0.24.【答案】.22143x y +=【解析】:设圆22(1)1x y ++=的圆心1(1,0)O -,半径11r =;圆22(1)25x y -+=的圆心2(1,0)O ,半径25r =. 设动圆C 的圆心(,)C x y ,半径R .Q 动圆C 与圆22(1)1x y ++=及圆22(1)25x y -+=都内切,1||1O C R ∴=-,2||5O C R =-. 1212||||514||2O C O C O O ∴+=-=>=,因此动点C 的轨迹是椭圆,设其标准方程为:22221x y a b+=.则24a =,22c =,解得2a =,1c =,2223b a c ∴=-=.因此动圆圆心C 的轨迹方程是22143x y +=.故答案为:22143x y +=.25.【答案】221169y x -=【解析】:由题意得,曲线2212449x y +=是焦点在y 轴上的椭圆,且2249245c a b =-=-=, 所以双曲线焦点的坐标是(0、5)、(0,5)-,因为双曲线与曲线2213664x y -=共渐近线,所以设双曲线方程为22(0)3664x y λλ-=<, 即2216436y x λλ-=--,则643625λλ--=,解得14λ=-, 所以双曲线方程为221169y x -=. 26.【答案】x ﹣2y+4=0【解析】:设以点P (﹣2,1)为中点的弦所在的直线与椭圆x 216+y 24=1交于A (x 1,y 1),B (x 2,y 2), ∵点P (﹣2,1)是线段AB 的中点, ∴{x 1+x 2=−4y 1+y 2=2, 把A (x 1,y 1),B (x 2,y 2)代入椭圆x 2+4y 2=16,得{x 12+4y 12=16①x 22+4y 22=16②,①﹣②得(x 1+x 2)(x 1﹣x 2)+4(y 1+y 2)(y 1﹣y 2)=0, ∴﹣4(x 1﹣x 2)+8(y 1﹣y 2)=0, k=y 1−y 2x 1−x 2=12,∴以点P (﹣2,1)为中点的弦所在的直线方程为y −1=12(x +2), 整理,得x ﹣2y+4=0. 故答案为:x ﹣2y+4=0.27.【解析】:(Ⅰ)椭圆C :x 225+y 29=1右焦点F 为(4,0),设AB 的直线方程为x=ky+4,由{x 225+y 29=1x =ky +4,消x 可得(9k 2+25)y 2+72ky ﹣81=0, ∴|y 1y 2|=819k 2+25,当k=0时,|y 1y 2|有最大值,最大值为8125, (Ⅱ)∵|AF||FB|=14, ∴|FB|=4|AF|, ∴FB →=4AF →, ∴y 2=﹣4y 1, 由(Ⅰ)可得y 1y 2=﹣819k 2+25=﹣4y 12,y 1+y 2=﹣72k9k 2+25=﹣3y 1,∴(24k)2(9k 2+25)2=814(9k 2+25),解得k=±3√77, ∴直线方程为x=±3√77y+4,∴√7x ±3y ﹣4√7=0. 28. 【解析】(1) 由已知可得{c =4,ba =√3,c 2=a 2+b 2,⇒{a =2,b =2√3. 故双曲线方程为 x 24−y 212=1.(2) 设 P (x 0,y 0),则 A 1P:y =y 0x 0+2(x +2),A 2P:y =y 0x 0−2(x −2),所以 M (1,3y 0x 0+2),N (1,−y 0x 0−2),所以FM ⃗⃗⃗⃗⃗⃗ ⋅FN⃗⃗⃗⃗⃗ =(−3,3y 0x 0+2)⋅(−3,−y 0x0−2)=9−3y 02x 02−4=9−3y 02y 023=0.即 FM ⃗⃗⃗⃗⃗⃗ ⋅FN⃗⃗⃗⃗⃗ 为定值 0. 29.【解析】 (1) 依题意,l 的方程为 xa +y−b =1,即 bx −ay −ab =0, 由原点 O 到直线 l 的距离为 √32,得 ab √a 2+b2=ab c=√32, 又 e =ca =2√33,所以 b =1,a =√3.故所求双曲线方程为x 23−y 2=1.(2) 显然直线 m 不与 x 轴垂直,设 m 方程为 y =kx −1,则点 M 、 N 坐标 (x 1,y 1) 、 (x 2,y 2) 是方程组 {y =kx −1x 23−y 2=1 的解,消去 y ,得(1−3k 2)x 2+6kx −6=0 ⋯⋯① 依题意,1−3k 2≠0,由根与系数关系知x 1+x 2=6k 3k 2−1,x 1x 2=63k 2−1.OM⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗ =(x 1,y 1)⋅(x 2,y 2)=x 1x 2+y 1y 2=x 1x 2+(kx 1−1)(kx 2−1)=(1+k 2)x 1x 2−k (x 1+x 2)+1=6(1+k 2)3k 2−1−6k 23k 2−1+1=63k 2−1+1.因为 OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗ =−23,所以 63k 2−1+1=−23,k =±12. 当 k =±12 时,方程 ① 有两个不等的实数根. 故直线 m 的方程为 x −2y −2=0 或 x +2y +2=0. 30. 【解析】(1) 由椭圆方程:x 24+y 23=1,F 1(−1,0),如图,直线 AB 的斜率存在且不为 0,设直线 AB 的方程为 x =my −1,点 A (x 1,y 1),B (x 2,y 2), 联立方程,{3x 2+4y 2−12=0,x =my −1, 得 (3m 2+4)y 2−6my −9=0,所以 y 1+y 2=6m3m 2+4,y 1y 2=−93m 2+4, 若四边形 ABCD 为菱形,则 OA ⊥OB ,即 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =0,所以 x 1x 2+y 1y 2=0, 又 x 1x 2=(my 1−1)(my 2−1)=m 2y 1y 2−m (y 1+y 2)+1, 所以 (m 2+1)y 1y 2−m (y 1+y 2)+1=0,得到 −12m 2−53m 2+4=0,显然这个方程没有实数解,故四边形 ABCD 不能是菱形.(2) 由题 S ABCD =4S △AOB ,而 S △AOB =12∣OF 1∣∣y 1−y 2∣, 又 ∣OF 1∣=1,即 S ABCD =2∣OF 1∣∣y 1−y 2∣=2√(y 1+y 2)2−4y 1y 2, 由(1)知 y 1+y 2=6m3m 2+4,y 1y 2=−93m 2+4, 所以S ABCD =2√36m 2+36(3m 2+4)(3m 2+4)2=24√m 2+1(3m 2+4)2=24√19(m 2+1)+1m 2+1+6,因为函数 f (t )=9t +1t ,t ∈[1,+∞),在 t =1 时,f (t )min =10, 所以 S ABCD 的最大值为 6,此时 m 2+1=1,即 m =0 时, 此时直线 AB ⊥x 轴,即四边形 ABCD 是矩形.。
2020届高考数学二轮复习第二部分专题五解析几何满分示范课——解析几何专题强化练理

满分示范课——解析几何解析几何部分知识点多,运算量大,能力要求高,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.【典例】 (满分12分)(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .[规范解答] (1)由已知得F (1,0),l 的方程为x =1. 把x =1代入椭圆方程x 22+y 2=1,得点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. (2)当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=k (x 1-1),y 2=k (x 2-1)得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0,故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .高考状元满分心得1.得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问求出点A 的坐标,第(2)问求k MA +k MB =0,判定MA ,MB 的倾斜角互补. 2.得关键分:解题过程中不可忽视关键点,有则给分,无则没分.如第(1)问中求出直线AM 的方程,第(2)问讨论直线与坐标轴是否垂直,将直线y =k (x -1)与x 22+y 2=1联立得(2k2+1)x 2-4k 2x +2k 2-2=0.3.得计算分:解题过程中计算准确是满分的根本保证.如第(1)问求对点M 坐标与直线AM 的方程;第(2)问中正确运算出x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,求出k MA +k MB =0,否则将导致失分.[解题程序] 第一步:由椭圆方程,求焦点F 及直线l . 第二步:求点A 的坐标,进而得直线AM 的方程. 第三步:讨论直线的斜率为0或不存在时, 验证∠OMA =∠OMB .第四步:联立方程,用k 表示x 1+x 2与x 1x 2. 第五步:计算k MA +k MB =0,进而得∠OMA =∠OMB . 第六步:反思总结,规范解题步骤. [跟踪训练]1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于23,椭圆上的点到右焦点F 最远距离为3.(1)求椭圆C 的方程;(2)设O 为坐标原点,过F 的直线与C 交于A 、B 两点(A 、B 不在x 轴上),若OE →=OA →+OB →,且E 在椭圆上,求四边形AOBE 面积.解:(1)由题意,2b =23,知b = 3. 又a +c =3,a 2=b 2+c 2=3+c 2, 所以可得a =2,且c =1. 因此椭圆C 的方程为x 24+y 23=1.(2)F (1,0).直线AB 的斜率不为0,设直线AB 的方程:x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,得(3m 2+4)y 2+6my -9=0.由根与系数的关系,得⎩⎪⎨⎪⎧Δ>0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.故AB 的中点为N ⎝⎛⎭⎪⎫43m 2+4,-3m 3m 2+4.又OA →+OB →=2ON →=OE →,故E 的坐标为⎝⎛⎭⎪⎫83m 2+4,-6m3m 2+4.因为E 点在椭圆上,所以14×⎝ ⎛⎭⎪⎫83m 2+42+13×⎝ ⎛⎭⎪⎫-6m 3m 2+42=1,化简得9m 4+12m 2=0,故m 2=0,此时直线AB :x =1,S 四边形AOBE =2S △AOE =2×⎝ ⎛⎭⎪⎫12×2×32=3.2.(2019·长沙模拟一中)设椭圆C :y 2a 2+x 2b 2=1(a >b >0),定义椭圆C 的“相关圆”E的方程为x 2+y 2=a 2b 2a 2+b2.若抛物线x 2=4y 的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 的直线l :y =kx +m 与椭圆C 交于A ,B 两点.O 为坐标原点,若OA ⊥OB ,证明原点O 到直线AB 的距离是定值,并求m 的取值范围.解:(1)因为抛物线x 2=4y 的焦点为(0,1). 依题意椭圆C 的一个焦点为(0,1),知c =1,又椭圆C 短轴的一个端点和其两个焦点构成直角三角形,则b =c =1. 故椭圆C 的方程为y 22+x 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =kx +m ,y 22+x 2=1,得(2+k 2)x 2+2kmx +m 2-2=0, Δ=4k 2m 2-4(2+k 2)(m 2-2)=8(k 2-m 2+2)>0, 即k 2-m 2+2>0, ⎩⎪⎨⎪⎧x 1+x 2=-2kmk 2+2,x 1x 2=m 2-2k 2+2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(m 2-2)k 2+2-2k 2m 2k 2+2+m 2=2m 2-2k 2k 2+2.由条件OA ⊥OB 得,OA →·OB →=0,即3m 2-2k 2-2=0, 所以原点O 到直线l 的距离d =|m |1+k2=m 21+k2,由3m 2-2k 2-2=0得d =63为定值. 由Δ>0,即k 2-m 2+2>0,所以3m 2-22-m 2+2>0,即m 2+2>0,恒成立.又k 2=3m 2-22≥0,即3m 2≥2,所以m 2≥23,即m ≥63或m ≤-63,综上,m ≥63或m ≤-63.。
2020年高考数学(文)真题与模拟题分类训练 专题05 平面解析几何(学生版)
16.【2020年高考浙江】已知直线 与圆 和圆 均相切,则 _______,b=_______.
17.【2020年高考江苏】在平面直角坐标系xOy中,若双曲线 的一条渐近线方程为 ,则该双曲线的离心率是▲.
18.【2020年新高考全国Ⅰ卷】斜率为 的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则 =________.
19.【2020年高考江苏】在平面直角坐标系xOy中,已知 ,A,B是圆C: 上的两个动点,满足 ,则△PAB面积的最大值是▲.
20.【2020年高考全国Ⅰ卷文数】已知A、B分别为椭圆E: (a>1)的左、右顶点,G为E的上顶点, ,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
21.【2020年高考全国Ⅱ卷文数】已知椭圆C1: (a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|= |AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
A.1B. C. D.2
4.【2020年高考全国Ⅱ卷文数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为
A. B. C. D.
5.【2020年高考全国Ⅲ卷文数】设O为坐标原点,直线x=2与抛物线C: 交于D,E两点,若OD⊥OE,则C的焦点坐标为
A.( ,0)B.( ,0)C.(1,0)D.(2,0)
解析几何-2020年高考数学(理)【热点·重点·难点】专练(解析版)
解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用. 【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算. 【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1.(2019·福建三明一中高三月考)已知1F ,2F 为椭圆2222:1,(0)x y C a b a b+=>>的左、右焦点,过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程是( )A .22184x y +=B .22182x y +=C .22162x y +=D .22164x y +=【答案】C 【解析】 【分析】先由题意,不妨设点(),A x y 位于第一象限,根据12AF AF ⊥,得到1212==OA F F c ,根据OA 与x 轴正方向的夹角为30︒,得到1,2⎫⎪⎪⎝⎭A c ,从而由122F AF S ∆=求出2c =,)A,得到22311a b+=,224a b -=,联立,即可求出结果. 【详解】因为过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A , 不妨设点(),A x y 位于第一象限,因为12AF AF ⊥,所以12AF F ∆为直角三角形,因此1212==OA F F c ; 又OA 与x 轴正方向的夹角为30︒,所以3cos302==x OA c ,1sin 302==y OA c ,即1,22⎛⎫ ⎪ ⎪⎝⎭A c c ;所以12112222F AF S c c ∆=⋅⋅=,解得:2c =,所以)A ;因此22311a b+=①, 又2224a b c -==②,由①②解得:2262a b ⎧=⎨=⎩,因此所求椭圆方程为22162x y +=.故选:C【名师点睛】本题主要考查求椭圆的标准方程,熟记椭圆的标准方程,以及椭圆的简单性 质即可,属于常考题型.2.(2019·贵州高三月考(理))已知抛物线2:4C y x =的焦点为F ,Q 为抛物线上一点,连接PF 并延长交抛物线的准线于点P ,且点P |2||=PQ QF ,则直线PF 的方程为( )A 0y -=B 0y +C 0y -=0y +D .10x -= 【答案】D【解析】根据P 的纵坐标为负数,判断出直线PF 斜率大于零,设直线PF 的倾斜角为θ,根据抛物线的定义,求得cos θ的值,进而求得θ,从而求得tan θ也即直线PF 的斜率,利用点斜式求得直线PF 的方程. 【详解】由于P 的纵坐标为负数,所以直线PF 斜率大于零,由此排除B,C 选项.设直线PF 的倾斜角为θ.作出抛物线24y x =和准线1x =-的图像如下图所示.作QA PA ⊥,交准线1x =-于A 点.根据抛物线的定义可知QF QA =,且QFx AQP θ∠=∠=.依题意|2||=PQ QF ,故在直角三角形PQA 中cos QA QF PQ PQ θ===π6θ=,故直线PF 的斜率为πtan6=,所以直线PF 的方程为)01y x -=-,化简得10x -=.故选:D.。
2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)
专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。
2020年高考数学试题专题05平面解析几何(解析版)
专题05平面解析几何
1.【2020年高考全国Ⅰ卷文数】已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为
A .1
B .2
C .3
D .4【答案】B
【解析】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,
设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此
时||CP ==
根据弦长公式得最小值为2==.
故选:B .
【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.
2.
【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅
,则点C 的轨迹为A .圆
B .椭圆
C .抛物线
D .直线【答案】A
【解析】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,
则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,
从而:()()2AC BC x a x a y →→⋅=+-+,
结合题意可得:()()21x a x a y +-+=,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题5 解析几何1.(2020·江西赣州三中高三月考)已知1F ,2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,以12F F 为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形12F NF M 的周长为p ,面积为S ,且满足232S p =,则该双曲线的离心率为______.【答案】2【解析】如图所示,根据题意绘出双曲线与圆的图像,设()11,M x y ,由圆与双曲线的对称性可知,点M 与点N 关于原点对称,∴1212F F M F F N S S D D =, ∵圆是以12F F 为直径,∴圆的半径为c ,∵点()11,M x y 在圆上,也在双曲线上,∴有221122222111x y a bx y c ⎧-=⎪⎨⎪+=⎩, 联立化简可得()222222211bc y a y a b --=,整理得2222222211b c a b b y a y -=+,4221b c y =,21b y c=,∴1221222F F M S S c y b D ==?,∵232S p =,∴2264p b =,8p b =,∵()1212122p MF MF NF NF MF MF =+++=+,∴124MF MF b +=, ∵122MF MF a -=,联立121242MF MF bMF MF a +=⎧⎨-=⎩可得12MF b a =+,22MF b a =-,∵12F F 为圆的直径,∴2221212MF MF F F +=, 即()()222224b ab ac ++-=,222824b a c +=,22242b a c +=,2222442c a a c -+=,2223c a =,2232c a =,∴离心率2c e a ==.【押题点】双曲线以及圆的定义;双曲线的标准方程及其几何性质;圆的几何性质2.(2020·深圳南山区华侨城中学高三月考)已知点M 在离心率为12的椭圆22221(0)x y a b a b+=>>上,则该椭圆的内接八边形面积的最大值为_____.【答案】【解析】由点(M 在椭圆22221x y a b+=,得b =又∵1e 2c a ==,222a b c =+,得2a =,1c = 由于椭圆可以看做是用一个不平行底面的圆去截圆柱所得的图形,如图所示 且椭圆在底面的摄影是底面圆,其中AB 2b =,AC 2a = 由射影的性质可知cos S S θ=原射影,θ为两平面的二面角的平面角记椭圆内接八边形面积为S 原,对应的在底面圆上的射影也是八边形,面积为S 射影∴cos b S S S a θ==⋅原原射影,即aS S b=原射影,其中2a =,b =r b ==由平面几何知识易知圆内接八边形中内接正八边形面积最大为21824r sin π⨯=∴椭圆内接八边形面积最大为=【押题点】椭圆的标准方程及其几何性质;椭圆内接多边形面积的最大值问题3.(2020·山西晋城一模)若111ln 20x x y --+=,22242ln 20x y +--=,则221212()()x x y y -+-的最小值为__________,此时2x =_______. 【答案】45125【解析】设1122(,),(,)A x y x y ,点A 在函数ln 2y x x =-+图像上,点B 在直线242ln 20x y +--=上,221212()()x x y y -+-221212()()x x y y -+-的最小值,可转化为函数ln 2y x x =-+图像上的点与直线,242ln 20x y +--=上的点的距离的最小值的平方,由ln 2y x x =-+,可得1'1y x =-,与直线242ln 20x y +--=平行的直线的斜率为12-, 令1112x -=-,得2x =,∴切点坐标为(2,ln 2),切点到直线242ln 20x y +--=的距离d == 即221212()()x x y y -+-的最小值为45, 过切点与直线242ln 20x y +--=,垂直的直线24ln 20x y --+=, 由242ln 2024ln 20x y x y +--=⎧⎨--+=⎩,得2125x =.【押题点】导数的几何意义;点到直线的距离公式4.(2020·湖北黄冈中学高三月考)点A ,B 为椭圆E :()222210x y a b a b+=>>长轴的端点,C 、D 为椭圆E 短轴的端点,动点M 满足2MA MB=,若MAB ∆面积的最大值为8,MCD ∆面积的最小值为1,则椭圆的离心率为______.【答案】2【解析】设(),0A a -,(),0B a ,(),M x y ,∵动点M 满足2MA MB==22251639a a x y ⎛⎫-+=⎪⎝⎭, ∵MAB ∆面积的最大值为8,MCD ∆面积的最小值为1,∴141128,212323a a b a ⨯⨯=⨯⨯=,解得a b ==2e ==.【押题点】椭圆的标准方程及其几何性质;动点轨迹方程的求解方法5.(2020·五岳3月线上联考)过抛物线C :24x y =的准线上任意一点P 作抛物线的切线PA ,PB ,切点分别为A ,B ,则A 点到准线的距离与B 点到准线的距离之和的最小值是______. 【答案】4【解析】设()11,A x y ,()22,B x y ,则直线PA ,PB 的方程分别为21124x x y x =-,22224x x y x =-,联立解得122P x x x +=,124P x x y ⋅=.又直线PA ,PB 的方程分别可表示为112xy x y =-,222x y x y =-,将P 点坐标代入两方程,得1122,2,2P P P P x x y y x x y y ⋅⎧=-⎪⎪⎨⋅⎪=-⎪⎩∴直线AB 的方程为12P x x y ⋅-=-,即12P x x y ⋅=+, ∴A 点到准线的距离与B 点到准线的距离之和为1212211222P P x x y y x x ⎛⎫⎛⎫++=++++ ⎪ ⎪⎝⎭⎝⎭()()2121244424P x x x x x +=++=+….故答案为:4.【押题点】抛物线的标准方程及其几何性质;直线与抛物线位置关系6.(2020·河南名校模拟3月线上联考)在ABC ∆中,已知顶点(0,1)A ,顶点B 、C 在x 轴上移动,且||2BC =,设点M 为ABC ∆的外接圆圆心,则点M 到直线l :2250x y --=的距离的最小值为______.【解析】如图,设点(,)M x y ,取BC 的中点D ,连接MD ,则MD BC ⊥,且||1BD =,||||MD y =,∵||||MA MB =,则222(1)1x y y +-=+,即22x y =,则点M 到直线l 的距离22d ===∴当1x =时,d .【押题点】圆的标准方程及其几何性质;点的轨迹方程;点到直线的距离公式;二次函数的最值7.(2020·河南鹤壁高中线上二模)已知双曲线2222:1x y C a b-=(0,0a b >>)的左右焦点分别为12,F F ,O 为坐标原点,点M 为双曲线右支上一点,若122F F OM =,21tan 2MF F ∠≥,则双曲线C 的离心率的取值范围为_____.【答案】1e <≤【解析】解法一:122F F OM =Q ,12π2F MF ∴∠=,222124c MF MF ∴=+,1212tan MF MF F MF ∠=,122MF MF a -=Q ,22122222122222221211222244()2MF MF MF MF MF c e a MF MF MF MF MF MF MF ++∴===--+, 设122MF t MF =≥,则2221211212t e t t t t+==+-++-, 令()()()()222211111,'1t t t f t t f t t t t t+--=+=-==,∴2t >时,()'0f t >,()f t 在[)2,+∞上单调递增,115222t t ∴+≥+=,215e ∴<≤,1e ∴<≤ 解法二:122F F OM =Q ,12π2F MF ∴∠=,令11MF r =,22MF r =,21=MF F θ∠,tan 2θ≥,1=2sin r c θ, 22cos r c θ=,122=2(sin cos )a r r c θθ∴=--,1sin cos e θθ∴=-,222222221sin cos tan 12==151sin cos sin cos 2sin cos tan 12tan tan 2tan e θθθθθθθθθθθθθ++∴==+≤-+-+-+-(),1e ∴<≤【押题点】双曲线的标准方程及其几何性质;直线与双曲线的位置关系8.(2020·海南海南中学高三月考)已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,椭圆的离心率为1e ,双曲线的离心率2e ,则221213e e +=_______. 【答案】4【解析】如图,设椭圆长半轴长为1a ,双曲线实半轴长2a ,由定义知12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩,∴112PF a a =+,212PF a a =-,设122F F c =,123F PF π∠= 由余弦定理得:()()()()2221212121242cos 3c a a a a a a a a π=++--+-⋅,化简得:2221234a a c +=,∴22112222123134,4a a c c e e +=+=,故填4.【押题点】椭圆、双曲线的几何性质(离心率)9.(2020·黑龙江哈尔滨三中高三月考)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作一条直线l 与其两条渐近线交于,A B 两点,若AOB ∆为等腰直角三角形,记双曲线的离心率为e ,则2e =______________. 【答案】2或4±【解析】过2F 作一条直线l 与其两条渐近线交于,A B 两点,若AOB ∆为等腰直角三角形,有以下三种情况: ①当过2F 的直线l 斜率不存在时,如下图所示:根据双曲线的对称性可知,若AOB ∆为等腰直角三角形,则,2OA OB AOB π=∠=.∴其中一条渐近线的倾斜角为4π,即tan 14ba π==,则a b =,由双曲线性质可得22222c a b a =+=,∴2222222c ae a a===;②当过2F 的直线l 与渐近线的两支相交情况如下图所示时:若AOB ∆为等腰直角三角形,则,4OA AB AOB π=∠=,∴此时其中一条渐近线的倾斜角为38π,由半角公式可得tan 18π=,∴tantan348tan181tan tan 48πππππ+==-⋅,即1b a=,∴由(22224c a b a =+=+,∴(2222244a c e a a +===+③当过2F 的直线l 与渐近线的两支相交情况如下图所示时:若AOB ∆为等腰直角三角形,则,4OB AB AOB π=∠=,∴此时其中一条渐近线的倾斜角为8π,由半角公式可得tan 18π=,∴1b a =,∴由(22224c a b a =+=-,∴(2222244a ce a a -===-综上可知,双曲线离心率的平方为2或4±.【押题点】双曲线的标准方程及其几何性质;直线与双曲线位置关系10.(2020·湖北随州3月调研)已知抛物线2:4C y x =,斜率为13的直线l 与C 相交于A ,B 两点.若以点()1,1E 为圆心的圆是OAB V 的内切圆,则圆E 的半径为__________.【解析】设直线l 的方程为13y x m =+,即330x y m -+=, 内切圆的半径为r,则r ==.设直线OA ,OB 的方程分别为1y k x =,2y k x =,即10k x y -=,20k x y -=,Q 直线OA 与圆E相切,r =,整理得()222111210r k k r --+-=.同理得()222221210rkk r --+-=.1k ∴与2k 是方程()2221210r x x r --+-=的两个不同实数根.()221221214410211r r k k r k k ≠⎧⎪∆=-->⎪⎪∴⎨⎪+=-⎪⎪=⎩.设()11,A x y ,()22,B x y ,则12121212121y y y y k k x x x x =⋅==,即1212x x y y =. 由2134y x m y x ⎧=+⎪⎨⎪=⎩,得212120y y m -+=,12121444801212m y y y y m ∆=->⎧⎪∴+=⎨='⎪⎩,3m ∴<. ()2212121916x x y y m ==,2912m m ∴=,依题0m ≠,43m ∴=,满足条件,r ∴=== 【押题点】直线与圆、直线与抛物线的位置关系;抛物线的标准方程及其几何性质11.(2020·湖北华中师大一附中高三月考)如图所示,太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼.太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.现有下列说法:①对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数;②函数()sin 1f x x =+是圆O :22(1)1y x +-=的一个太极函数;③存在圆O ,使得1()1x xe f x e +=-是圆O 的一个太极函数;④直线(1)(21)10m x m y +-+-=所对应的函数一定是圆O :222(2)(1)x y R -+-=(0R >)的太极函数;⑤若函数3()f x kx kx =-(k ∈R )是圆O :221x y +=的太极函数,则(2,2)k ∈-.其中正确的是__________.【答案】②④⑤【解析】对①显然错误,如图对②,点(0,1)均为两曲线的对称中心,且()sin 1f x x =+能把圆一分为二,正 对③,函数为奇函数12()111x x x e f x e e +==+--,当0(0)x x →>时,()f x →+∞, 当x →+∞时,()1f x →,[()1]f x >,函数递减; 当0(0)x x →<时,()f x →-∞, 当x →-∞时,()1f x →-,[()1]f x <-,函数()f x 关于(0,0)中心对称,有三条渐近线1y =±,0x =, 可知,函数的对称中心为间断点,故不存在圆使得满足题干条件. 对于④,直线(1)(21)10m x m y +-+-=恒过定点(2,1),满足题意. 对于⑤函数3()f x kx kx =-为奇函数,与圆的交点恒坐标为(1,1)-,∴3221y kx kxx y ⎧=-⎨+=⎩,2624222(1)10k x k x k x ∴-++-=,令2t x =,得232222(1)10k t k t k t -++-=,即222(1)(1)0t k t k t --+=,得1t =即1x =±;对22210k t k t -+=,当0k =时显然无解,△0<即204k <<时也无解,即(2,2)k ∈-时两曲线仅有两个交点,函数能把圆一分为二,且周长和面积均等分,如图所示:若2k =±时,函数图象与圆有4个交点,若24k >时,函数图象与圆有6个交点,均不能把圆一分为二,如图所示:故所有正确的是②④⑤.【押题点】解析几何综合问题;函数的奇偶性;命题真假的判断;新定义的应用12.(2020·山东潍坊一中高三月考)已知正方体ABCD −A 1B 1C 1D 1的棱长为1,动点P 在正方体的表面上运动,且与点A 动点P 的集合形成一条曲线,这条曲线在平面CDD 1C 1上部分的形状是_____,整条曲线的周长是_________【答案】圆弧【解析】由题意得,此问题的实质是以A为半径的球在正方体1111ABCD A B C D -各个面上交线的长度计算,正方体的各个面,根据与球心位置关系分成两类:ABCD 、11AA DD 、11AA BB 为过球心的截面,截痕为大圆弧,各弧圆心角为6π、1111D C B A 、11B BCC 、11D DCC 为与球心距离为1的截面,截痕为小圆弧,由于截面圆半径为r =2π.∴这条曲线长度为3363236ππ⋅⋅+⋅⋅=.故答案为:圆弧;6.【押题点】立体几何与解析几何知识的交汇13.(2020·广西柳州中学高三月考)已知直线l 经过抛物线2:4x C y =的焦点F ,与抛物线交于A 、B ,且8A B x x +=,点D 是弧AOB (O 为原点)上一动点,以D 为圆心的圆与直线l 相切,当圆D 的面积最大时,圆D 的标准方程为 . 【答案】()()22445x y -+-=【解析】抛物线的标准方程为24x y =,抛物线的焦点坐标为()0,1F ,直线AB 的斜率()221424A BA B A B A B A B x x y y x x k x x x x --+====--,∴直线l 的方程为21y x =+,即210x y -+=.当点D 到直线l 的距离最大时,圆D 的面积最大,如下图所示:设点2,4t D t ⎛⎫ ⎪⎝⎭,Q 点D 在直线l 的下方,则22102tt -+>,点D 到直线l的距离为()2212154t t t d -+--==,当4t =时,d此时,点D 的坐标为()4,4,因此,圆D 的标准方程为()()22445x y -+-=.故答案为:()()22445x y -+-=.【押题点】抛物线的标准方程及其几何性质;直线与抛物线位置关系14.(2020·广东深圳下学期统测)已知点1(,)2M m m -和点1(,)2N n n -()m n ≠,若线段MN 上的任意一点P 都满足:经过点P 的所有直线中恰好有两条直线与曲线21:2C y x x =+(13)x -≤≤相切,则||m n -的最大值为___. 【答案】43【解析】由点1(,)2M m m -和点1(,)2N n n -,可得M ,N 在直线12y x =-上, 联立曲线21:(13)2C y x x x =+-剟,可得21122x =-,无实数解,由212y x x =+的导数为1y x '=+, 可得曲线C 在1x =-处的切线的斜率为0,可得切线的方程为12y =-,即有与直线12y x =-的交点1(0,)2E -,同样可得曲线C 在3x =处切线的斜率为4,切线的方程为942y x =-,联立直线12y x =-,可得交点4(3F ,5)6,此时可设1(0,)2M -,4(3N ,5)6,则由图象可得||m n -的最大值为44033-=,故答案为:43.【押题点】抛物线的标准方程及其几何性质;直线与抛物线位置关系;导数的几何意义15.(2020·福建福清下学期统测)过点()1,0M -的直线l 与抛物线C :24y x =交于,A B 两点(A 在,M B之间),F 是C 的焦点,点N 满足6NF AF =u u u r u u u r ,则ABF V 与AMN V 的面积之和的最小值是______.【答案】8【解析】设直线方程为1x ty =-,联立241y x x ty ⎧=⎨=-⎩,化简可得2440y ty -+=,则216160t ∆=->,解得1t >或1t <-,不妨设1t >,则2A y t =-2B y t =+∵6NF AF =u u u r u u u r,∴612N A y y t ==-, ∴()122ABF MBF AMF B A B A S S S y y y y =-=⨯⨯-=-V V V , ()122AMN MNFAMF N A N A S S S y y y y =--=⨯⨯-=-V V V ,则ABF AMN B A N A S S y y y y +=-+-V V 21222t t t ⎛=+-- ⎝)101t t =->,令()10f t t =-()10f t '=,令()0f t '=,解得54t =, 当514t <<时,()0f t '<,∴()f t 在51,4⎛⎫⎪⎝⎭上单调递减; 当54t >时,()0f t '>,∴()f t 在5,4⎛⎫+∞ ⎪⎝⎭上单调递增, 即当54t =时()f t 取得最小值,∴ABF AMN S S +V V 的最小值为8,故答案为:8. 【押题点】抛物线的标准方程及其几何性质;直线与抛物线位置关系;导数与函数的单调性、最值的关系16.(2020·陕西榆树一中高三期末)已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 是双曲线左支上的一点,若直线1AF 与直线by x a=平行且12AF F ∆的周长为9a ,则双曲线的离心率为______. 【答案】2【解析】由双曲线定义知21||||2AF AF a -=,又21||||92AF AF a c +=-,解得2111272||,||22a c a cAF AF --==, ∵直线1AF 与直线b y x a =平行,∴12tan b AF F a ∠=,故12cos aAF F c∠=, 由余弦定理得:12cos a AF F c∠=222121||4||2||2AF c AF AF c +-=⋅,即2211844144e e e e e-++=-,化简得2280e e +-=,解得2e =或4e =-(舍去). 【押题点】双曲线的标准方程及其几何性质;直线与双曲线的位置关系 17.(2020·海南中学高三月考)过点()2,1N -作抛物线21:4C y x =的两条切线,切点分别为A 、B ,则该抛物线C 的焦点坐标为:_______________,AB 所在的直线方程为_______________. 【答案】()0,1 10x y -+=【解析】∵抛物线C 的方程:22x py =,∴2p =,∴焦点坐标为()0,1;设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,2x y '=,∴A 处切线方程()211124x x y x x =-+,B 处切线方程()222224x x y x x =-+,∴()()211122222424x x y x x x x y x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,∴12122214x x x x +⎧=⎪⎪⎨⎪-=⎪⎩,∴121244x x x x +=⎧⎨=-⎩, 又∵AB 的方程为()222121121444x x x y x x x x -=-+-,即211244x x x x y x +=-, ∴AB 的方程为1y x =+,即10x y -+=. 故答案为:()0,1;10x y -+=.【押题点】抛物线的标准方程及其几何性质;抛物线的切线18.(2020·河北邯郸期末)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p => 交于点O ,A ,B ,且OAB V 的垂心为2C 的焦点,则1C 的离心率为______;如果1C 与2C在第一象限内有且只有一个公共点,且a =2C 的方程为____________.【答案】3224x y = 【解析】由题意,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线为b y x a =±,与抛物线22:2(0)C x py p =>联立,可得0x =或2pbx a =±, 取2222(,)pb pb A a a,设垂心(0,)2p H ,则222224224AHpb pb a a k pb ab a--==, ∵OAB ∆的垂心为2C 的焦点,∴22414b a bab a-⨯=-,整理得2254a b =,即22254()a c a =-,即2294a c =,∴32c e a ==,又由a =,则2254b =,∴曲线2214:1525x y C -=,与抛物线22:2C x py =联立方程组,可得2241525py y -=,即2410250y py -+=,∵曲线1C 与2C 在第一象限内有且只有一个公共点,∴2(10)44250p ∆=--⨯⨯=,解得2p =,∴22:4C x y =.故答案为:32,24x y =. 【押题点】双曲线和抛物线的标准方程及其几何性质19.(2020·广东湛江下学期3月网考)双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,O 为坐标原点,以F 为圆心,OF 为半径的圆与C 和C 的渐近线在第一象限分别交于M ,N 两点,线段MF 的中点为P .若ON OP =,则C 的离心率为________.【答案】2【解析】双曲线过第一象限的渐近线方程为by x a=,即0bx ay -=,(c,0)F ,F到渐近线的距离为d b ==,∴2ON a ===,圆F 方程为222()x c y c -+=,由22222221()x y a b x c y c ⎧-=⎪⎨⎪-+=⎩,解得2a ac x c y ⎧+=⎪⎪⎨⎪=⎪⎩(∵M 点在第一象限),即2(a ac M c +,∵P 是FM 的中点,,∴22(2a ac c P c ++,∵ON OP =,即224OP a =,∴22222222()(2)444a ac c b a ac a c c++++=,整理得224120c ac a +-=,即24120e e +-=,∴ 2e =. 【押题点】双曲线的标准方程及其几何性质;直线与双曲线的位置关系20.(2020·四川石室中学高三月考)已知双曲线()2222:10x y C a b a b-=>>的右焦点为F ,过F的直线交C 于A 、B 两点,若4AF FB =u u u r u u u r,则C 的离心率为 .【答案】65【解析】∵直线AB 过点(c,0)F AB 的方程为:)y x c =-,与双曲线22221x y a b -=联立消去x ,得22224103b a y cy b ⎛⎫-+= ⎪⎝⎭,设()()1122,,,A x y B x y ,∴24121222223,33c b y y y y a b a b-+==--,∵4AF FB =u u u r u u u r ,可得124y y =-,代入上式得4222223343b y y a b--=-=-, 消去2y 并化简整理得:22243(3)34c a b =-,将222b c a =-代入化简得:223625c a =,解之得65c a =, 因此,该双曲线的离心率65c e a ==,故答案为:65.【押题点】双曲线的标准方程及其几何性质;直线与双曲线的位置关系21.(2020·山东青岛期末)黄金分割比0.618ω=≈被誉为“人间最巧的比例”.离心率e =的椭圆被称为“优美椭圆”,在平面直角坐标系中的“优美椭圆”C :22221x y a b+=(0a b >>)的左右顶点分别为A ,B ,“优美椭圆”C 上动点P (异于椭圆的左右顶点),设直线PA ,PB 的斜率分别为1k ,2k ,则12k k =______.; 【解析】设()cos ,sin P a b θθ,,2k k Z πθ≠∈,(),0A a -,(),0B a ,则()222212222sin sin sin 1cos cos cos 1b b b b k k e a a a a a a θθθθθθ=⋅==-=-=+--. 【押题点】椭圆的标准方程及其几何性质;直线与椭圆的位置关系22.(2020·江西新余期末)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线22(0)y px p =>,如图,一平行x 轴的光线射向抛物线上的点P ,经过抛物线的焦点F 反射后射向抛物线上的点Q ,再反射后又沿平行x 轴方向射出,若两平行光线间的最小距离为6,则此抛物线的方程为_______.【答案】26y x =【解析】设1122(,),(,)P x y Q x y ,设两平行光距离为d , 由题意可知,12d y y =-, ∵(,0)2p F ,而直线PQ 过点F ,则设直线PQ 方程为:2px my =+,m R ∈ ∵22{2y pxp x my ==+,消去x 得2220y pmy p --=,由韦达定理可得21212,2y y pm y y p +==-,则1222d y y p =-==≥,∴26p =,故抛物线方程为26y x =.【押题点】抛物线的标准方程及其几何性质;直线与抛物线的位置关系23.(2020·云南昆明一模)已知椭圆M :()222210x y a b a b+=>>的左顶点为A ,O 为坐标原点,B 、C两点在M 上,若四边形OABC 为平行四边形,且45OAB ∠=︒,则椭圆M 的离心率为 .. 【解析】如图所示,四边形OABC 为平行四边形,45OAB ∠=︒,∴直线OC 的方程为:y x =,联立22221y x x y a b =⎧⎪⎨+=⎪⎩,解得:C x =;同理联立22221y x ax y ab =+⎧⎪⎨+=⎪⎩,化为:()222342220a b x a x a a b +++-=,解得32322222B a ab a x a a b a b -=-=++.∵||||OA CB a ==2322ab a a a b -=+,化为:223b a =,∴椭圆的离心率c e a ====.【押题点】椭圆的标准方程及其几何性质;直线与椭圆的位置关系24.(2020·湖南益阳期末)已知抛物线2:4C y x =的准线为l ,过点(1,0)-作斜率为正值的直线l 交C 于A ,B 两点,AB 的中点为M .过点A ,B ,M 分别作x 轴的平行线,与l 分别交于D ,E ,Q ,则当||||MQ DE 取最小值时,||AB = .【答案】【解析】不妨设直线AB 方程为(1)(0)y k x k =>+,()11,A x y ,()22,B x y ,代入抛物线24y x =,整理得()2222240k x k x k +-+=,则12242x x k+=-,121=x x , 由()2242440k k ∆=-->,得01k <<,∴122||||112||22AD BE x x MQ k++++===,∵1212||||||DE y y k x x =-=-k==,∴||||MQ DE ==,当212k =时,||||MQ DE 取得最小值. 此时126x x +=,121=xx,||AB==【押题点】抛物线的标准方程及其几何性质;直线与抛物线的位置关系;抛物线的最值问题25.(2020·江西名校联考二)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点M 满足212MF MF a -=,若点N 是双曲线虚轴的一个顶点,且2MNF V 的周长的最小值为实轴长的3倍,则双曲线C 的渐近线方程为________.【答案】y =【解析】212MF MF a =+,而21NF NF ==, 故2MNF V 的周长为22111||||222MN MF NF MN MF a NF NF a ++=+++≥+, 当且仅当M ,N ,1F 共线且M 在N ,1F 之间时,取得最小值,且62a a =+222c a b =+得2223b a =.故2232b a =,故所求渐近线方程为y x =.【押题点】双曲线的标准方程及其几何性质;直线与双曲线的位置关系26.(2020·辽宁葫芦岛期末)已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F ,2F ,点P 为双曲线C 右支上异于顶点的一点,12PF F ∆的内切圆与x 轴切于点(2,0),则a 的值为______,若直线2y x =-经过线段1PF 的中点且垂直于线段1PF ,则双曲线C 的方程为________________.【答案】2 221416x y -=【解析】点P 是双曲线右支上一点,由双曲线的定义,可得122PF PF a -=,若设三角形12PF F 的内切圆心在横轴上的投影为(,0)A x ,该点也是内切圆与x 轴的切点.设,B C 分别为内切圆与21,PF PF 的切点. 考虑到同一点向圆引的两条切线相等:则有:1212()()PF PF PC CF PB BF -=+-+1212CF BF AF AF =-=-()()2c x c x a =+--=即x a =,∴内切圆的圆心横坐标为a . 由题意可得2a =,又直线2y x =-经过线段1PF 的中点且垂直于线段1PF 设1PF 得中点为H ,则12,//OH PF OH PF ⊥, ∴直线2y x =-与平行2PF ,则12PF PF ⊥,22PF k =-则2tan 2PF O ∠=,根据双曲线的定义有:12224PF a PF PF =+=+ 则在直角三角形△12PF F 中有:122224tan 2PF PF PF O PF PF +∠===解得:24PF =,∴18PF = 由勾股定理有2221212PF PF F F +=,即222484c +=解得:220c =,∴216b =∴双曲线方程为:221416x y -=故答案为:2 .221416x y -=【押题点】双曲线的的定义、标准方程及其几何性质;直线与双曲线的位置关系27.(2020·福建宁德期末)在棱长为4的正方体1111ABCD A B C D -中,正方形ABCD 所在平面内的动点P 到直线1AA ,1BB 的距离之差为2.设11C D 的中点为E ,则PE 的最小值为 .【解析】∵正方形ABCD 所在平面内的动点P 到直线1AA ,1BB 的距离之差为2,则点P 在平面ABCD 内的轨迹为双曲线,其方程为2213y x -=,则03≤≤y ,取CD 的中点M ,连接,EM PM ,则222216PE PM ME PM =+=+, 当PM 最小时,则PE 最小.设(,)P x y ,(0,4)M ,则22224(4)8173PM x y y y =+-=-+,03≤≤y , 对称轴3y =,∴函数在03≤≤y 单调递减,∴当3y =时,2min ()1224175PM =-+=,∴PE .【押题点】空间立体几何与解析几何交汇题28.(2020·安徽淮南一模)设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且4AF BF =,则弦长AB =______.【答案】258【解析】抛物线焦点坐标为1(,0)2F ,设点1122(,),(,)A x y A x y ,直线l 方程为12x my =+, 由抛物线的定义有111||22p AF x x =+=+,221||22p BF x x =+=+, 由4AF BF =,得1211422x x ⎛⎫+=+ ⎪⎝⎭,即1214(1)my my +=+. ∴有12(4)3(1)m y y -=L L ,又由2122x my y x⎧=+⎪⎨⎪=⎩ 得:2210y my --=,∴122y y m +=,121(2)y y ⋅=-L L由(1),(2)联立解得:2916m =. 又1212||||||12AB AF BF x x my my =+=++=++212925()22222168m y y m =++=+=⨯+=,故答案为:258. 【押题点】抛物线的标准方程及其几何性质;直线与抛物线的位置关系29.(2020·广西玉林、柳州二模)已知椭圆C :2214x y +=,()0,P m 是y 轴正半轴上一动点,若以P 为圆心任意长为半径的圆与椭圆C 至多有两个交点,则m 的取值范围是_____. 【答案】[)3,+∞【解析】联立方程222)221,4(,y m x y x r -⎧+=⎪⎨⎪+=⎩n 消去x 得:2223240y my m r +-+-=,∵以P 为圆心任意长为半径的圆与椭圆C 至多有两个交点,由于圆和椭圆的对称性,∴关于y 的方程对任意0r >,在[1,1]y ∈-至多有一个根. 令222()324f y y my m r =+-+-,对称轴3m y =-, ∵()0,P m 在y 轴正半轴,∴0m >.当13m-≤-时,即3m ≥,方程()0f y =在[1,1]y ∈-至多有一根,符合题意; 当103m-<-<,即03m <<,方程()0f y =在[1,1]y ∈-至多有一根,则必有22222412(4)1648120m m r m r ∆=--+-=+-≤或(1)0,(1)0,f f <⎧⎨-<⎩,对任意0r >恒成立,即22443m r ≥+或22(1)r m <-对任意的0r >恒成立,其中03m <<,∵244(412)3m +∈,,2(1)[0,4)m -∈,∴两个不等式对任意的0r >都不会恒成立,∴03m <<不符合题意.故填:3m ≥. 【押题点】椭圆的标准方程及其几何性质;直线与椭圆、圆的位置关系30.(2020·黑龙江哈尔滨三中高三期末)已知ABC ∆的三个顶点、、A B C 均在抛物线2y x =上,给出下列命题:①若直线BC 过点3,08M ⎛⎫⎪⎝⎭,则存在ABC ∆使抛物线2y x =的焦点恰为ABC ∆的重心; ②若直线BC 过点()1,0N ,则存在点A 使ABC ∆为直角三角形; ③存在ABC ∆,使抛物线2y x =的焦点恰为ABC ∆的外心;④若边AC 的中线//BM x 轴,2BM =,则ABC ∆的面积为 其中正确的序号为______________. 【答案】①②.【解析】设、、A B C 三点坐标分别为112233(,)(,)(,)x y x y x y 、、, ①直线BC 过点3,08M ⎛⎫ ⎪⎝⎭,设BC 方程为38x my =+,联立238x my y x ⎧=+⎪⎨⎪=⎩,消去x ,得22330,082y my m --=∆=+>, 223232323333,,()844y y m y y x x m y y m +==-+=++=+,抛物线2y x =的焦点恰为ABC ∆的重心,2123123113,0,,4x x x y y y x m y m ∴++=++=∴=-=-,将A 点坐标代入抛物线方程22,0m m m ∴=-∴=,当0m =时,33(0,0),(,(,8484A B C -,①正确; ②直线BC 过点()1,0N ,设BC 方程为1x my =+,联立21x my y x=+⎧⎨=⎩消去x 得,210y my --=,22232323232323,1,1,0y y m y y x x y y x x y y +==-==∴+=,0,OB OC OB OC ∴⋅=∴⊥u u u r u u u r,而点O 在抛物线上,故②正确;③设以抛物线焦点1(,0)4F 为圆心的圆半径为r , 其方程为2221()4x y r -+=,与抛物线方程联立得2222111(),(),444x x r x r x r -+=+=∴=-±,方程至多只有一个非负解,即圆与抛物线至多只有两个交点,不存在ABC ∆,使抛物线2y x =的焦点恰为ABC ∆的外心;③不正确; ④AC 的方程为x my n =+,代入抛物线方程得,2213130,40,,y my n m n y y m y y n --=∆=+>+==-, 21313()22x x m y y n m n +=++=+设AC 中点00(,)M x y ,//BM x 轴,2BM =,22(2,)22m n m B +-,代入抛物线方程得2222()2,4822m m n m n +=-∴+=,1312||2ABC S y y ∆∴=⨯⨯-===≠④不正确. 故答案为:①②.【押题点】直线与圆、抛物线的位置关系;三角形的面积公式。