正电荷电势能和电势的关系
电势能和电势

第4节电势能和电势.要点一判断电势高低的方法电场具有力的性质和能的性质,描述电场的物理量有电势、电势能、静电力、静电力做功等,为了更好地描述电场,还有电场线、等势面等概念,可以从多个角度判断电势高低.1.在正电荷产生的电场中,离电荷越近电势越高,在负电荷产生的电场中,离电荷越近,电势越低.2.电势的正负.若以无穷远处电势为零,则正点电荷周围各点电势为正,负点电荷周围各点电势为负.3.利用电场线判断电势高低.沿电场线的方向电势越来越低.4.根据只在静电力作用下电荷的移动情况来判断.只在静电力作用下,电荷由静止开始移动,正电荷总是由电势高的点移向电势低的点;负电荷总是由电势低的点移向电势高的点.但它们都是由电势能高的点移向电势能低的点.要点二理解等势面及其与电场线的关系1.电场线总是与等势面垂直的(因为如果电场线与等势面不垂直,电场在等势面上就有分量,在等势面上移动电荷,静电力就会做功),因此,电荷沿电场线移动,静电力必定做功,而电荷沿等势面移动,静电力必定不做功.2.在同一电场中,等差等势面的疏密也反映了电场的强弱,等势面密处,电场线密,电场也强,反之则弱.3.已知等势面,可以画出电场线;已知电场线,也可以画出等势面.4.电场线反映了电场的分布情况,它是一簇带箭头的不闭合的有向曲线,而等势面是一系列的电势相等的点构成的面,可以是封闭的,也可以是不封闭的.要点三等势面的特点和应用1.特点(1)在同一等势面内任意两点间移动电荷时,静电力不做功.(2)在空间没有电荷的地方两等势面不相交.(3)电场线总是和等势面垂直,且从电势较高的等势面指向电势较低的等势面.(4)在电场线密集的地方,等差等势面密集.在电场线稀疏的地方,等差等势面稀疏.(5)等势面是虚拟的,为描述电场的性质而假想的面.2.应用(1)由等势面可以判断电场中各点电势的高低及差别.(2)由等势面可以判断电荷在电场中移动时静电力做功的情况.(3)由于等势面和电场线垂直,已知等势面的形状分布,可以绘制电场线,从而确定电场大体分布.(4)由等差等势面的疏密,可以定性地确定某点场强的大小(1)点电荷电场:等势面是以点电荷为球心的一簇球面,越向外越稀疏,如图1-4-5所示.图1-4-5(2)等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图1-4-6所示.在从正电荷到负电荷的连线上电势逐渐降低,φA >φA ′;在中垂线上φB =φB ′.图1-4-6(3)等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA ′线上O 点电势最低;在中垂线上O 点电势最高,向两侧电势逐渐降低,A 、A ′和B 、B ′对称等势.图1-4-7(4)匀强电场:等势面是与电场线垂直、间隔相等、相互平行的一簇平面,如图1-4-8所示.图1-4-8一、电势能【例1】下列关于电荷的电势能的说法正确的是()A.电荷在电场强度大的地方,电势能一定大B.电荷在电场强度为零的地方,电势能一定为零C.只在静电力的作用下,电荷的电势能一定减少D.只在静电力的作用下,电荷的电势能可能增加,也可能减少二、判断电势的高低【例2】在静电场中,把一个电荷量为q=2.0×10-5 C的负电荷由M点移到N点,静电力做功6.0×10-4 J,由N点移到P点,静电力做负功1.0×10-3 J,则M、N、P三点电势高低关________.1.有一电场的电场线如图1-4-9所示,图1-4-9电场中A、B两点电场强度的大小和电势分别用E A、E B和φA、φB表示,则()A.E A>E B,φA>φBB.E A>E B,φA<φBC.E A<E B,φA>φBD.E A<E B,φA<φB2.有关电场,下列说法正确的是()A.某点的电场强度大,该点的电势一定高B.某点的电势高,检验电荷在该点的电势能一定大C.某点的场强为零,检验电荷在该点的电势能一定为零D.某点的电势为零,检验电荷在该点的电势能一定为零3.将一个电荷量为-2×10-8 C的点电荷,从零电势点S移到M点要克服静电力做功4×10-8 J,则M点电势φ=________ V.若将该电荷从M点移到N点,静电力做功14×10-8 J,则MN点电势φN=________ V,MN两点间的电势差U MN=________ V.4.如图1-4-10所示.图1-4-10(1)在图甲中,若规定E p A=0,则E p B________0(填“>”“=”或“<”).试分析静电力做功情况及相应的电势能变化情况.题型一静电力做功和电势能变化之间的关系如图1所示,图1把电荷量为-5×10-9 C的电荷,从电场中的A点移到B点,其电势能__________(选填“增加”、“减少”或“不变”);若A点的电势U A=15 V,B点的电势U B=10 V,则此过程中静电力做的功为________ J.拓展探究如果把该电荷从B点移动到A点,电势能怎么变化?静电力做功的数值是多少?如果是一个正电荷从B点移动到A点,正电荷的带电荷量是5×10-9 C,电势能怎么变化?静电力做功如何?电场中的功能关系:①静电力做功是电荷电势能变化的量度,具体来讲,静电力对电荷做正功时,电荷的电势能减少;静电力对电荷做负功时,电荷的电势能增加,并且,电势能增加或减少的数值等于静电力做功的数值.②电荷仅受静电力作用时,电荷的电势能与动能之和守恒.③电荷仅受静电力和重力作用时,电荷的电势能与机械能之和守恒.题型二电场中的功能关系空间存在竖直向上的匀强电场,图2质量为m的带正电的微粒水平射入电场中,微粒的运动轨迹如图2所示,在相等的时间间隔内()A.重力做的功相等B.静电力做的功相等C.静电力做的功大于重力做的功D.静电力做的功小于重力做的功电势能大小的判断方法:①利用E p=qφ来进行判断,电势能的正负号是表示大小的,在应用时把电荷量和电势都带上正负号进行分析判断.②利用做功的正负来判断,不管正电荷还是负电荷,静电力对电荷做正功,电势能减少;静电力对电荷做负功,电势能增加.一、选择题1.一点电荷仅受静电力作用,由A点无初速释放,先后经过电场中的B点和C点.点电荷在A、B、C三点的电势能分别用E A、E B、E C表示,则E A、E B和E C间的关系可能是() A.E A>E B>E C B.E A<E B<E CC.E A<E C<E B D.E A>E C>E B.2.如图3所示电场中A、B两点,图3则下列说法正确的是()A.电势φA>φB,场强E A>E BB.电势φA>φB,场强E A<E BC.将电荷+q从A点移到B点静电力做了正功D.将电荷-q分别放在A、B两点时具有的电势能E p A>E p B3.如图4所示,图4某区域电场线左右对称分布,M、N为对称线上的两点.下列说法正确的是()A.M点电势一定高于N点电势B.M点场强一定大于N点场强C.正电荷在M点的电势能大于在N点的电势能D.将电子从M点移动到N点,静电力做正功4.两个带异种电荷的物体间的距离增大一些时()A.静电力做正功,电势能增加B.静电力做负功,电势能增加C.静电力做负功,电势能减少D.静电力做正功,电势能减少5.如图5所示,图5O为两个等量异种电荷连线的中点,P为连线中垂线上的一点,比较O、P两点的电势和场强大小()A.φO=φP,E O>E PB.φO=φP,E O=E PC.φO>φP,E O=E PD.φO=φP,E O<E P6.在图6中虚线表示某一电场的等势面,图6现在用外力将负点电荷q从a点沿直线aOb匀速移动到b,图中cd为O点等势面的切线,则当电荷通过O点时外力的方向()A.平行于abB.平行于cdC.垂直于abD.垂直于cd7.如图7所示,图7固定在Q点的正点电荷的电场中有M、N两点,已知MQ<NQ.下列叙述正确的是() A.若把一正的点电荷从M点沿直线移到N点,则静电力对该电荷做功,电势能减少B.若把一正的点电荷从M点沿直线移到N点,则该电荷克服静电力做功,电势能增加C.若把一负的点电荷从M点沿直线移到N点,则静电力对该电荷做功,电势能减少D.若把一负的点电荷从M点沿直线移到N点,再从N点沿不同路径移回到M点;则该电荷克服静电力做的功等于静电力对该电荷所做的功,电势能不变二、计算论述题10.如图10所示,图10一绝缘细圆环半径为r,其环面固定在水平面上,场强为E的匀强电场与圆环平面平行,环上穿有一电荷量+q,质量为m的小球,可沿圆环做无摩擦的圆周运动,若小球经A点时速度v A的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用.(1)求小环运动到A点的速度v A是多少?(2)当小球运动到与A点对称的B点时,小球对圆环在水平方向的作用力F B是多少?第5节 电势差.要点一 电势差定义式U AB =W AB /q 的理解1.U AB =W ABq中,W AB 为q 从初位置A 运动到末位置B 时静电力做的功,计算时W 与U 的角标要对应,即W AB =qU AB ,W BA =qU BA .2.U AB =W ABq中,各量均可带正负号运算.但代表的意义不同.W AB 的正、负号表示正、负功;q 的正、负号表示电性,U AB 的正、负号反映φA 、φB 的高低.3.公式U AB =W ABq不能认为U AB 与W AB 成正比,与q 成反比,只是可以利用W AB 、q 来测量A 、B 两点电势差U AB ,U AB 由电场和A 、B 两点的位置决定.4.W AB =qU AB ,适用于任何电场.静电力做的功W AB 与移动电荷q 的路径无关.只与初、末位置的电势差有关.要点二 有静电力做功时的功能关系 1.只有静电力做功只发生电势能和动能之间的相互转化,电势能和动能之和保持不变,它们之间的大小关系为:W 电=-ΔE 电=ΔE k .2.只有静电力和重力做功只发生电势能、重力势能和动能之间的相互转化,电势能、重力势能、动能三者之和保持不变,功和能的大小关系为:W 电+W G =-(ΔE 电+ΔE p )=ΔE k .3.多个力做功多种形式的能量参与转化,要根据不同力做功和不同形式能转化的对应关系分析,总功等于动能的变化,其关系为:W 电+W 其他=ΔE k .4.静电力做功的计算方法有三种:(1)在匀强电场中,W =Fl cos α=qEl cos α,α是E 、l 方向的夹角. (2)W AB =qU AB 既适用于匀强电场,又适用于非匀强电场. (3)由静电场的功能关系也可确定静电力做功.1.描述电势差的两个公式U AB =W ABq 和U AB =φA -φB 的区别是什么?电场具有多种属性,我们可以从不同角度描述电场的属性,公式U AB =W ABq是从静电力做功的角度,而U AB =φA -φB 是从电势出发来定义电势差.U AB =W ABq中,W AB 为q 从初位置A 移动到末位置B 静电力做的功,W AB 可为正值,也可为负值;q 为电荷所带电荷量,正电荷取正值,负电荷取负值.由U AB =W ABq可以看出,U AB 在数值上等于单位正电荷由A 移到B 点时静电力所做的功W AB ,若静电力对单位正电荷做正功,U AB 为正值;若静电力对单位正电荷做负功,则U AB 为负值.一、电势差概念的理解【例1】 下列说法正确的是( )A .A 、B 两点的电势差,等于将正电荷从A 点移到B 点时静电力所做的功 B .电势差是一个标量,但是有正值或负值之分C .由于静电力做功跟移动电荷的路径无关,所以电势差也跟移动电荷的路径无关,只跟这两点的位置有关D .A 、B 两点的电势差是恒定的,不随零电势面的不同而改变,所以U AB =U BA 二、电势差公式的应用【例2】 有一个带电荷量q =-3×10-6 C 的点电荷,从某电场中的A 点移到B 点,电荷克服静电力做6×10-4 J 的功,从B 点移到C 点,静电力对电荷做9×10-4 J 的功,求A 、C 两点的电势差并说明A 、C 两点哪点的电势较高.1.对U AB =1 V 的正确理解是( )A .从A 到B 移动qC 的正电荷,静电力做功1 J B .从A 到B 移动1 C 的正电荷,静电力做功1 J C .从B 到A 移动1 C 的正电荷,静电力做功1 JD .从A 到B 移动1 C 的正电荷,静电力做功-1 J2.一个带正电荷的质点,电荷量q =2.0×10-9 C ,在静电场中由a 点移到b 点,在这过程中,除静电力做功外,其他力做功为6.0×10-5 J ,质点的动能增加了8.0×10-5 J ,则ab 两点间电势差U ab 为( )A .3.0×104 VB .1.0×104 VC .4.0×104 VD .7.0×104 V3.电荷量为3×10-8 C 的试探电荷从电场中的A 点移到B 点时,它的电势能减少了6×10-7J ,则在这个过程中,静电力对试探电荷做了________ J 的________功(填“正”或“负”),A 、B 两点之间的电势差为________ V.4.如图1-5-2所示,图1-5-2A 、B 两点间电势差U AB 为20 V ,电荷量q =-2×10-9 C ,按图中路径由A 点移动至B 点,静电力做的功是多少?。
电势能和电势

E F
由电子的运动轨迹知,电子受到的 电场力方向斜向左上,故电场方向 斜向右下, M 点电势高于 O 点电势, A 错误. 电子在 M 点电势能最小 ,B 错误;
运动过程中 ,电子先克服电场力做功 , 电 势 能 增加 , 后 电 场力 对电 子 做 正 功,电势能减少 ,故 C 错误 ,D 正确.
(1)正点电荷的电场:等势面是以点电荷为球 心的一族球面,如图所示.
(2)负点电荷的电场:等势面是以点电荷为球 心的一族球面,如图所示.
等量异种点电荷的等势面,两点电荷连线的中垂面为一个等势面.
等量同种电荷电场的等势面
匀强电场的等势面
带电导体周围的电场和等势面
对等势面的理解 (1)在同一等势面内任意两点间移动电荷时,电场力不 做功。 (2)在空间没有电荷的地方,两等势面不相交。 (3)等势面和电场线的关系:①电场线跟等势面垂直, 并且由电势高的等势面指向电势低的等势面;②在电场线 密集的地方,等差等势面也密集;在电场线稀疏的地方,等 差等势面也稀疏。 (4)等势面和电场线一样,也是人们虚拟出来形象描述 电场的。
用功能关系分析带电粒子的能量转化 1.功能关系
(1)若只有电场力做功,电势能与动能之和保持不变; (2)若只有电场力和重力做功,电势能、重力势能、动能之和保持 不变; (3)除重力外,其他各力对物体做的功等于物体机械能的变化. (4)所有力对物体所做功的代数和,等于物体动能的变化.
2.电场力做功的计算方法
对电势的理解
• 1:电势的相对性:某点电势的大小是相对于零 点电势而言的。零电势的选择是任意的,一般选 地面和无穷远为零势能面。 • 2:电势的固有性:电场中某点的电势的大小是 由电场本身的性质决定的,与放不放电荷及放什 么电荷无关。
电势能与电势

回忆与思考:
电场的基本性质是对放入其中的电荷有力的作用。 如果电荷在电场中移动一段距离,静电力会做功。
静电力做功有什么特点呢? 静电力做功会使什么能量发生变化呢?
一、静电力做功的特点 E B
d
+q θ A
C
W Eq d cos
静电力做功与路径无关, 只与初末位置有关。 静电力做功背后代表着某一种能量的变化 这种能量只和电荷在电场中所处位置有关,
正场距源离电场荷源周电围荷电越势近均,为电正势值能;越大;
+
+q 负距试离探场电源荷电:荷越近,电势越高;
在各处所具有的电势能均为负值;
距离场源电荷越近,电势能越小;
在负场源电荷的电场中:
正试探电荷:
在各处所具有的电势能均为负值;
-q
负场距源离电场荷源周电围荷电越势近均,为电负势值能;越小;
-
负距试离探场电源荷电:荷越近,电势越低;
中垂线: 各点电势均为负; 中点电势最小,向两侧逐渐增大; 关于中点对称两点的电势相等
五、等势面
1、定义: 电场中电势相同的点构成的面叫作等势面 2、描述: 等势面上各点电势相等 3、特征: 等势面均闭合(或在无穷远处闭合)
等势面不相交、不相切 沿等势面移动电荷,电场力不做功 电场线与等势面垂直 电场线由高等势面指向低等势面 等差等势面中电场线越密的地方等势面也越密 4、意义: 可以直观的定性描述某一片电势的大小分布。
+q
在各处所具有的电势能均为正 值;
距离场源电荷越近,电势能越大 ;
由此可见: 电势能既与电场有关,也与放入的电荷有关; 有没有一个物理量能够反应电场自身能的性质呢?
类比于电场强度的定义, 电势能与电荷量的比值有没有什么特殊的意义呢?
电势能和电势

电势能
类比重力势能,我们知道为了能够确定电势能, 我们需要先选定一个零电势能位置,然后利用电 荷由此位置被移动到另一位置,那么电荷在另一 位置的电势能就能够用在这个过程中静电力对其 做的功的相反数。 即:电荷在某点的电势能,等于把它从这点移动 到零势能位置时静电力做的功。 注:通常把电荷在离场源电荷无限远处的电势能 规定为0,或把电荷在大地表面上的电势能规定 为0.
电势
例2
电势能与电势的关系
总结: 1.电势只与场源电荷的电性和电场线的方向有关(且 沿电场线方向降低) 2.电势能与检验电荷的电性有关 3.检验电荷在电场中发生运动时,其电势能的变化与 其所带电性有关,电势的变化与其所带电性无关
等势面
等势面:电场中电势相同的各点构成的面,其 也是用来形象地描绘电场的。 电场线与等势面的关系: 电场线跟等势面垂直,并且由电势高的等势面 指向电势低的等势面。
电势能和电势
巴东县第三高级中学 作者 谭 洋
电场具有能量
前面一节内容中我们说到电场是物质,而电场被认为 是物质的一个重要原因就是电场具有能量。 对于这一点的理解是比较简单的。例如我们把一个静 止的试探电荷放入电场中,它将在静电力的作用下做 加速运动,经过一段时间以后获得一定的速度,试探 电荷的动能增加了。从功能关系的角度,我们知道这 是静电力做功的结果;但是我们从能量守恒的角度来 思考,会发现这里有什么能量转化成为了试探电荷的 动能,那么这种能量又不是我们之前见过的,由此我 们应该容易想到这应该是一种新的能量!
参见教辅资料
例1
电势
由于大量的实验和研究发现,还有一个表征电 场性质的重要物理量。那就是接下来要学习的 电势。 电势:(利用比值定义法)科学家将电荷在电 场中某一点的电势能与它的电荷量的比值,叫 做这一点的电势。如果用 表示电势,用EP表 示电荷q的电势能,则
电场强度电势能电势三者之间的联系

电场强度电势能电势三者之间的联系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!电场强度、电势能和电势是电学中常用的概念,它们之间存在着密切的联系。
正电荷沿着电场线运动电势和电势能

正电荷沿着电场线运动电势和电势能电场是指空间中存在电荷时产生的力场。
在电场中,如果有正电荷沿着电场线运动,就会产生电势和电势能的变化。
本文将重点讨论正电荷在电场中沿着电场线运动时的电势和电势能的情况。
1. 电势电势是描述在电场中某一点的电能与单位正电荷的关系的物理量。
在电场中,正电荷沿着电场线从一点A移动到另一点B的过程中,会产生电势的变化。
1.1 电势的定义在电场中,某一点的电势表示为V,当正电荷沿着电场线从A点移动到B点时,它所具有的电势能的变化ΔU与单位正电荷的电势差ΔV 的比值趋近于一个常数。
数学表达式为ΔU = qΔV,其中q为正电荷量,ΔV为电势差。
1.2 电势的计算在电场中,电势的计算通常采用公式V = kQ/r,其中V为电势,k为电场常量,Q为电荷量,r为距离。
这个公式描述了电荷在电场中所具有的电势与其所受电场力的关系。
2. 电势能电势能是指电荷在电场中由于位置的变化而产生的能量。
在电场中,正电荷沿着电场线从A点移动到B点的过程中,会伴随着电势能的变化。
2.1 电势能的定义电势能可以表示为U = qV,其中U为电势能,q为正电荷量,V为电势。
这个公式描述了正电荷在电场中所具有的电势能与电势的关系。
2.2 电势能的计算在电场中,电势能的计算通常是通过电势能的定义公式U = qV来进行的。
根据电势的计算公式V = kQ/r,结合电势能的定义公式,可以得出正电荷在电场中具有的电势能与其所受电场力的关系。
这个关系清晰地描述了正电荷在电场中所具有的电势能的变化规律。
3. 结论在电场中,正电荷沿着电场线运动时,会产生电势和电势能的变化。
通过对电势和电势能的讨论,可以清晰地描述正电荷在电场中所具有的电势和电势能的变化规律,以及其与电场力的关系。
这对于深入理解电场中正电荷的运动规律具有重要意义,也为相关领域的研究提供了理论基础和实验依据。
在电场中,正电荷沿着电场线运动时,电势和电势能的变化受到电场的影响。
电势能与电势的关系

1 电场强度公式:E=F/q(定义式)E=U AB/d(匀场强)E=W AB/qd E=kQ/r 22 只有重力和电场力做功时,机械能和电势能相互转换,但总量保持不变。
电场力:F = E/q3 电势能与电势的关系:电势=电势能/电荷(φ=E P/q,E PA=qφA,E PB=qφB)4 电场强度与电势差:U AB=Ed (W AB=qElcosθ=qEd=qU AB)5 静电力做功与电势能变化的关系:电场力所做的功等于电势能的减少量U AB =W AB/q,W AB= ΔE P 减=E pA -E pB=qφA -qφB=q U AB =q Ed6 电容:C=Q/U C=εS/4πkd (ε:介电常数,k:静电力常量=9.0×109N?m2/C2)7 动能定理:合外力所做的功等于动能的变化(只有重力做功时,物体的势能变化量等于动能变化量,合外力做正功,动能增加;做负功,动能减小)W 合=ΔE k8 机械能守恒:只有重力或弹力对物体做功的条件下(或者不受其他外力的作用下),物体的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总量保持不变。
E k1+E p1=E k2+E p2;E1=E2;W= ;E 减=E 增(E k减=E p增、E p 减=E k增)9 带电粒子在电场中的加速运动:W=ΔE k 增或qU=mvt 2/210 带电粒子在电场中的偏转(不考虑重力):类平抛运动物理选修3-1 经典复习一、电场1. 两种电荷、电荷守恒定律、元电荷(e=1.60× 10-19C);带电体电荷量等于元电荷的整数倍2. 库仑定律:F=kQ1Q2/r2(真空中的点电荷) { F:点电荷间的作用力(N) ;k:静电力常量k =9.0× 109N?m2/C2;Q1、Q2:两点电荷的电量(C) ;r:两点电荷间的距离(m) ;作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引}3. 电场强度:E=F/q(定义式、计算式){E:电场强度(N/C) ,是矢量(电场的叠加原理) ;q:检验电荷的电量(C)}4. 真空点(源)电荷形成的电场E=kQ/r 2{r:源电荷到该位置的距离( m),Q:源电荷的电量}5. 匀强电场的场强E=U AB /d {U AB:AB 两点间的电压(V) ,d:AB 两点在场强方向的距离(m)}6. 电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C) }7. 电势与电势差:U AB=φA-φB,U AB=W AB/q=ΔE P 减/q8. 电场力做功:W AB =qU AB=qEd=ΔE P减{W AB:带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V)( 电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减:带电体由A 到B 时势能的减少量}9. 电势能:E PA=qφA {E PA:带电体在A 点的电势能(J),q:电量(C),φA:A 点的电势(V) }10. 电势能的变化ΔE P 减=E PA-E PB{带电体在电场中从A 位置到B 位置时电势能的减少量}11. 电场力做功与电势能变化W AB =ΔE P减=qU AB (电场力所做的功等于电势能的减少量)12. 电容C=Q/U( 定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V) }13. 平行板电容器的电容C=εS/( 4πkd)( S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)14. 带电粒子在电场中的加速(Vo=0):W=ΔE K增或qU=mVt 2/215. 带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用) :类平抛运动(在带等量异种电荷的平行极板中:E=U/d)垂直电场方向: 匀速直线运动L=Vot平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m =q U /m注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2) 电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的分布要求熟记;(4) 电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5) 处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零, 导体内部没有净电荷,净电荷只分布于导体外表面;(6) 电容单位换算:1F=106μF=1012PF;-19(7) 电子伏(eV) 是能量的单位,1eV=1.60×10-19J;(8) 其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面二、恒定电流1. 电流强度:I=q/t{I:电流强度(A ),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2. 欧姆定律:I=U/R {I:导体电流强度(A) ,U:导体两端电压(V) ,R:导体阻值(Ω)}3. 电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m) ,L:导体的长度(m),S:导体横截面积(m2)}4. 闭合电路欧姆定律:I=E/(r +R)或E=Ir+ IR (纯电阻电路) ;E=U 内+U 外;E=U 外+ I r ;(普通适用) { I:电路中的总电流(A) ,E:电源电动势(V) ,R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt ,P=UI {W:电功(J),U:电压(V) ,I:电流(A) ,t:时间(s),P:电功率(W)}6. 焦耳定律:Q=I2Rt{ Q:电热(J),I:通过导体的电流(A) ,R:导体的电阻值(Ω),t:通电时间(s)}7. 纯电阻电路和非纯电阻电路8. 电源总动率P总=IE ;电源输出功率P出=IU;电源效率η=P出/P 总{ I:电路总电流(A) ,E:电源电动势(V),U:路端电压(V) ,η:电源效率}9. 电路的串/并联:串联电路(P、U与R成正比) 并联电路(P、I与R成反比)11.伏安法测电阻1 、电压表和电流表的接法2、滑动变阻器的两种接法三、磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量 , B = Φ /S,是矢量,单位 (T),1T =1N/(A?m )2.安培力 F =BIL (注:I ⊥B) ; {B:磁感应强度 (T),F:安培力(F),I:电流强度 (A),L: 导线长度 (m)}3. 洛仑兹力 f = qVB( 注 V ⊥ B);质谱仪{ f:洛仑兹力 (N), q:带电粒子电量 (C),V:带电粒子速度 (m/s)}4.在重力忽略不计 (不考虑重力 ) 的情况下 ,带电粒子进入磁场的运动情况 (掌握两种 ): ( 1)带电粒子沿平行磁场方向进入磁场 : 不受洛仑兹力的作用 ,做匀速直线运动 V = V0(2) 带电粒子沿垂直磁场方向进入磁场 :做匀速圆周运动 ,规律如下 (a) f 洛=F 向=mV2/r =m ω2r =m (2 π/T)2 r =qVB ;r =mV/qB ;T =2πm/qB ;(b) 运动周期与圆周运动的半径和线速度无关 ,洛仑兹力对带电粒子不做功 (任何情况下 ); (c)解题关键 :画轨迹、找圆心、定半径、圆心角(=弦切角的二倍) 注:(1) 安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2) 磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场、磁电式电表原理、回旋加速器、磁性材料。
高中物理选修3-1电势能和电势知识点总结

【导语】⼈教版选修3-1第⼀章静电场第4节《电势能和电势》⼀直是⾼⼆学⽣学习难点,我们要掌握好这⼀节的知识点。
下⾯是⽆忧考给⼤家带来的⾼中物理电势能和电势知识点,希望对你有帮助。
⾼中物理电势能和电势知识点 ⼀、电势差:电势差等于电场中两点电势的差值。
电场中某点的电势,就是该点相对于零势点的电势差。
(1)计算式 (2)单位:伏特(V) (3)电势差是标量。
其正负表⽰⼤⼩。
⼆、电场⼒的功 电场⼒做功的特点: 电场⼒做功与重⼒做功⼀样,只与始末位置有关,与路径⽆关。
1.电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2.电势能的变化与电场⼒做功的关系 (1)电荷在电场中具有电势能。
(2)电场⼒对电荷做正功,电荷的电势能减⼩。
(3)电场⼒对电荷做负功,电荷的电势能增⼤。
(4)电场⼒做多少功,电荷电势能就变化多少。
(5)电势能是相对的,与零电势能⾯有关(通常把电荷在离场源电荷⽆限远处的电势能规定为零,或把电荷在⼤地表⾯上电势能规定为零。
) (6)电势能是电荷和电场所共有的,具有系统性。
(7)电势能是标量。
3.电势能⼤⼩的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场⼒所做的功。
三、电势 电势:置于电场中某点的试探电荷具有的电势能与其电量的⽐叫做该点的电势。
是描述电场的能的性质的物理量。
其⼤⼩与试探电荷的正负及电量q均⽆关,只与电场中该点在电场中的位置有关,故其可衡量电场的性质。
单位:伏特(V)标量 1.电势的相对性:某点电势的⼤⼩是相对于零点电势⽽⾔的。
零电势的选择是任意的,⼀般选地⾯和⽆穷远为零势能⾯。
2.电势的固有性:电场中某点的电势的⼤⼩是由电场本⾝的性质决定的,与放不放电荷及放什么电荷⽆关。
3.电势是标量,只有⼤⼩,没有⽅向.(负电势表⽰该处的电势⽐零电势处电势低.) 4.计算时EP,q,都带正负号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正电荷电势能和电势的关系
正电荷电势能与电势之间的关系是有许多精密联系的。
其中,最基本的也可能是最重要的是,正电荷的电势能定义为由这些负载所受力所导致的能量密度。
它表示了负载离电荷的距离以及两者之间的吸引力和排斥力之间的关系。
这可以用电势能场建立。
一、定义
首先,正电荷电势能,也称为Coulomb能,是指由正电荷所受力而产生的能量密度。
这种能量密度是由两个相同或相异的电荷之间的电场决定的。
这种电场就是由这些正电荷引起的电势密度而形成的。
两者之间的能量密度可以通过公式表示为:
U=k(q_1q_2)/r
其中,U是正电荷的电势能,q_1、q_2是两个电荷的电荷量,k是电势之间的系数,r是两个电荷之间的距离。
二、关系
其次,可以将正电荷电势能与电势之间的关系总结如下:
1. 越远距离,电势能越小。
我们可以从上述公式看出,随着电荷间的距离增加,电势能也会随之减小。
电势能与距离的变化遵循的规律是反比例的。
2. 同类电荷间的电势能始终为负值。
在上述公式中,当两个相同的正
电荷间的距离越近时,二者之间的电势能越大。
反之,当两个相同的
正电荷间的距离越远时,二者之间的电势能越小,而且最终会变成负值。
3. 异类电荷间的电势能值始终为正值。
同类电荷指的是具有相同号的
电荷,而异类电荷则是指号不同的电荷。
在相同号的电荷间距离增加时,前者的电势能变成负值;而在不同号的电荷间距离增加时,前者
的电势能则会保持正值,其变化范围也没有任何限制。
因此,正电荷电势能与电势存在着精密的联系,它们形成一种能量场,决定着电荷之间的吸引力和排斥力。