对无阻尼两自由度自由振动的振动系统
机械振动理论中的一些原理问答

1.请指出弹簧的串、并联组合方式的计算方法。
确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。
答:n 个刚度为i k 的弹簧串联,等效刚度∑==ni ieq k k 111;n 个刚度为i k 的弹簧并联的等效刚度为∑==ni i eq k k 1;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较其任何一个组成弹“簧软”。
确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。
2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括:(1)库仑阻尼计算公式⎪⎭⎫⎝⎛⋅=.sgn -x mg F e μ,其中,sgn 为符号函数,这里定义为)()()(sgn t x t x x ∙∙∙=,须注意,当0)(x =∙t 时,库仑阻尼力是不定的,它取决于合外力的大小,而方向与之相反;(2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、液体)中运动是,由流体介质所产生的阻尼,计算公式为⎪⎭⎫⎝⎛-=∙∙x x F n sgn 2γ;(3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2X E s α=∆ 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么?答:单自由度无阻尼系统的自由振动的运动微分方程()0=+∙∙t kx x m ; 自然频率:mk f n n ππω212==; 振幅:202⎪⎪⎭⎫ ⎝⎛+=nv x X ω;初相角:0x v arcrann ωϕ=。
4.对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么?答:单自由度无阻尼系统自由振动,确定自然频率的方法:(1)静变形法:该方法不需要到处系统的运动微分方程,只需根据静变形的关系就可以确定出固有频率具体如下:mg k st =δ,又mkn =ω,将这两个式子联立即可求得stn gδω=;(2)能量法,该方法又可以分为三种思路来求自然频率。
单自由度无阻尼自由振动的系统分析

单自由度无阻尼自由振动的系统分析在结构动力学之中,单自由度体系的振动是最简单的振动,但单自由度体系的频率计算在结构动力学计算中有着十分重要的意义,因为从中我们能得到关于振动理论的一些最基本的概念和分析方法同时也为更复杂的多质点多自由度体系振动问题奠定基础,同时现实工程中也有许多振动问题可以简化为单自由度问题近似的利用单自由度振动理论去分析解决。
在单层厂房、水塔等建筑物中得到有效的利用结构的自由振动是指结构受到扰动离开平衡位置后,不再受到任何外力影响的振动过程,此处动力系统是否有阻尼项,会直接影响到动力系统的反应。
在此,我们把自由振动分为无阻尼自由振动与有阻尼的自由振动。
一、无阻尼自由系统的振动分析目前,以弹簧-质量系统为力学模型,研究单自由度系统的振动具有非常普遍的实际意义,因为工程中许多问题简化后,用单自由度体系的振动理论就能得到很好的解决。
而对多自由度系统和连续振动,在特殊坐标的考察时,也会显示出与单自由度系统类似的振动。
进行无阻尼自由振动分析的主要目的是为了获得系统固有振动的特性,只有充分地了解系统的自身振动特性才能有效的计算系统的动力响应,目前在单质点单自由度无阻尼自由振动体系中我们的运动方程为:0)()(..=+t ku t um (1) 或 0u(t))(=+ωt u (2)其中的ω是振动圆频率,是反应系统动力的重要参数,其计算公式为:m k m ==δω12 (3)由上式可以看出,ω只和系统的刚度及质量有关,而与系统所受到的初始受力状态无关。
ω的量纲与角速度相同为rad/s ,它反映了系统自由振动的快慢。
自由振动系统的这一特性,我们在日常生活中司空见惯。
比如,键盘类乐器标定后,按动某一个琴键,不管你按动的轻重如何,琴键所发出的声音的频率是一定的,按得轻或按得重仅影响声音的强弱。
(2)式经过三角函数的转换可表示为:)sin()(νω+=t A t u (4)其通解为t A t A t u ωωsin cos )(21+= 常数A 1与A 2与初始条件有关,01χ=A ωχ/02 =A式(4)是标准的简谐方程其中A 是其振幅,则ν是其初相角,他们的计算公式2020)(ωx x A += ,00arctan x x v ω=对于质点振动系统,质量越大,则系统的固有频率越低;刚度越大,则系统的固有频率越高。
两自由度系统-振动力学

振幅比、主振型、固有振型
1
A21 A11
k11
n21m1
k12
k22
k12
n21m2
2
A22 A12
k11 n22m1
k12
k12
k22 n22m2
1 1
特征向量、振型向量、模态向量
1
,
2
A 1
A11 A21
A11
1
1
,
A 2
A12 A22
A12
1
2
模态参数包括:
3K t I
系统按第二阶固有振型做简谐振动
x10 x0,x20 0,x10 x20 0
解得:A11 A12 x0 / 2,1 2 900
作业:3-1,3-2,3-4
x1 0.5x0 cos
K / I t 0.5x0 cos
3K t I
x2 0.5cos
K / I t 0.5x0 cos
于是有
k11 n2m1
k12
0
(7)
k21
k22 n2m2
m1m2n4 (m1k22 m2k11)n2 k11k22 k122 0
(8)
方程有两个正实根
n 1,2
m1k22 m2k11
(m1k22 m2k11)2 4m1m2 (k11k22 k122 ) 2m1m2
(9)
[K]:刚度矩阵。
{x}:位移向量
第一节 无阻尼自由振动
分析{x0},{x0}引起的自由振动
微分方程的一般形式:
m1
0
0 m2
x1 x2
k11 k 21
k12 k 22
x1 x2
0 0
第三章 两自由度系统

k12 x1 F sin t k 22 x 2 0
M x K x F sin t
三.方程求解
令方程的解为
jt xt X e
X1 X X 2
k 2 L x3 0 2 k 2 L 0
方程含有静耦合和动耦合
结论:
1. 2. 3. 4. 5. 描述一个两自由度系统的运动,所需要的独立坐标数是 确定的、唯一的,就是自由度数2。但为描述系统运动 可选择的坐标不是只有唯一的一组。 对于同一个系统,选取的坐标不同,列出的系统运动方 程的具体形式也不同,质量矩阵和刚度矩阵对不同的坐 标有不同的具体形式。 如果系统的质量矩阵和刚度矩阵的非对角元有非零的元 素,则表明方程存在坐标耦合。坐标耦合决定于坐标的 选取,不是系统的固有性质。 方程中存在耦合,则各个方程不能单独求解。 同一个系统,选取不同的坐标来描述其运动,不会影响 到系统的性质,其固有特性不变。
2 随
变化的曲线
§3.3无阻尼吸振器
一.物理模型
二.数学模型
m1 x1 k1 x1 k 2 x2 x1 F sin t m2 x2 k 2 x2 x1 0
m1 0 x1 k1 k2 k2 x1 F sin t 0 m x k k2 x2 0 2 2 2
可以解出两自由度系统的两个固有频率。
§3.4有阻尼振动
一.自由振动
1.物理模型
2.数学模型
m1 x1 c1 c2 x1 k1 k 2 x1 c2 x2 k 2 x2 0
04-1zf_两自由度系统的振动

整理得系统运动微分方程:
m1x1 (K1 K2 )x1 K2 x2 0 m2 x2 K2 x1 (K2 K3 )x2 0
引入符号:
m1x1 m2 x2
(K1 K2
x1
K2 (
安装两个齿轮的传动轴示意图
假设: (1)相对于齿轮来说,轴的质量较小 可以忽略; (2)轴的变形较大,考虑其弹性; (3)齿轮可视为集中质量元件的刚性 圆盘。
若研究系统在纸面平面内的横向振动,
在上述假设条件下,系统可简化成图两
自由度横向振动力学模型。
两自由度横向振动力学模型
若研究系统的扭振问题,两圆盘具有 转动惯量,轴具有扭转弹性,系统可 简化为两自由度扭转振动力学模型。
x20 )2
(1x10 x20 )2 2
n2
1
arctan
n1 (2 x10 2 x10
x20 x20
)
2
arctan
n
2 (1x10 1x10
x20 x20
)
例1 图示两自由度系统。已知,ml=m2=m=0.05kg, K1=K2=K3=K=20N/m。
(1)第1个方程既含有 x1 项,也含有-bx2项; 性常微分方程组。
(2)第2个方程既含有 x2 项,也含有-cxl项。
显然,这两个方程是相互耦联的,将-bx2、-cxl称为耦合项。
与单自由度振动系统运动微分方程比较:两自由度振动系统运动
微分方程是含有耦合项的二级常微分方程组。
4.1.2 固有频率与主振型
机械动力学第3章两自由度系统

b.微分方程
m1&&1 + (k1 + kc ) x1 − kc x2 = F1 (t ) x (3.1-1) ) m2 &&2 + (k 2 + kc ) x2 − kc x1 = F2 (t ) x
5
写成矩阵形式: 写成矩阵形式:
m1 0
0 &&1 k1 + kc x && + −k m2 x2 c
(3.1-12) )
讨论( 讨论(3.1-11)的解,假定 )的解,
f (t ) = Be
st
代入( 代入(3.1-11)得 )
10
3.1无阻尼自由振动 3.1无阻尼自由振动
3.1.1 固有模态振动
QQ1094860954
s +λ =0
2
(3.1-13) )
− −λt
(3.1-11)的通解 )
f (t ) = B1e
(3.1-22) )
17
3.1无阻尼自由振动 3.1无阻尼自由振动
3.1.1 固有模态振动
叫做特征向量, 叫做特征向量 振型向量或模态向量 r 1 r 2 叫做振型比 固有频率和振型向量构成系统的固有模态的基 或简称模态参数),它们表明了系统自由振动 本参数(或简称模态参数 本参数 或简称模态参数 它们表明了系统自由振动 的特性。 的特性。 两自由度系数有两个固有模态,即 两自由度系数有两个固有模态 即系统的固有 模态等于系统的自由度数。 模态等于系统的自由度数。 对于给定的系统, 对于给定的系统 特征向量或振型向量的相对比值 是确定的唯一的,和固有频率一样取决于系统的物 是确定的唯一的 和固有频率一样取决于系统的物 理参数,是系统固有的 而振幅则不同。 是系统固有的,而振幅则不同 理参数 是系统固有的 而振幅则不同。
两自由度系统的振动
2 2) ad bc , 12 和 2 都是正数,两个正实根。 3)方程仅有两个正实根的事实说明,系统可能有的同步 运动不仅是简谐的,且只能以两种频率作简谐运动。
4)ω1和ω2由由系统参数确定,称为系统的自然频率。两
2 (t ) c3 x 2 (t ) c2 [ x 2 (t ) x 1 (t )] k3 x2 (t ) k 2 [ x2 (t ) x1 (t )] F2 (t ) m2 x
整理得到
1 (t ) c1 c2 x 1 (t ) c2 x 2 (t ) k1 k 2 x1 (t ) k 2 x2 (t ) F1 (t ) m1 x m2 x2 (t ) (c2 c3 ) x2 (t ) c2 x1 (t ) (k 2 k 3 ) x2 (t ) k 2 x1 (t ) F2 (t )
由两自由度系统到更多自由度系统,则主要是量的扩充,
在问题的表述、求解方法及最主要的振动特性上没有本质 的区别。
1
2
1
2
1 1 2
2 3
6.2 两自由度系统的自由振动
一、两自由度振动系统的运动微分方程
1( 1 1
)
1(
)
2 2
2(
)
2
( )
3 3
1
2
(a)
1 1 1( 1 1(
( )
1
( )
2[ 2 (
2
1
上式表明:系统按其任一自然频率作简谐同步运动时,m1 和m2运动的振幅之比由系统本身的物理性质决定,对于特 定系统,是一个确定的量。 由于m1和m2作同步运动,任意时刻的位移之比等于振幅比
第三章 两自由度系统的振动
设两质量块振动时按同频率和同相位作简谐振动,即:令
一组解x1 A1 sin( t )、x2 A2 sin( t ),代入方程后得: [(a 2 ) A1 bA2 ]sin( t ) 0 [cA1 (d 2 )A2 ]sin( t ) 0
(a 2 ) A1 bA2 0
cA1
(d
一阶主振型。
例
练习1 如图,推导系统的频率方程并 求主振型。设滑轮为均质圆盘, 其质量为m2,质量块质量为m1, 弹簧刚度分别为K1和K2,并假定 滑轮与绳索间无相对滑动。
解:选取广义坐标为( ),
取静x,平 衡位置作为坐标原点,
进行受力分析,建立系统的运 动微分方程:
m1x K1(x r) I0 K1(x r)r K2r 2
1) 当作用于系统的主动力都是有势力时(系统没有能
量损失时),则系统具有势能U(q1,q2,···,qn),广义力
为
Qj
U q j
( j 1, 2, , n)
代入方程得: d ( T ) T U 0 dt qj q j q j
( j 1, 2, , n)
或
d ( L ) L 0 ( j 1, 2, , n)
m1l 21 (m1gl Ka2 )1 Ka22 0 m2l 22 Ka21 (m2gl Ka2 )2 0
1 2
K2 (u2 u1)2
u1
u2
代入拉氏方程,得系统的微分方程
(m1
m2 2
)u1
m2 2
u2
(K1
K2 )u1
K2u2
0
m2 2
u1
3u2 2
u2
K 2u1
K2u2
0
m1
02-振动系统的力学模型及参数
7
基于以上简化及其它假设,最终复杂 结构系统为: 无弹性的质量、无质量的弹簧,以及 纯粹阻尼组成的简单力学模型(系统)。 e.g.汽车车身,前后桥为质量,悬挂及 轮胎为弹簧,所有耗能环节视为阻尼。 形成比较理想的结构振动系统。
哈尔滨工业大学 航天学院
8
结构振动系统三元素(件) 机械系统或工程结构之所以产生振动, 是由于系统本身具有质量和弹性,而阻尼 则使振动受到抑制。 从能量的角度:质量存贮动能,弹性 存储势能,阻尼则消耗能量。
哈尔滨工业大学 航天学院
12
(3)质量元件 质量元件在力学模型中抽象为刚体。根据 Newton 第二定律,当质量上作用有载荷时,力 与加速度存在如下关系:
F m x
m —为刚体质量,单位 kg 。
哈尔滨工业大学 航天学院
13
单自由度系统 单自由度无阻尼自由振动系统 一个无质量的弹簧和一个无弹性的质 量即组成一个单自由度系统的力学模型。 (如图)该模型的参数为质量和刚度,系 统受到初始扰动后,产生振动,若在相对 较短的时间内研究其振动状态时,可认为 是一种无阻尼的自由振动。
哈尔滨工业大学 航天学院
5
(2)时不变(TI)系统假设 诸多系统在工作过程是时变的(比如 大型运载火箭)。但为了分析方便,在所 取的分析时段内,对系统作固化处理,从 工程角度视为时不变系统,从面使描述振 动的微分方程简化。 形成LTI线性定常系统 。
哈尔滨工业大学 航天学院
6
(3)非耦合假设 实际结构系统往往存在耦合现象,因 耦合引起的量值相对于主要分析的量值在 工程容差之内,可视为非耦合系统。从而 大简化分析(当然,专门研究耦合振动的 情况除外)。 大型运载火箭,液体贮箱流固耦合。
0727第三章 两自由度系统振动(讲)
第三章两自由度系统振动§3-1 概述单自由度系统的振动理论是振动理论的基础。
在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。
两自由度系统是最简单的多自由度系统。
从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。
研究两自由度系统是分析和掌握多自由度系统振动特性的基础。
所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。
很多生产实际中的问题都可以简化为两自由度的振动系统。
例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。
只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。
以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。
此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。
这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。
在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。
取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。
这样x1和x2就是用以确定磨头系统运动的广义坐标。
(工程实际中两自由度振动系统) [工程实例演示]§3-2 两自由度系统的自由振动一、系统的运动微分方程(①汽车动力学模型)②以图3.2的双弹簧质量系统为例。