材料非线性有限元2
非线性结构有限元分析概论

一、线性问题的基本方程
由复杂结构受力平衡问题的虚功方程有:
v T dv vuT qvdv suT qsds u0T R0
vmu
T
••
u dv
v
Du
T
•
u
dv
(10-1)
上式左端为内力的虚功,右端为外力的功。
由于: u N u Bu C
式中 u 为单元体内的位移; u为节点位移; N 形函数阵;
t t t
T
S t t t
dvt
W t t
(10-18)
返回
其中:
W tt o
tv
u
T
q tt tv
中推荐采用BFGS法。
程序对几何非线性的考虑可采用完全的拉格朗
日公式或改进的拉格朗日公式。在非线性动态分析
中采用隐式时间积分(Newmarli法和Wilson- 法) 或显式时间积分(中心差分法)的方法。隐式时间
积分通常用来分析结构的振动问题,显式时间积分
主要用来分析波传布现象。
返回
第一节 有限元基本方程
解此方程也用隐式时间积分,显式时间积分或振形迭加
法求解。
返回
二、非线性问题的基本方程
对于非线性问题通常不能用一步直接求解方案,必须分成
若干步加载,按各个阶段不同的非线性性质逐步求解,即增量求
解方案。
1.增量形式的平衡方程:
已知设:0,△t,2△t‥‥的位移和应力(各载荷步的)
要求出:t+△t步时的位移和应力。
ov oe T o
o e dv
ov
o
T
t o
SdvtW t o来自ovoe Tt o
S
dv
非线性有限元法综述

非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
非线性有限元分析报告

非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
材料非线性

25
材料非线性
输出.k文件,求解
求解完成即可得到所需的文件
第二部分 材料非线性有限元方程
26
材料非线性
后处理 使用软件:lsprepost
第二部分
材料非线性有限元方程
27
材料非线性
后处理 利用lsprepost可以得出各种曲线(应力、应变、能量、节点的速 度、加速度、位移等),便于分析、得出结论
材料非线性
③创建属性(Property) 在创建属性时,需要 选择属性的类型(即 板、壳、梁等),然 后根据该车型参数, 输入各组件的厚度。
注:材料属性创建完成后, 需要将其赋与组件。
第二部分 材料非线性有限元方程
21
材料非线性
划分网格(2D>automesh)
网格的划分:size and bias:用户手动输入划分网格 所需的参数 batchmesh/QI optimize:批划分,根据 已有或重新定义的参数、标准文件,批 量划分网格
D’ B’
s
A
B *
D
O C
B’D’与 BD 形状相同
第一部分
材料本构关系
10
弹塑性材料本构
②随动强化模型
材料从塑性段的某点B(σ*)开始卸载,一旦降至2σs时,
B *
D
s
A
s
材料就开始反向屈服,以后按塑性加载段规律流动(沿
与AB段一样的硬化曲线A’B’流动,曲线AB与A’B’间 相 距始终为2σs)
网格划分完成后,需要对网格进行质量检查(qualityindex)
第二部分 材料非线性有限元方程
22
材料非线性
理论力学中的材料非线性如何建模?

理论力学中的材料非线性如何建模?在理论力学的研究领域中,材料非线性问题一直是一个具有挑战性的课题。
材料非线性指的是材料的应力应变关系不再是简单的线性关系,而是呈现出复杂的非线性特性。
这种非线性特性在许多工程和科学领域中都有着重要的影响,如航空航天、机械工程、土木工程等。
因此,如何准确地对材料非线性进行建模,成为了研究人员关注的焦点。
要理解材料非线性的建模,首先需要清楚材料非线性的类型。
常见的材料非线性包括弹塑性非线性、粘弹性非线性和超弹性非线性等。
弹塑性非线性是指材料在受力超过一定限度后,会产生永久性的变形,即塑性变形。
在弹塑性阶段,材料的应力应变关系不再是线性的,而是随着应变的增加,应力的增长逐渐减缓。
粘弹性非线性则考虑了材料的时间依赖性,即材料的力学性能会随着加载时间的变化而变化。
超弹性非线性常见于橡胶等高分子材料,其应变能函数具有复杂的形式。
在建模过程中,选择合适的本构模型是至关重要的一步。
本构模型是描述材料应力应变关系的数学表达式。
对于弹塑性非线性,常用的本构模型有经典的 J2 流动理论、DruckerPrager 模型等。
J2 流动理论基于 von Mises 屈服准则,能够较好地描述金属材料的弹塑性行为。
DruckerPrager 模型则适用于岩土类材料。
对于粘弹性非线性,常见的本构模型有 Maxwell 模型、Kelvin 模型和广义 Maxwell 模型等。
这些模型通过不同的元件组合来模拟材料的粘弹性特性。
超弹性非线性通常采用多项式形式或基于应变能密度函数的模型,如 NeoHookean 模型、MooneyRivlin 模型等。
确定了本构模型后,还需要考虑数值方法来求解相应的控制方程。
有限元法是目前应用最为广泛的数值方法之一。
在有限元分析中,将物体离散为有限个单元,通过节点连接起来。
对于每个单元,根据本构模型建立单元刚度矩阵,然后组装得到整体刚度矩阵。
通过求解整体平衡方程,可以得到物体的位移和应力分布。
钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇钢筋混凝土结构非线性有限元分析1钢筋混凝土结构是现代建筑结构中常用的一种结构形式。
由于钢筋混凝土结构自身的复杂性,非线性有限元分析在该结构的设计和施工过程中扮演着重要的角色。
非线性有限元分析是建立在解析的基础之上的,它可以更真实地模拟结构在实际载荷下的变形和破坏特性。
本文对钢筋混凝土结构的非线性有限元分析进行细致的介绍。
首先需要了解的是,钢筋混凝土结构存在多种非线性问题,如材料非线性、几何非线性和边界非线性等。
这些非线性问题极大地影响了结构的受力性能。
在结构的设计阶段,要对这些非线性因素进行充分分析。
钢筋混凝土结构在材料方面存在很多非线性问题,例如,混凝土的拉应力-应变曲线存在非线性变形,钢筋的本构关系存在弹塑性和损伤等等。
这些材料的非线性特性是钢筋混凝土结构变形和破坏的重要因素。
钢筋混凝土结构材料的非线性特性需要通过相关试验来获得,例如混凝土的轴向拉伸试验和抗压试验,钢筋的拉伸试验等,试验数据可以被用来建立预测结构非线性响应的有限元模型。
钢筋混凝土结构在几何方面存在很多非线性问题,例如,结构的非线性变形、结构的大变形效应、结构的初始应力状态等等。
钢筋混凝土结构几何的非线性效应可通过有限元分析明确地描述。
要对几何非线性进行分析,通常使用非线性有限元分析程序,其中包括基于条件梯度最优化技术的材料和几何非线性分析以及有限元法分析中使用的高级非线性模拟技术。
钢筋混凝土结构的边界条件也可能导致结构的非线性响应,例如基础的扰动、结构的支承和约束条件等。
所有这些条件都会导致模型在分析中出现非线性行为。
最后,非线性有限元分析可以简化结构设计的过程,并且可以更准确地分析结构的性能。
另外,分析过程中还可以考虑更多因素,例如局部的材料变形、应力浓度等等,让设计人员了解到结构的真实状态。
总之,钢筋混凝土结构非线性有限元分析是现代建筑结构中常用的一种结构分析方式,对于设计和施工都有着重要的意义。
有限元方法中材料非线性计算综述

6
(non-associated flow)。关联流动中使用了屈服函数 作为流动势 。关 联流动用来描述由位错诱发的塑性流动, ABAQUS® 中除铸铁外的一般金属与 Cam-Clay 土力学模型采用了关联流动的格式。非关联流动在处理摩擦型塑性流 动方面比关联流动更好,Mohr-Coulomb 和 Drucker-Prager 等模型使用了非关联 流动。关联流动集成的刚度矩阵 K ep 是对称矩阵,在材料不出现软化现象的时候
, H 0
(3)
5
其中 H H1 , H 2 , 为后继屈服条件中的内变量,表征了材料的强化、粘性等各种 复杂性质,其表达形式也可以非常复杂。塑性力学中常用的 Tressca 屈服准则和 Mises 屈服准则是 的两种特殊形式。Mises 屈服准则的应用较多一些,其屈 服与金属拉伸试验结果吻合得更好,而且其函数形式比较光滑。 Mises 屈服准则为:
2
Newton-Raphson 方法要求在给定 u 的时候计算的切线刚度 K ep , K ep f int u u 。
K ep 与材料的状态有关, K ep 的计算将在后文中提及,现在假定在给定 u 的情况下 K ep 已经算出。
(a) Newton-Raphson 法 图1
(b) Quasi-Newton 法
K ep 还是正定的,容易求解。而非关联流动集成的刚度矩阵是不对称的,容易导
致求解失败。 除了以上与率不相关的塑性流动外, 粘塑性计算中需要定义率相关的流动法 则,粘性流动率 通常是与应力相关的。常见的粘塑性流动法则有: Bingham 模型:
k , Mises 0 Mises Mises 0 0,
3
弹塑性力学与有限元-材料非线性问题和几何非线性问题

《弹塑性力学与有限元》
材料非线性问题和几何非线性问题 材料非线性问题
➢ 塑性力学的基本法则 (i) Prager运动硬化法则 规定加载曲面中心的移动是在表征现时应力状态的应力点的法线方向。
Prager运动法则一般说只能应用于九维应力空间。
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题 材料非线性问题
(3)按单元内各个积分点计算D的预测值
1)计算屈服函数值
,然后区分三种情况
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
材料非线性问题
➢ 弹塑性增量分析数值方法中的几个问题 弹塑性状态的决定和本构关系的积分 (i)
(ii) 若
,则该积分点为由弹性
进入塑性的过渡情况,计算比例因子m。
(iii)若
二. 应力的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
二. 应力的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形条件下的应变和应力的度量 一. 应变的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
几何非线性问题
➢ 大变形条件下的应变和应力的度量 二. 应力的度量 在大变形问题中,是从变形后的物体中截取出微元体建立平衡方 程和与之相等效的虚功原理,所以应从变形后的物体内截取单元 体定义应力张量--欧拉应力张量,tτij
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 增量切线刚度法 将荷载分成若干增量段
dσ DT dε
材料非线性有限元解法ቤተ መጻሕፍቲ ባይዱ
由于材料和结构的弹塑性行为与应力、 应变的历史有关,因此弹塑性问题的本构方程必 须用增量形式表示。同时这类问题与非线性弹性 问题数值求解的差别还在于塑性问题应力-应变 关系不再具有单调连续的显式。尽管在任意应变 下,应力都必须在当时的屈服面上或屈服面内, 但要具体地确定每一个应力分量的精确值是不可 能的,需用以下两点来确定: 1. 对于规定的应力值及加载方向,弹塑性切 线矩阵 DT Dep 已知; 2. 应力通过 dσ DT dε 积分求得。至于每一增量步的计算, 可以采用N-R法或初应力法等。