高二数学余弦定理训练题-word

合集下载

(完整版)余弦定理练习题及答案

(完整版)余弦定理练习题及答案

积累巩固1.已知a ,b ,c 是∆ABC 中角A ,B ,C 的对边,若a =21,b =5,c =4,则A =.3,b =3,c =30︒,则A =.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知a =3.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为.4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为.5.在△ABC 中,已知a =1,b =7,B =60°,求边C .延伸拓展6.在△ABC 中,已知a =2,b =2,A =45°,解此三角形.7.已知a 、b 、c 分别是∆ABC 的三个内角A 、B 、C 所对的边,若∆ABC 面积S∆ABC=3,c =2,A =60︒,求a 、b 的值.28.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a ⋅cos 2.C A 3+c ⋅cos 2=b ,求证:2229.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b +c =a +3bc ,求:(1)A 的大小;(2)2sin B cos C -sin(B -C )的值.10.设∆ABC 的内角A,B,C 的对边分别为a,b,c,且A=60o ,c=3b.求:(1)222cos B cos C a的值;(2)的值.+c sin B sin C 创新应用11.在△ABC 中,a 、b 是方程x -23x +2=0的两根,且2cos(A +B )=1.求:(1)角C 的度数;(2)c ;(3)△ABC 的面积.12.已知A 、B 、C 为∆ABC 的三内角,且其对边分别为a 、b 、c ,若2cos B cos C -sin B sin C =1.2(1)求A ;(2)若a =23,b +c =4,求∆ABC 的面积.13.当甲船位于A 处时获悉,在其正东方方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,试问乙船直接赶往B 处救援最少要走多少海里?参考答案b 2+c 2-a 21=,∠A =60o .1.60解析:cos A =2bc 2o 2.解:由余弦定理可得c 2=3+9-2⨯3⨯3cos30o =3,解得c =a =3⇒A =C =30o (或).616+36-99+36-1616+9-36613.解:由余弦定理,所求式=++=.22224.解:设顶角为C ,因为l =5c ,∴a =b =2c ,由余弦定理得πa 2+b 2-c 24c 2+4c 2-c 27cos C ===.2ab 2⨯2c ⨯2c 85.解:由余弦定理得(7)2=1+c 2-2c cos60°,∴c 2-c -6=0,解得c 1=3,c 2=-2(舍去);∴c =3.6.解:由a 2=b 2+c 2-2bc cos A 得22=(2)2+c 2-22c cos45°,∴c 2-2c -2=0,解得c =1+3或c =1-3(舍去);∴c =1+3.c 2+a 2-b 222+(1+3)2-(2)23又cos B ===,且B 为三角形内角;2ca 22×2×(1+3)∴B =30°;∴C =180°-(A +B )=180°-(45°+30°)=105°.7.解:ΘS∆ABC=1bc sin A =3,∴1b ⋅2sin 60︒=3,得b =12222由余弦定理得a =b +c -2bc cos A =1+2-2⨯1⨯2⋅cos60︒=3,∴a =2222223.8.证明:由已知得:,∴,∴,∴,即222.9.解:(1)由余弦定理得a b c2bccosA,b2c2a23bc3故cosA,所以A.2bc2bc26(2)2sinB cosC sin(B C)2sin B cos C(sinB cos C cos B sinC)sinB cos C cos B sinC1sin(B C)sin(A)sin A.210.解:(1)由余弦定理得1117a7 a2b2c22b cosA(c)2c22g cg cg c2.3329c3(2)由余弦定理及(1)的结论有72212c c(c)a c b539. cosB2ac7272g cg c3222故sin B1cos2B1253. 282772122c c ca2b2c2919,同理可得cosC2ab71272g cg c33sin C1cos2C1133. 2827从而cosB cosC5114333. sinB sin C39911.解:(1)∵2cos(A +B )=1,∴cos C =-21,∴角C 的度数为120°.2(2)∵a 、b 是方程x -23x +2=0的两根,∴由求根公式计算得a +b =23,ab =2,222由余弦定理得c =a +b -2ab cos C =(a +b )-2ab (cos C +1)=12-2=10.2∴c =10.(3)S =13ab sin C =.2212.解:(1)Θcos B cos C -sin B sin C =又Θ0<B +C <π,∴B +C =22211,∴cos(B +C )=;223;ΘA +B +C =π,∴A =π2π.3(2)由余弦定理得a =b +c -2bc ⋅cos A ,∴(23)=(b +c )-2bc -2bc ⋅cos 222π,3即12=16-2bc -2bc ⋅(-),∴bc =4;12∴S∆ABC=113bc ⋅sin A =⋅4⋅=3.222o o o 13.解:在△ABC 中,∠BAC =90+30=120,∴BC =AB 2+AC 2-2AB g AC cos A =202+102-2⨯20⨯10cos120o =107.答:乙船直接赶往B 处救援最少要走107海里.。

高中数学正、余弦定理练习题(含答案)

高中数学正、余弦定理练习题(含答案)

高中数学正、余弦定理练习题(含答案)高中数学正弦、余弦定理练题(含答案)知识点、方法:正弦、余弦定理及其应用、三角形形状判定、三角形的面积、正弦、余弦定理的实际应用。

一、选择题(每小题6分,共36分)1.(2014南阳高二期末)在△ABC中,A=60°,BC=3,则△ABC的周长为(D)A) 4sin(B)+3B) 4cos(B)+3C) 6sin(B)+3D) 6cos(B)+3解析:由正弦定理得a/ sinA = b/ sinB = c/ sinC,代入A=60°,BC=3,得b+c=2sinB,即b+c=6cosB。

故选D。

2.(2014宁德质检)在△ABC中,a,b,c分别为角A,B,C所对的边,满足c=2bsinC,a²=b²+c²-bc,则角C为(D)A) 30°B) 45°C) 60°D) 90°解析:cosA=(b²+c²-a²)/2bc=cosC,代入c=2bsinC得sinC=2sinBsinC,代入sin²B+sin²C=1得sinB=√3/2,B=60°,C=π-A-B=90°。

故选D。

3.(2014珠海高二期末)在△ABC中,若c·cosB=a,则△ABC是(C)A) 等腰三角形B) 等腰三角形或直角三角形C) 直角三角形D) 等边三角形解析:c²=a²+b²-2abcosC,代入c·cosB=a得a²+b²=c²,即△ABC为直角三角形。

故选C。

4.(2014菏泽高二期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知∠A=60°,b=4,若0<a≤4或a=6,则a的取值为(C)A) 0<a<4B) a=6C) a≥4或a=6D) 0<a≤4或a=6解析:由正弦定理得a/ sinA = b/ sinB = c/ sinC,代入A=60°,b=4,得a/√3=c/2,即a≥4sin60°=2√3.又∵a²=b²+c²-2bccosA,代入A=60°,b=4,得c²-4c+4=0,即c=2或c=2b=8.故a≥4或a=6.故选C。

余弦定理40道基础题必练题含详解

余弦定理40道基础题必练题含详解
故选:C. 6.C 【分析】
利用余弦定理可求 ab 的值,从而可求三角形的面积.
【详解】
因为 C 120 ,故 c2 a2 b2 2ab cos120 a2 b2 ab ,
而 a b2 c2 4 ,故 c2 a2 b2 2ab 4 a2 b2 ab ,
故 ab 4 ,故三角形的面积为 1 ab sin120 3 4 3 ,
由余弦定理可得: cos A b2 c2 a2 16 36 28 1
2bc
246 2
又 A 0, 所以 A
3
故选:C
4.C
【分析】
答案第 1页,总 21页
利用余弦定理即可求解. 【详解】
在 ABC 中,若 b2 c2 a2 2bc ,
所以 cos A b2 c2 a2 2bc 2 ,
【详解】
依题意,由正弦定理得 c2 2a bb a b a ,
c2 2ab b2 a2 ab , a2 b2 c2 ab , a2 b2 c2 1 ,
2ab
2
即 cos C 1 .由于 0 C ,
2 所以 C 2 .
3
故选:C
3.C
【分析】
由余弦定理求解可得结果. 【详解】
则C ( )
A. 6
B.

2
33
C. 2 3
D.
6

5 6
3.在 ABC 中,若 AC 4 , AB 6 , BC 2 7 ,则 A ( )
A. 6
B.
4
C.
3
4.在 ABC 中,若 b2 c2 a2 2bc ,则 A ( )
D.
2
A. 90
B.150
C.135

(完整版)正弦定理与余弦定理练习题(最新整理)

(完整版)正弦定理与余弦定理练习题(最新整理)

,则 b=___________.
27.在 AC 中,已知 A 4 3 , AC 4 , 30 ,则 AC 的面积是

28.在 ABC 中,角 A , B , C 所对的边分别是 a , b , c ,设 S 为△ ABC 的面积, S 3 (a2 b2 c2 ) ,则 C 的
4 大小为___________.
正弦定理与余弦定理
1.已知△ABC 中,a=4, b 4 3, A 30 ,则 B 等于( )
A.30°
B.30° 或 150°
C.60°
D.60°或 120°
2.已知锐角△ABC 的面积为 3 3 ,BC=4,CA=3,则角 C 的大小为( )
A.75°
B.60°
C.45°
D.30°
3.已知 ABC 中, a, b, c 分别是角 A, B, C 所对的边,若 (2a c) cos B b cos C 0 ,则角 B 的大小为( )
A.
6
B.
3
2
C.
3
5
D.
6
4.在ABC 中,a、b、c 分别是角 A、B、C 的对边.若 sin C =2, b2 a 2 3ac ,则 B =( )
sin A
A. 300
B. 600
C. 1200
D. 1500
5.在△ABC 中,角 A,B,C 的对边分别是 a,b,c.已知 a=5 ,c=10,A=30°,则 B 等于( )
5
在△ABC 中,由余弦定理得,
=,
化简得,2ac+a2+c2﹣b2=2a(a+c), 则 c2=a2+b2, ∴△ABC 为直角三角形, 故选:B. 12.C 【解析】 试题分析:由 A 的度数求出 sinA 的值,再由 a 与 b 的值,利用正弦定理求出 sinB 的值,由 b 小于 a,得到 B 小于 A, 利用特殊角的三角函数值即可求出 B 的度数. 解:∵A=60°,a=4 ,b=4 ,

余弦定理练习题及答案

余弦定理练习题及答案

余弦定理练习题及答案1.已知三角形ABC的边长a=21,b=5,c=4,求角A的大小。

解析:根据余弦定理,cosA=(b^2+c^2-a^2)/(2bc),代入数值计算可得cosA=-61/40,因为-1≤cosA≤1,所以三角形ABC不存在角A,即无解。

2.已知三角形ABC的边长a=3,b=4,c=6,求XXX的值。

解析:根据余弦定理,cosA=(b^2+c^2-a^2)/(2bc),cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab),代入所求式计算可得答案为-11/2.3.已知三角形ABC的边长a=3,b=4,c=6,求边C的长度。

解析:根据余弦定理,cosC=(a^2+b^2-c^2)/(2ab),代入数值计算可得cosC=-1/2,因为0°≤C≤180°,所以C的大小为120°。

再根据正弦定理,c/sinC=a/sinA,代入已知数据可得c=2√3.4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为多少?解析:设等腰三角形的底边长为x,则周长为5x,由等腰三角形的性质可知,其两个等角为(180°-顶角)/2,所以顶角的大小为2(180°-顶角)/2=180°-顶角。

根据余弦定理,cos顶角=[(5x/2)^2+x^2-(5x/2)^2]/(2x^2)=3/4.5.已知三角形ABC的边长a=1,b=7,角B=60°,求边C 的长度。

解析:根据正弦定理,c/sinC=a/sinA,又因为A+B+C=180°,所以角A=180°-60°-arcs in(1/7)≈86.6°。

代入已知数据计算可得c≈7.5.6.已知三角形ABC的边长a=2,b=2,角A=45°,解此三角形。

解析:根据余弦定理,cosB=(a^2+c^2-b^2)/(2ac)=0,即角B为直角。

余弦定理习题及练习

余弦定理习题及练习
另一边,由三角形全等的判定定理知,三角形是确定的,所以 解也是惟一的.
❖ 2.余弦定理的应用
❖ 利用余弦定理可以解决以下两类解三角形 的问题:
❖ 1已知三边,求三个角; ❖ 2已知两边和它们的夹角,可以求第三边,进
而求出其他角.
❖ 解:由于a+b+cb+c-a=3bc,
❖ 所以a2=b2+c2-bc,
❖ 又由余弦定理有a2=b2+c2-2bccosA,
❖ 又∵sinA=sinB+C ❖ =sinBcosC+cosBsinC且 ❖ sinA=2sinBcosC, ❖ ∴sinBcosC=cosBsinC, ❖ 即sinB-C=0,∴B=C, ❖ 又B+C=120°,∴B=C=60°. ❖ 故△ABC为等边三角形.
❖ 例 3 在 △ ABC 中 , 若 b2sin2C + c2sin2B = 2bccosBcosC,试判断三角形的形状.
❖ 分析 由题目可获取以下主要信息:
❖ ① 边 角 之 间 的 关 系 : b2sin2C + c2sin2B = 2bccosBcosC;
❖ ②确定三角形的形状.
❖ 解答本题先由正弦定理将边转化为角,然后 由三角恒等式进行化简,得出结论;也可先 由余弦定理及同角三角函数关系转化成边 之间的关系,然后由边的关系确定三角形形 状.
❖ 例4 在△ABC中,C=2A,a+c=10,cosA = ,求b.
❖ 点评 1本例首先由正弦定理结合倍角公式求出a、c,再利 用余弦定理求出b的值,通过正、余弦定理的完美结合求得 结果.
❖ 2正弦定理和余弦定理揭示的都是三角形的边角关系,要解 三角形,必须已知三角形的一边的长,对于两个定理,根据实 际情况可以选择地运用,也可以综合地运用,要注意以下关 系式的运用:

(完整版)余弦定理练习含答案

课时作业2余弦定理时间:45分钟 满分:100分课堂训练1.在△ABC 中,已知 a = 5, b =4,Z C = 120°.则 c 为()A. 41B. , 61C. 41 或 61D. , 21【答案】 B【解析】 c = ” a 2 + b 2 — 2abcosC=52 + 42 — 2X 5X 4X — 2 = 61.2.^ ABC 的内角A 、B 、C 的对边分别为a , b , c ,若a , b , c 满足 b 2 = ac ,且 c = 2a ,则 cosB =( )3B. 3C.【答案】 B【解析】 由b 2 = ac ,又c = 2a ,由余弦定理3. 在厶ABC 中,三个角A 、B 、C 的对边边长分别为a = 3、b = 4、c = 6,贝卩 bccosA + cacosB + abcosC =A*_ a 2 + c 2 — b 2 cosB = 2ac a 2+ 4a 2 — a x 2a 3 2a 2a — 4.b 2 +c 2— a 2bccosA + cacosB + abcosC = bc •c 2 + a 2 — b 2 a 2 + b 2 — c 2 1 1 1 ca -20c + ab • 2ab = 2(b 2 + c 2— a 2) + 2(c 2 + a 2 — b 2) + ^(a 2 + 1 61b 2—c 2) = 2(a 2 + b 2+ c 2)=亍4. 在△ ABC 中:(1) a = 1, b = 1,Z C = 120° 求 c ; (2) a = 3, b = 4, c = 37,求最大角; (3) a:b:c = 1: 3 :2,求/ A 、/ B 、/ C. 【分析】(1)直接利用余弦定理即可; (2) 在三角形中,大边对大角; (3) 可设三边为x , 3x,2x.【解析】(1)由余弦定理,得c 2 = a 2 + b 2— 2abcosC 1=12+ 12 — 2X 1 x 1 x (—刁=3,「・c = 3. (2) 显然/C 最大,a 2+b 2 —c 2 32+ 42— 37 1/cosC = —2ab — = 2x 3x 4 = — 2.AzC = 120°(3) 由于 a:b:c = 1: 3 :2, 可设 a = x , b = V3x , c = 2x(x>0).b 2+c 2 — a 2 3x 2 + 4/ — x 2 百由余弦定理,得 cosA = —2bc — = 2 • 3X 2X = ~2,/./\= 30 °【答案】 612 【解析】1同理cosB=2 cosC= O.「./3= 60 ,ZC= 90 .12,【规律方法】1. 本题为余弦定理的最基本应用,应在此基础上熟练地掌握余弦 定理的结构特征.2. 对于第(3)小题,根据已知条件,设出三边长,由余弦定理求 出/A ,进而求出其余两角,另外也可考虑用正弦定理求/ B ,但要注意讨论解的情况.课后作业一、选择题(每小题5分,共40分)ABC 中,下列结论:① a 2>b 2 + &,则厶ABC 为钝角三角形; ② a 2= b 2 + c 2 + be,则/ A 为 60° ③ a 2+ b 2>e 2,则△ ABC 为锐角三角形;④ 若/ A:Z B: / C = 1:2:3,贝卩 a:b:e = 1:2:3, 其中正确的个数为()A . 1B . 2 C. 3 D . 4【答案】 A•••么为钝角,正确;b 2 + e 2— a 2【解析】 ① eosA = b 2+ c 2—a 2 —2bc —<°,②eosA=—2be—12,a 2+b 2—c 2③ cosC = 2ab >0,•••©为锐角,但/ A 或/B 不一定为锐角,错误;④ Z A = 30 ° ZB = 60 ° ZC= 90 °a:b:c = 1: 3 :2,错误.故选 A.2.A ABC 的三内角A 、B 、C 所对边长分别为a 、b 、c ,设向量p =(a + c , b), q = (b — a , c — a).若 p// q ,则/ C 的大小为( )人nA~6nB.3nc.2【答案】 B【解析】 Tp = (a + c , b), q = (b — a , c — a)且 p 〃q , • .(a + c)(c — a) — b(b — a) = 0n zC= 3.冗 ,△ ABC 中,角A , B , C 的对边分别为a , b , c ,/ A =3 a=7, b = 1,则 c 等于()A . 2 2B . 3 C/ 3 + 1 D . 2 3【答案】 B【解析】 由余弦定理得,a 2= b 2 + c 2— 2bccosA ,即 a 2+ b 2— c 2= ab , 「•cosC = a 2+ b 2—c 2=_ab =1 2ab = 2ab =2.所以(7)= 1 + c2—2x 1 x e x cog.即c2—c—6= 0,解得c= 3 或c= —2(舍).故选 B.4.在不等边三角形ABC中,a为最大边,且a2vb2+ c2,则/ A 的取值范围是()A.(扌,n )B. (n, nC.(n,f)D. (0, n【答案】C【解析】因为a为最大边,所以/ A为最大角,即/A> ZB,/A>ZC,故2ZA>/B+/C.又因为Z B+ Z C= n-Z A,所以2ZA> n—Z A, 即Z Ag因为a2<b2+ c2,所以cosA=葺b—2>0,所以0<从W综上,n /A n3<zA<25. 在△ ABC 中,已知 a = 4,b= 6,Z C= 120° 则si nA 的值为() A语D「I?【答案】【解析】由余弦定理得c = a2+ b2—2ab cosC = 42+ 62—2X4X 6( —2)= 76,••c= 76.由正弦定理得轟=sinC,即蠢=sinLZQ ,4sin120。

高中数学:正弦定理和余弦定理练习及答案

高中数学:正弦定理和余弦定理练习一、选择题1.在△ABC 中,已知b =4,c =2,∠A =120°,则a 等于……………….( )A .2B .6C .2或6D .2 2.在△ABC 中,已知三边a 、b 、c 满足(a +b +c )(a +b -c )=3ab ,则∠C 等于…..( )A .15°B .30°C .45°D .60°3.已知在△ABC 中,sin A △sin B △sin C =3△5△7,那么这个三角形的最大角是…( )A .135°B .90°C .120°D .150°4.在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则△C 等于………………….( )A .90°B .120°C .60°D .120°或60°5.已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为………...( )A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C )B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C )C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sin C cos(A +B )6*.在△ABC 中,AB =5,BC =7,AC =8,则的值为……………………( )A .79B .69C .5D .-5二、填空题7.已知△ABC 中,A =60°,最大边和最小边是方程x 2-9x +8=0的两个正实数根,那么BC 边长是________.8.在△ABC 中,已知a =7,b =8,cos C =,则最大角的余弦值是________.3321213615+⋅14139.在△ABC 中,△C =60°,a 、b 、c 分别为△A 、△B 、△C 的对边,则=________.10*.在△ABC 中,若AB =,AC =5,且cos C =,则BC =________.三、解答题11.已知a =3,c =2,B =150°,求边b 的长及S △.12.在△ABC 中,cos2,c =5,求△ABC 的内切圆半径.13.已知△ABC 的三边长a 、b 、c 和面积S 满足S =a 2-(b -c )2,且b +c =8,求S 的最大值.ca b c b a +++5109310922=+=c c b A14*.已知a 、b 、c 为△ABC 的三边,且a 2-a -2b -2c =0,a +2b -2c +3=0,求这个三角形的最大内角.§1.1.2正弦定理和余弦定理参考答案一、选择题A D C D D D二、填空题7. 8.- 9.1 10.4或5三、解答题11.解:b 2=a 2+c 2-2ac cos B =(3)2+22-2·2·2·(-)=49. △ b =7,S △=ac sin B =×3×2×=.12.解:△ c =5,,△ b =4 又cos 2 △ cos A = 又cos A =△△ b 2+c 2-a 2=2b 2△ a 2+b 2=c 2 5771332321213212331092=+c c b c c b A A 22cos 12+=+=c b bc a c b 2222-+c b bc a c b =-+2222△ △ABC 是以角C 为直角的三角形.a ==3△ △ABC 的内切圆半径r =(b +a -c )=1.13.解:△ S =a 2-(b -c )2 又S =bc sin A △ bc sin A =a 2-(b -c )2△ (4-sin A )△ cos A =(4-sin A )△ sin A =4(1-cos A )△ 2sin △ tan △ sin A=△ c =b =4时,S 最大为 14.解:△ a 2-a -2b -2c =0,a +2b -2c +3=0由上述两式相加,相减可得c =(a 2+3),b =(a -3)(a +1)△ c -b =(a +3)△ a +3>0,△ c >bc -a =(a 2+3)-a =(a 2-4a +3)=(a -3)(a -1)△ b =(a -3)(a +1)>0,△ a >3△ (a -3)(a -1)>0△ c >a△ c 边最大,C 为最大角 22b c -212121412222=-+bc a c b 412sin 82cos 22A A A =2A 41=178)41(14122tan 12tan 222=+⨯=+A A17644)(174174sin 212=+⋅≤==c b S bcA bC S Θ17644141214141414141△ cos C =△ △ABC 的最大角C 为120°ab c b a 2222-+21)1)(3(412)3(161)1()3(16122222-=+-⋅+-+-+=a a a a a a a。

(完整版)正余弦定理习题加答案详解超级详细

正余弦定理高中数学组卷一.选择题(共9小题)1.(2016•太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.2.(2016•潍坊模拟)在△ABC中,sinA=sinB是△ABC为等腰三角形的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(2016•岳阳校级模拟)在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::14.(2016•大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形5.(2016•河西区一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且,则∠B=()A.B.C.D.6.(2016•宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C.D.或7.(2016•岳阳二模)△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=a,则=()A.2 B.2C.D.8.(2016•新余二模)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.角B的值为()A.B.C.D.9.(2016•江西模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.二.填空题(共7小题)10.(2016•上海二模)△ABC中,,BC=3,,则∠C=.11.(2016•丰台区一模)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于.12.(2016•焦作一模)在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于.13.(2016•潍坊一模)已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.14.(2016•抚顺一模)已知△ABC的周长为+1,且sinA+sinB=sinC,则边AB的长为.15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于.16.(2016•湖南校级模拟)设△ABC的内角A,B,C的对边分别为a,b,c.若,,则b=.三.解答题(共4小题)17.(2016•白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.18.(2016•安徽校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b ﹣2c)cosA=a﹣2acos2.(1)求角A的值;(2)若a=,则求b+c的取值范围.20.(2016•鹰潭一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a ﹣c(Ⅰ)求B;(Ⅱ)若△ABC的面积为,求b的取值范围.正余弦定理高中数学组卷参考答案与试题解析一.选择题(共9小题)1.(2016•太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.【解答】解:∵在锐角△ABC中,sinA=,S△ABC=,∴bcsinA=bc=,∴bc=3,①又a=2,A是锐角,∴cosA==,∴由余弦定理得:a2=b2+c2﹣2bccosA,即(b+c)2=a2+2bc(1+cosA)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选A.2.(2016•潍坊模拟)在△ABC中,sinA=sinB是△ABC为等腰三角形的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【解答】解:当sinA=sinB时,则有A=B,则△ABC为等腰三角形,故sinA=sinB是△ABC 为等腰三角形的充分条件,反之,当△ABC为等腰三角形时,不一定是A=B,若是A=C≠60时,则sinA≠sinB,故sinA=sinB是△ABC为等腰三角形的不必要条件.故选A.3.(2016•岳阳校级模拟)在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::1【解答】解:在△ABC中,若∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=π所以∠A=,∠B=,∠C=.由正弦定理可知:a:b:c=sin∠A:sin∠B:sin∠C=sin:sin:sin=1::2.故选:C.4.(2016•大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【解答】解:根据正弦定理可知∵bcosB=acosA,∴sinBcosB=sinAcosA∴sin2A=sin2B∴A=B,或2A+2B=180°即A+B=90°,即有△ABC为等腰或直角三角形.故选C.5.(2016•河西区一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且,则∠B=()A.B.C.D.【解答】解:已知等式利用正弦定理化简得:=,即c2﹣b2=ac﹣a2,∴a2+c2﹣b2=ac,∴cosB==,∵B为三角形的内角,∴B=.故选:C.6.(2016•宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C.D.或【解答】解:由正弦定理可得:sinA===∵a=<b=∴∴∠A=,故选:B.7.(2016•岳阳二模)△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=a,则=()A.2 B.2C.D.【解答】解:∵△ABC中,asinAsinB+bcos2A=a,∴根据正弦定理,得sin2AsinB+sinBcos2A=sinA,可得sinB(sin2A+cos2A)=sinA,∵sin2A+cos2A=1,∴sinB=sinA,得b=,可得=.故选:C.8.(2016•新余二模)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.角B的值为()A.B.C.D.【解答】解:由条件及正弦定理得sinBcosC+sinCcosB=﹣2sinAcosB.即sin(B+C)=﹣2sinAcosB.∵A+B+C=π,A>0∴sin(B+C)=sinA,又sinA≠0,∴cosB=﹣,而B∈(0,π),∴B=.故选:C.9.(2016•江西模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.【解答】解:∵A+B+C=π,A=2B,∴===.再结合正弦定理得:.故选:D.二.填空题(共7小题)10.(2016•上海二模)△ABC中,,BC=3,,则∠C=.【解答】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:11.(2016•丰台区一模)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于30°.【解答】解:利用正弦定理化简b=2asinB得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵A为锐角,∴A=30°.故答案为:30°12.(2016•焦作一模)在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于4.【解答】解:∵a=8,B=60°,C=75°,即A=45°,∴由正弦定理,得:b===4.故答案为:413.(2016•潍坊一模)已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.【解答】解:∵a•cosB+b•cosA=3c•cosC,∴利用余弦定理可得:a×+b×=3c×,整理可得:a2+b2﹣c2=,∴由余弦定理可得:cosC===.故答案为:.14.(2016•抚顺一模)已知△ABC的周长为+1,且sinA+sinB=sinC,则边AB的长为1.【解答】解:由题意及正弦定理,得:AB+BC+AC=+1.BC+AC=AB,两式相减,可得AB=1.故答案为:1.15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于1.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.(2016•湖南校级模拟)设△ABC的内角A,B,C的对边分别为a,b,c.若,,则b=2.【解答】解:B=π﹣A﹣C=,△ABC中,由正弦定理可得,∴b=2,故答案为:2.三.解答题(共4小题)17.(2016•白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.【解答】解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.18.(2016•安徽校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.【解答】解:(1)∵.∴由正弦定理,得,化简得cosA=,∴A=;(2)∵∠B=,∴C=π﹣A﹣B=,可知△ABC为等腰三角形,在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2AC•MCcos120°,即7=,解得b=2,∴△ABC的面积S=b2sinC==.19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b ﹣2c)cosA=a﹣2acos2.(1)求角A的值;(2)若a=,则求b+c的取值范围.【解答】解:(1)在锐角△ABC中,根据(b﹣2c)cosA=a﹣2acos2=a﹣2a•,利用正弦定理可得(sinB﹣2sinC)cosA=sinA(﹣cosB),即sinBcosA+cosBsinA=2sinCcosA,即sin(B+A)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,∴A=.(2)若a=,则由正弦定理可得==2,∴b+c=2(sinB+sinC)=2[sinB+sin(﹣B)]=3sinB+cosB=2sin(B+).由于,求得<B<,∴<B+<.∴sin(B+)∈(,1],∴b+c∈(3,2].20.(2016•鹰潭一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a ﹣c(Ⅰ)求B;(Ⅱ)若△ABC的面积为,求b的取值范围.【解答】解:(1)由正弦定理,得2sinBcosC=2sinA﹣sinC,﹣﹣﹣﹣(2分)在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC,∴2cosBsinC=sinC,又∵C是三角形的内角,可得sinC>0,∴2cosB=1,可得cosB=,∵B是三角形的内角,B∈(0,π),∴B=.﹣﹣﹣﹣﹣(6分)(2)∵S△ABC==,B=∴,解之得ac=4,﹣﹣﹣﹣(8分)由余弦定理,得b2=a2+c2﹣2accosB=a2+c2﹣ac≥2ac﹣ac=ac=4,(当且仅当a=c=2时,“=”成立)∴当且仅当a=c=2时,b的最小值为2.﹣﹣﹣﹣(12分)综上所述,边b的取值范围为[2,+∞)﹣﹣﹣﹣(13分)。

余弦定理练习题

余弦定理练习题余弦定理是三角学中的重要定理之一,它可以用来计算一个三角形的边长或角度。

在本文中,我们将提供一些余弦定理的练习题,以帮助读者更好地理解和应用这个定理。

题1:已知一边长和两个角度,求另两边长。

解:设三角形的边长分别为a,b,c,对应的角度为A,B,C。

根据余弦定理,我们有以下等式:a² = b² + c² - 2bc*cos(A)假设已知边长b=5,角度A=30°,角度B=45°。

我们可以将这些已知值代入上述等式,然后求解未知边长a和c。

a² = 5² + c² - 2*5*c*cos(30°)= 25 + c² - 10c*cos(30°)我们还需要知道cos(30°)的值,根据三角函数表可知,cos(30°) = √3/2。

将该值代入原等式,我们得到:a² = 25 + c² - 10c*(√3/2)= 25 + c² - 5√3c这是一个关于c的二次方程,我们可以将其化简为标准形式:c² - 5√3c + (25 - a²) = 0接下来,我们可以使用二次方程的求解方法,求解出c的值。

题2:已知两边长和对应角度,求另一边长的范围。

解:设三角形的边长分别为a,b,c,对应的角度为A,B,C。

根据余弦定理,我们有以下等式:c² = a² + b² - 2ab*cos(C)假设已知边长a=3,边长b=4,角度C为可变角度。

c² = 3² + 4² - 2*3*4*cos(C)= 9 + 16 - 24*cos(C)= 25 - 24*cos(C)在余弦定理中,边长的平方小于等于两边长之和的平方,即c² ≤ (a + b)²。

所以我们可以得到以下不等式:25 - 24*cos(C) ≤ (3 + 4)²25 - 24*cos(C) ≤ 49-24*cos(C) ≤ 24cos(C) ≥ -1根据余弦函数的定义域,-1 ≤ cos(C) ≤ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学余弦定理训练题
高二数学余弦定理训练题
高二数学余弦定理训练1.在△ABC中,已知a=4,b=6,C=120,则边c的值是()
A.8
B.217
C.62
D.219
解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-246cos 120=76,c=219.
2.在△ABC中,已知a=2,b=3,C=120,则sin A的值为()
A.5719
B.217
C.338
D.-5719
解析:选A.c2=a2+b2-2abcos C
=22+32-223cos 120=19.
c=19.
由asin A=csin C得sin A=5719.
3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.
解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a222a2a=78.
答案:78
4.在△ABC中,若B=60,2b=a+c,试判断△ABC的形状. 解:法一:根据余弦定理得
b2=a2+c2-2accos B.
∵B=60,2b=a+c,
(a+c2)2=a2+c2-2accos 60,
整理得(a-c)2=0,a=c.
△ABC是正三角形.
法二:根据正弦定理,
2b=a+c可转化为2sin B=sin A+sin C.
又∵B=60,A+C=120,
C=120-A,
2sin 60=sin A+sin(120-A),
整理得sin(A+30)=1,
A=60,C=60.
△ABC是正三角形.
课时训练
一、选择题
1.在△ABC中,符合余弦定理的是()
A.c2=a2+b2-2abcos C
B.c2=a2-b2-2bccos A
C.b2=a2-c2-2bccos A
D.cos C=a2+b2+c22ab
解析:选A.注意余弦定理形式,特别是正负号问题.
2.(2019年合肥检测)在△ABC中,若a=10,b=24,c=26,则
最大角的余弦值是()
A.1213
B.513
C.0
D.23
解析:选C.∵ca,c所对的角C为最大角,由余弦定理得cos C=a2+b2-c22ab=0.
3.已知△ABC的三边分别为2,3,4,则此三角形是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.不能确定
解析:选B.∵42=1622+32=13,边长为4的边所对的角是钝角,△ABC是钝角三角形.
4.在△ABC中,已知a2=b2+bc+c2,则角A为()
A. B.6
C.2
D.3或23
解析:选C.由已知得b2+c2-a2=-bc,
cos A=b2+c2-a22bc=-12,
又∵0
5.在△ABC中,下列关系式
①asin B=bsin A
②a=bcos C+ccos B
③a2+b2-c2=2abcos C
④b=csin A+asin C
一定成立的有()
A.1个
B.2个
C.3个
D.4个
解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A=sin Bcos C+sin Ccos B=sin(B+C),显然成立.对于④由正弦定理sin B=sin Csin A+sin Asin C=2sin Asin C,则不一定成立.
6.在△ABC中,已知b2=ac且c=2a,则cos B等于()
A.14
B.34
C.24
D.23
解析:选B.∵b2=ac,c=2a,
b2=2a2,
cos B=a2+c2-b22ac=a2+4a2-2a22a2a
=34.
二、填空题
7.在△ABC中,若A=120,AB=5,BC=7,则AC=________.
解析:由余弦定理,
得BC2=AB2+AC2-2ABACcosA,
即49=25+AC2-25AC(-12),
AC2+5AC-24=0.
AC=3或AC=-8(舍去).
答案:3
8.已知三角形的两边分别为4和5,它们的夹角的余弦值是
方程2x2+3x-2=0的根,则第三边长是________.
解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-24512=21,第三边长是21.
答案:21
9.在△ABC中,若sin A∶sin B∶sin C=5∶7∶8,则B的大小是________.
解析:由正弦定理,
得a∶b∶c=sin A∶sin B∶sin C=5∶7∶8.
不妨设a=5k,b=7k,c=8k,
则cos B=5k2+8k2-7k225k8k=12,
B=3.
答案:3
三、解答题
10.已知在△ABC中,cos A=35,a=4,b=3,求角C.
解:A为b,c的夹角,
由余弦定理得a2=b2+c2-2bccos A,
16=9+c2-635c,
整理得5c2-18c-35=0.
解得c=5或c=-75(舍).
由余弦定理得cos C=a2+b2-c22ab=16+9-25243=0,
∵0
11.在△ABC中,a、b、c分别是角A、B、C所对的边长,若
(a+b+c)(sin A+sin B-sin C)=3asin B,求C的大小.
解:由题意可知,
(a+b+c)(a+b-c)=3ab,
于是有a2+2ab+b2-c2=3ab,
即a2+b2-c22ab=12,
所以cos C=12,所以C=60.
12.在△ABC中,b=asin C,c=acos B,试判断△ABC的形状. 解:由余弦定理知cos B=a2+c2-b22ac,代入c=acos B,
得c=aa2+c2-b22ac,c2+b2=a2,
△ABC是以A为直角的直角三角形.
又∵b=asin C,b=aca,b=c,
△ABC也是等腰三角形.
综上所述,△ABC是等腰直角三角形.。

相关文档
最新文档