纳米材料的危害知识交流

合集下载

纳米材料对环境的影响及其治理措施研究

纳米材料对环境的影响及其治理措施研究

纳米材料对环境的影响及其治理措施研究引言:随着纳米技术的快速发展,纳米材料在各个领域中得到了广泛应用,如电子、医药、能源等。

然而,虽然纳米材料具有许多出色的性能和应用潜力,但也引发了对其对环境和人类健康的潜在风险的担忧。

因此,研究纳米材料对环境的影响及其治理措施具有重要意义。

1. 纳米材料对环境的影响1.1 纳米材料的释放与传输纳米颗粒比传统材料更容易释放到环境中,并且由于其小尺寸和大表面积,纳米材料的传输性能也更好。

例如,在生产过程中,纳米材料可能会通过废水排放或空气散发进入环境中,甚至在使用后的废弃物中存在。

这些纳米材料的传输可能会导致其积累在环境中的生物群体中,从而对生态系统产生影响。

1.2 纳米材料的毒性效应纳米材料的小尺寸使其具有与体积相同的大尺寸材料不同的生物活性和毒性。

纳米颗粒可以通过细胞膜进入细胞内部,干扰细胞的正常生物过程,并对生物体的健康产生潜在的危害。

根据研究,一些纳米材料可能导致细胞损伤、遗传毒性、炎症反应等不良效应,甚至对人类造成慢性毒性。

2. 纳米材料治理措施2.1 环境监测与评估为了有效治理纳米材料对环境的影响,首先需要建立全面的环境监测与评估体系。

这包括对纳米材料在环境中的释放、传输和积累进行实时监测,以及对纳米材料的毒性效应进行评估。

通过了解纳米材料在环境中的行为和潜在的风险,可以有针对性地制定治理措施。

2.2 纳米材料的合理设计与生产在纳米材料的合理设计和生产过程中,需要充分考虑纳米材料的环境影响。

制定符合环保要求的设计准则,如使用可再生资源、减少对有害原材料的依赖等,以确保纳米材料的生产过程尽可能地减少对环境的负面影响。

2.3 纳米材料的处理与回收利用对于已经释放到环境中的纳米材料,合理的处理和回收利用是治理的重要措施之一。

开发高效的纳米材料处理技术,如通过过滤、沉淀、离心等方法将纳米材料从废水中去除,并进行安全处理或回收利用,以减少对环境的影响。

2.4 法规与政策的制定和实施有效的治理纳米材料对环境的影响需要建立健全的法规与政策框架。

纳米材料的危害

纳米材料的危害

纳米材料的危害
纳米材料作为一种新型材料,在科技领域得到了广泛的应用,但是随之而来的危害也引起了人们的关注。

纳米材料的危害主要表现在环境污染、生物毒性和人体健康等方面。

首先,纳米材料对环境造成的污染是不可忽视的。

由于纳米材料具有微小的体积和高比表面积,一旦进入环境中,很容易对土壤、水体和大气造成污染。

特别是一些金属纳米材料,如纳米银、纳米氧化铁等,它们对环境的影响更为严重,可能对生态系统造成破坏,影响生物多样性,甚至对人类健康造成潜在威胁。

其次,纳米材料的生物毒性也是一个备受关注的问题。

许多研究表明,一些纳米材料对生物体具有一定的毒性,可能导致细胞损伤、基因突变甚至癌症等严重后果。

特别是一些纳米颗粒,由于其微小的尺寸和特殊的表面性质,可能更容易穿透细胞膜,进入细胞内部,对细胞结构和功能产生影响,从而引发生物毒性反应。

此外,纳米材料对人体健康的影响也备受关注。

随着纳米材料在生产和生活中的广泛应用,人们接触到纳米材料的机会也越来越多。

然而,一些研究表明,长期接触纳米材料可能对人体健康产生潜在的危害,如呼吸道疾病、免疫系统紊乱、神经系统损伤等。

尤其是一些工作在纳米材料生产和加工领域的人员,由于长期接触纳米材料,可能面临更高的健康风险。

因此,对纳米材料的危害问题,我们应该高度重视。

在推动纳米材料应用的同时,也要加强对纳米材料的环境影响和生物毒性的研究,制定相应的安全规范和管理措施,以减少其对环境和人类健康的潜在危害。

只有在科学合理地利用纳米材料的同时,才能更好地保护环境和人类健康,实现可持续发展的目标。

[讲解]2纳米科技潜在的危害

[讲解]2纳米科技潜在的危害

二、纳米科技潜在的危害当人们陶醉在纳米材料的许多新奇功能和它将给我们生活带来的美好前景时,医学界出于特殊的职业敏感性,开始冷静地考虑纳米料将对人类健康产生的深远影响。

事实上,纳米技术还将在生态环境、经济、政治、伦理道德等等方面引发诸多问题,从而在社会各个层面产生不可估量的后果,影响遍及农业、医疗、制药、计算机、国防甚至人类的文明———它将取代基因技术成为最受争议的应用技术。

1.纳米技术对人类健康和环境的潜在危害纳米材料作为一种人工制造的新的物质形态, 人类对它的认识只能说刚刚开始。

目前学术界大多重视发展纳米材料制备科学和工程研究, 扩大研究对象以及发现神奇功能和新产品的开发, 较少注意到纳米材料的特殊性对机体产生的潜在危害。

首先, 纳米材料广泛的应用性使研究者、生产者和消费者今后将有许多机会接触纳米材料,而纳米材料的超微性提醒我们, 应该重新认识和理解人体对颗粒性物质的吸收过程和它可能引起的生物学影响。

我们知道, 皮肤是人类阻挡外源性物质的重要屏障系统, 它能有效地阻止宏观颗粒物经皮肤进入体内。

现在人们已经能够生产粒径只有头发丝直径1/ 7000 的金属纳米材料和粒径为0.15nm的纳米碳。

粒径如此之小的纳米粒子,完全有可能通过简单扩散或渗透形式经过肺泡和皮肤进入体内。

纳米材料的另一个显著特点是表面积大, 粒子表面的原子数多, 周围缺少相邻原子, 存在许多空键, 所以具有很强的吸附能力和很高的化学活性。

与此同时, 科学家发现药物制剂的粒径变小后, 其毒副作用也得到不同程度的增大。

常规药物被纳米颗粒物装载后, 急性毒性、骨髓毒性、细胞毒性、心脏毒性和肾毒性明显增强, 而难溶性药物的消化道吸收率和药效与药物的粒径呈负相关关系, 是人们已知的常识。

纳米微粒是飘浮和运动的, 它遵循布朗运动规律进入食品和人体, 进而进入人体细胞内。

产品成分中若含有氧化硅、氧化钛、氧化锰或者银, 这些成分在人体内将“如同幽灵一样飘浮”, 如果潜伏在细胞内就有可能诱发细胞病变, 进而可能导致癌症。

纳米材料的危害

纳米材料的危害

从环境安全的角度,我们必须对纳米改性的产品,特别与环境关系密切的产品进行环境安全风险评估,提高纳米改性产品使用和进入市场的门槛。
从而在光学、热学、电学、磁学、力学以及化学方面显示出许多奇异的特性。
橡胶
纳米Al2O3粒子加入橡纳胶米中可颗提粒高橡物胶对的介生电物性和的耐毒磨性性。主要包括以下4个方面
9、 NP 最终导致生物毒性效应
着极手易建 与立DN纳A米中尺的度核有苷毒(稳化定2学)结物合纳质并的米使数D颗据NA库粒,变物进性一而具步可有明能确丧高划失活分功纳能性米;,尺度所有产毒化生学的物质活的性范围氧,(以有R利OS于)重点一防方范这面些易物质损在伤生产细和胞应用膜过,程中对环境安全造成的危害
(3)对于一些能溶解出金属离子的纳米颗粒物(如纳米氧化铜、硒化镉等),溶解出来的金属离子也在一定程度上增强了纳米颗粒物的毒性,如图所示。
4、NP 通过细胞内陷、膜通道及细胞吞噬作用等进入细胞内部;
纳米材料的生物毒性效应 而人们习惯于把组成或晶粒结构控制在100纳米以下的长度尺寸称为纳米材料。
纳米材料的研究,开发和应用日益广泛,已经应用到涂料,化妆品,催化剂,食品包装,纺织,医学等许多领域,被科学家誉为:“21 世纪最有前途的材料”。
1, 大气与地表间的交换; 2, 大气输送; 3, 土壤中迁移扩散/渗透; 4, 土壤中转化; 5, 陆生生物 吸收富集; 6, 地下水中迁移/转化; 7, 地表径流;8, 水体与土壤间交换; 9, 水中分散与悬浮; 10, 水中团聚与沉淀;11, 水体中转化; 12, 水生生物吸收富集; 13, 人体暴露
纳米材料由于具有极其微小的尺寸而具有普通粉体材 料所不具备的特殊性: 如小尺寸效应;表面效应;量 子尺寸效应以及宏观量子隧道效应。从而在光学、热 学、电学、磁学、力学以及化学方面显示出许多奇异 的特性。纳米材料的研究,开发和应用日益广泛,已 经应用到涂料,化妆品,催化剂,食品包装,纺织, 医学等许多领域,被科学家誉为:“21 世纪最有前途 的材料”。

纳米技术对环境和人类健康的影响

纳米技术对环境和人类健康的影响

纳米技术对环境和人类健康的影响近年来,随着科技的飞速发展,人们对纳米技术的研究和应用越来越深入。

纳米技术是指制造、加工和操作尺度为纳米级别(10的-9次方米)的物质和器件的技术。

由于其具有超小尺寸、巨大比表面积、量子效应和量子限制等特殊性质,纳米技术被广泛应用于医药、电子、材料、能源等领域,并被誉为“21世纪的科技革命”。

然而,随着纳米技术的不断发展,人们越来越关注其对环境和人类健康的影响。

在此,我们将对纳米技术对环境和人类健康的影响进行分析和探讨。

一、纳米技术对环境的影响1. 污染问题纳米颗粒在制造和应用过程中容易散发出有害物质,如金属离子、二氧化硅、二氧化钛等,这些物质会在大气、土壤、水体等环境中累积和富集,对生态环境和人类健康造成潜在危害。

同时,纳米颗粒还具有高速扩散能力、长时间存在性和毒性等特殊性质,这些都增加了其污染环境的难度和危险性。

2. 生态影响纳米颗粒对生物体的影响常常因其微小尺寸、巨大比表面积等特殊性质而变得复杂和难以预测。

近年来的研究表明,纳米颗粒可能对海洋生态系统中的微生物、浮游生物、底栖生物等造成影响,影响其生长、繁殖和生态功能。

纳米颗粒还可能与植物和动物相互作用,从而影响其生长和保健等生态问题。

3. 资源浪费纳米技术的加工和制造需要消耗大量的能源和化学物质,这不仅导致资源浪费和环境压力,还会对环境和人类健康造成负面影响。

同时,纳米技术的废弃和回收处理也面临难题,如何有效减少纳米颗粒的排放和处理已成为亟待解决的问题。

二、纳米技术对人类健康的影响1. 毒性和生物影响纳米颗粒具有与其体积和成分无关的极强毒性、很强的生物可吸入性和生物可摄入性等特性,其能够直接进入人体内部并与细胞、组织、器官等相互作用,从而对人体健康造成影响。

纳米颗粒可以引起肺部和呼吸系统等多种疾病,并可能与神经系统、心血管系统、生殖系统等相互作用,从而影响人类健康。

2. 填料和辅助材料问题纳米技术被广泛应用于医药、食品、化妆品等领域,其中纳米凝胶、纳米药物、纳米保健品等被用作人类健康保健的缓解或治疗方式。

纳米材料的毒性和生态风险评价

纳米材料的毒性和生态风险评价

纳米材料的毒性和生态风险评价纳米科技是当今科技领域最热门的话题之一,其应用领域广泛,如电子、制药、食品、化妆品等。

然而,纳米材料的毒性和生态风险始终是科学家关注的问题。

本文将从不同角度来探讨纳米材料的毒性和生态风险评价。

一、纳米材料的毒性纳米材料相比传统材料有着独特的物理、化学性质,其表面积大、活性高、穿透性强、易促成有毒物质的吸附等特点引起了人们对其毒性的重视。

纳米颗粒对人体、动物和环境的毒性主要和粒径、形状、表面活性、化学成分、溶解度等因素有关。

以下是一些目前已知的纳米材料毒性方面的研究:1、硅纳米管的毒性硅纳米管具有良好的机械强度和热导性能,是一种重要的纳米材料。

但是,在体内和体外的实验中发现,硅纳米管会引起免疫细胞和红细胞的损伤,同时也会对人体器官造成一定的毒性。

2、金纳米粒子的毒性金纳米粒子具有很好的光学、电学和催化性能,在应用中具有广泛用途。

研究发现,金纳米粒子在浓度较高的情况下会对肝细胞、肺细胞和肾细胞产生毒性作用,同时还会导致细胞内氧化还原平衡失调等。

3、氧化铁纳米粒子的毒性氧化铁纳米粒子是一种常用的纳米材料,广泛用于磁性材料、药物输送等方面。

但是,研究发现氧化铁纳米粒子对大肠杆菌等微生物有一定的毒性作用,并能使土壤微生物群落结构发生变化。

二、纳米材料的生态风险评价纳米技术的发展对环境和生态造成的影响也是人们关注的问题之一。

纳米材料可能对陆地、水生态系统和生物多样性产生负面影响,因此生态风险评价将是纳米材料应用的关键问题之一。

以下是一些目前已知的纳米材料生态风险的研究:1、纳米银的生态风险纳米银是目前应用最广泛的纳米材料之一,广泛应用于消毒、制备抗菌材料等领域。

但是,纳米银对水生生物和植物造成的毒性和生态风险较大。

研究发现,纳米银会影响水生生物的生长和繁殖,同时也会削弱植物的生长能力。

2、氧化石墨烯的生态风险氧化石墨烯是一种具有广泛应用前景的纳米材料,其应用涵盖从材料领域到医学领域。

纳米材料的毒理作用及其机理

纳米材料的毒理作用及其机理

纳米材料的毒理作用及其机理近年来,纳米技术的快速发展已经使得纳米材料的应用越来越广泛。

然而,作为一种新型材料,纳米材料的毒性问题也成为人们关注的焦点。

对于纳米材料的毒性作用及其机理,已经有了较为深入的研究。

一、纳米材料的毒性作用纳米材料具有独特的化学、物理和生物特性,这些特性决定了其可能对生物体产生的毒性作用。

纳米材料的毒性作用主要包括以下几个方面:1. 细胞膜损伤纳米材料的小尺寸和高比表面积使其与细胞膜接触面积增大,从而导致细胞膜的物理或化学损伤。

此外,纳米材料的表面电荷、疏水性和亲水性等特性也会影响其与细胞膜的相互作用。

2. 细胞内氧化损伤纳米材料可以被细胞摄入,进入细胞内部。

纳米材料的大量存在会增加细胞内的有毒氧自由基及其他反应性氧物质的生成,从而对细胞内的各种生物大分子,如蛋白质、核酸和膜脂等,造成氧化损伤。

3. 基因突变和DNA损伤纳米材料与DNA分子的相互作用也是产生毒性作用的原因之一。

当纳米材料与DNA结合后,会形成 DNA-纳米材料复合体,引发DNA 修改和基因突变等现象,从而影响甚至破坏生物体的生长和发育。

二、纳米材料的毒性机理1. 氧化损伤纳米材料的氧化作用是纳米材料导致毒性机理中最常见和重要的一种,其主要原理是由于其小尺寸和巨大的表面积,纳米材料在空气和水中易吸附和氧化,从而释放出反应性物质,如活性氧自由基等,导致生物体细胞膜和其他生物大分子损伤。

2. 积累和输送纳米材料的毒性机理还包括其积累与输送。

一些纳米材料显然不能被生物体有效清除,会在体内积累,导致组织或器官结构紊乱。

此外,纳米材料的具有特殊的输送功能,可以作为潜在的药物载体,但也可能通过输送途径进入人体造成不良影响。

3. 炎症反应另外,纳米材料的毒性机制还包括诱导体内炎症反应。

许多纳米材料可以激活免疫细胞产生炎症性细胞因子,如TNF-α、IL-1、IL-6等,从而诱导炎症反应,破坏正常组织和器官的结构和功能。

三、防范纳米材料的毒性作用的策略为有效预防纳米材料的毒性作用,应开展详细的评估,并针对其特性和用途制定个性化的防范策略。

纳米材料的安全问题及对策

纳米材料的安全问题及对策
• 因此,对于纳米材料的安全性评价逐渐被认识和重视。
第3页/共28页
1.纳米材料的生物安全性
纳米材料安全性及研究意义: 超微颗粒在理化性质发生巨变的同时,其生物学效应
的性质和强度也可能发生质的变化。在空气中,以气溶 胶的形式存在的纳米颗粒可长期漂浮,能成为多种有机 污染物广泛传播的重要载体。在水中,纳米颗粒很难沉 降。在土壤中,它能畅通无阻地转移,也能被蚯蚓、细 菌吸收和进入食物链。
第10页/共28页
2.纳米材料的生态环境安全性
生物吸收(bio-uptake)、生物蓄积(bioaccumulation)和生物 降解(biodegrade)
细胞可以通过内吞作用(endocytosis)、膜渗透作用 (membrane penetration)以及跨膜离子通道(transmembrane channels)几种途径吸收纳米颗粒。纳米材料一旦被生物吸收, 可能会在生物体内积累,并通过食物链进一步富集,使得较 高级生物体中纳米材料的含量达到物理环境中的数百倍、数 千倍甚至数百万倍。生物蓄积依赖于纳米材料的表面特性, 这种特性决定了纳米材料可能被脂肪组织、骨或体内蛋白吸 收。
环境中常见的微界面体系非常多,如水体中的悬浮物/ 地面水、大气中的烟尘/空气、土壤中的矿物颗粒/空气、植 物根系/土壤水、活性污泥/生活污水及超滤膜/工业废水等。 微界面是污染物迁移转化过程中的重要载体和途径,几乎 所有在溶液中进行的反应均可在微界面上进行,而且界面 往往具有催化反应的作用。
微界面过程与纳米污染物密切相关,对纳米材料的环境 生态行为有着非常重要的影第1响5页。/共28页
2.纳米材料的生态环境安全性
纳米材料对植物的影响
铝纳米颗粒的植物毒性。
研究者用根延长试验发现未包被的铝纳米颗粒可以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.纳米材料的生物毒性:主要体现在对呼吸系统( 特别是动物肺部损 伤) 及免疫系统的干扰, 微观上主要是影响细胞表面的功能结构,进 而引起细胞整体代谢紊乱, 诱导细胞的凋亡或坏死。
纳米材料的环境行为
纳米材料进入环境后, 类似其他环境污染物, 也会在大气圈、水圈、土壤圈和生命系统中进行 复杂的迁移/转化过程。
二、纳米材料在精细化工中的应用
1、粘合剂和密封胶
国外已将纳米材料如纳米SiO2作为添加剂加入到粘合剂和密 封胶中,使粘合剂的粘结效果和密封胶的密封性都大大提高。 其作用机理是在纳米SiO2的表面包覆一层有机材料,使之具 有亲水性,将它添加到密封胶中很快形成一种硅石结构,即 纳米SiO2形成网络结构掏胶体流动,固体速度加快,提高粘 接效果,由于颗粒尺寸小,更增加了胶的密封性。
四、纳米材料危害防范措施
1.纳米材料流转体系认知 2.纳米材料危险度体系构建 2.1建立纳米尺度有毒化学物质数据库
着手建立纳米尺度有毒化学物质的数据库,进一步明确划分纳米尺度有毒化学物质的 范围,以有利于重点防范这些物质在生产和应用过程中对环境安全造成的危害 2.2纳米改性升级产品环境安全风险评估
(4)进入到细胞内的纳米颗粒物能与细胞内的蛋白质及其DNA相互作用而使之丧失某 种特定的功能。
1.C60 的生物毒性效应 越来越多的研究表明,C60 对细胞、微生物、水生生物、陆生动物等具有毒性效应。毒 性研究表明,C60 能进入人类巨噬细胞的细胞质、溶酶体和细胞核,2.2 μg/L 时就 能破坏人类淋巴细胞的DNA, 具有遗传毒性;分子动态模拟研究表明, 液体中C60 极易与DNA 中的核苷稳定结合并使DNA 变性而可能丧失功能;C60 粉体本身一般不具 有抑菌作用,但其稳定悬浮液(一般以团聚体nC60 形式存在)会产生毒性效应 2.碳纳米管的生物效应
1, 大气与地表间的交换; 2, 大气输送; 3, 土壤中迁移扩散/渗透; 4, 土壤中转化; 5, 陆生生物 吸收富集; 6, 地下水中迁移/转化; 7, 地表径流;8, 水体与土壤间交换; 9, 水中分散与悬浮; 10, 水中团聚与沉淀;11, 水体中转化; 12, 水生生物吸收富集; 13, 人体暴露
纳米材料的危害
纳米材料由于具有极其微小的尺寸而具有普通粉体材 料所不具备的特殊性: 如小尺寸效应;表面效应;量 子尺寸效应以及宏观量子隧道效应。从而在光学、热 学、电学、磁学、力学以及化学方面显示出许多奇异 的特性。纳米材料的研究,开发和应用日益广泛,已 经应用到涂料,化妆品,催化剂,食品包装,纺织, 医学等许多领域,被科学家誉为:“21 世纪最有前途 的材料”。
2、涂料
在各类涂料中添加纳米SiO2可使其抗老化性能、光洁度及 强度成倍地提高,涂料的质量和档次自然升级。因纳米 SiO2是一种抗紫外线辐射材料(即抗老化),加之其极微 小颗粒的比表面积大,能在涂料干燥时很快形成网络结构, 同时增加涂料的强度和光洁度。
3、各种助剂
橡胶 纳米Al2O3粒子加入橡胶中可提高橡胶的介电性和耐磨性。纳米SiO2可以作为 抗紫外辐射、红外反射、高介电绝缘橡胶的填料。添加纳米SiO2的橡胶,弹性、 耐磨性都会明显优于常规的白炭黑作填料的橡胶。 塑料 纳米SiO2对塑料不仅起补强作用,而且具有许多新的特性。利用它透光、粒度 小,可使塑料变得更致密,可使塑料薄膜的透明度、强度和韧性、防水性能大 大提高。在有机玻璃生产时加入纳米SiO2可使有机玻璃抗紫外线辐射而达到抗 老化的目的;在有机玻璃中添加纳米Al2O3既不影响透明度又提高了高温冲击 韧性。
从环境安全的角度,我们必须对纳米改性的产品,特别与环境关系密切的产品进行环 境安全风险评估,提高纳米改性产品使用和进入市场的门槛。 2.3科学生产使用纳米材料
2.3.1纳米材料分级处理 以环境安全为导向,以循环经济为准则,对纳米材料进行分 级处理。
纳米材料在生物体中的作用机理
图中黑圆点代表纳米材料(NP). 1、 NP 产生活性氧物质(ROS); 2、一些NP 能释放金属离子等有毒物质; 3、 NP 附着在细胞表面; 4、NP 通过细胞内陷、膜通道及细胞吞噬作 用等进入细胞内部; 5、 NP产生的ROS 和有毒物质破坏细胞膜; 6、NP 通过破坏的细胞膜处进入细胞; 7、 NP 对细胞产生氧化压力并破坏细胞器等; 8、 细胞内含物外泄到胞外; 9、 NP 最终导致生物毒性效应
碳纳米管是一种完全人造的一维结构的纳米材料, 在 1991 年由 limijia 发现. 未 被处理过的碳纳米管非常轻, 可以通过空气到达人的肺部。2.金来自及氧化物纳米材料的生物毒性效应
金属及氧化物纳米材料一般都具有细胞毒性,毒性大小决定于纳米材料的浓度、形状、表面电荷性
质等。 二氧化钛的生物效应 纳米 TiO2由于产量高、应用广泛, 因而对其毒性研究也较多. 近年来关于纳米 TiO2生物效应的研 究。
4、化妆品
纳米微粒与树脂结合用于紫外线吸收,如防晒油、化妆品 中普遍加入纳米微粒。如纳米TiO2、SiO2等。一定粒度的 锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻, 添加在化妆品中,可使化妆品的性能得到提高。
三、存在的危害
1.纳米材料的环境行为:纳米材料在生产、使用、废弃过程中, 必然 会通过各种途径以“三废”形式进入环境, 并造成一定的生态效应和 人群暴露。
纳米材料的生物毒性效应
纳米颗粒物对生物的毒性主要包括以下4个方面 (1)具有纳米尺度的纳米颗粒物容易穿过细胞膜进入细胞(神经细胞、肝细 胞等)内,损伤细胞膜以及干扰细胞内的生理活性。 (2)纳米颗粒物具有高活性,所产生的活性氧(ROS)一方面易损伤细胞膜, 破坏细胞的通透性,阻碍细胞核外界的物质交换,造成蛋白质变性等,另一方 面纳米颗粒物产生的ROS能激发细胞内氧化激通路,从而导致细胞内的损伤。 (3)对于一些能溶解出金属离子的纳米颗粒物(如纳米氧化铜、硒化镉等), 溶解出来的金属离子也在一定程度上增强了纳米颗粒物的毒性,如图所示。
相关文档
最新文档