高中数学变化率和导数
高二数学变化率与导数知识点总结

高二数学变化率与导数知识点总结在高二数学学习中,变化率和导数是非常重要的概念。
它们是微积分的基础,也是我们理解函数变化规律和求解问题的重要工具。
下面是关于高二数学中变化率和导数的知识点总结。
1. 变化率的概念变化率是描述一个量相对于另一个量的变化程度的指标。
在数学中,我们通常用函数的导数来表示变化率。
对于函数y = f(x),它的变化率可以用以下两种方式表示:- 平均变化率:平均变化率是函数在某个区间上的变化量与该区间长度的比值。
如果x的取值从a到b,对应的y的取值从f(a)到f(b),则该区间上的平均变化率为:平均变化率 = (f(b) - f(a)) / (b - a)- 瞬时变化率:瞬时变化率是指在某一点上的瞬时变化速度。
如果函数在x点的导数存在,则该点的瞬时变化率为导数值,即:瞬时变化率 = f'(x)2. 导数的定义和性质导数是描述函数变化率的工具,它的定义如下:- 对于函数y = f(x),如果函数在某一点x上的导数存在,那么导数表示函数在该点的瞬时变化率。
导数的定义如下: f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f'(x)表示函数f(x)在点x处的导数。
导数具有以下几个重要的性质:- 导数存在的条件:函数在某一点x处的导数存在的充分必要条件是函数在该点的左导数和右导数存在且相等。
- 导数的几何意义:函数在某一点的导数等于函数曲线在该点切线的斜率。
切线的斜率可以用导数来表示。
- 导数与函数单调性的关系:如果函数在某区间内的导数大于0,则函数在该区间内单调递增;如果函数在某区间内的导数小于0,则函数在该区间内单调递减。
- 导数与函数极值的关系:如果函数在某一点的导数存在且为0,那么该点可能是函数的极值点。
3. 常见函数的导数- 幂函数导数:对于幂函数y = x^n,其中n为常数,它的导数为:dy/dx = n*x^(n-1)- 指数函数导数:对于指数函数y = a^x,其中a为常数且大于0且不等于1,它的导数为:dy/dx = a^x * ln(a)- 对数函数导数:对于对数函数y = log_a(x),其中a为常数且大于0且不等于1,它的导数为:dy/dx = 1 / (x * ln(a))- 三角函数导数:对于三角函数sin(x),cos(x),tan(x)等,它们的导数可以通过基本导数公式来求解。
高中数学选修1课件:3.1.1变化率与导数

r(V2 ) r(V1) f (x2 ) f (x1)
V2 V1
x2 x1
设某个变量 f 随 x 的变化而变化,
从 x 经过 △x , 量 f 的改变量为
f f (x x) f (x)
量 f 的平均变化率为
f f (x x) f (x)
x
x
令 x 0,则得到f 在x 的(瞬时)变化率:
t=0.2,0.4,0.6,0.8(min)时,血管中 药物浓度的瞬时变化率,把数据用表格 的形式列出。(精确到0.1)
血管中药物浓度的瞬时变化率, 就是药物浓度 函数f(t)在此时刻的导数, 从图象上看,它表示
曲线在该点处的切线的斜率. (数形结合,以直代曲)
以简单对象刻画复杂的对象
t
0.2
药物浓度的 瞬时变化率
(3) 物体在t =2时的瞬时速度.
v s 2g 1 gt
t
2
(1) 将 t=0.1代入上式,得
O s(2)
v 2.05g 20.09(m / s) (2) 将 t=0.01代入上式,得
s(2+t) s
v 2.005g 19.65(m / s)
( 3) 当t 0,2 t 2
平均速度 v 的极限为:
x0
x
T
P
f (x 0 )
o
x0
x 即 kPT tan f (x 0 )
函数y f (x)在点x0处的导数f (x0 )在几何上表示 曲线y f (x)在点M (x0, f (x0 ))处的切线的斜率。
曲线y f (x)在点M (x0 , f (x0 ))处
的切线方程为 y y0 f (x0 )(x x0 )
0.01 -13.149
高中数学变化率问题导数的概念(老师版)

变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。
函数的导数与变化率

函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。
在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。
本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。
一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。
形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。
导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。
二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。
2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。
3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。
常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。
三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。
当自变量的变化量很小时,导数可以近似地表示函数的变化率。
函数的变化率可以分为平均变化率和瞬时变化率两种。
平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。
瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。
四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。
以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。
在经济学中,边际成本和边际收益也可以通过导数来计算和分析。
导数还可以用于优化问题、曲线拟合和图像处理等领域。
五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。
_高中数学第一章导数及其应用1

ΔΔst=29+31+Δt-3Δ2t-29-31-32=3Δt-12,
∴物体在 t=1 处的瞬时变化率为lim Δt→0
ΔΔst =Δlitm→0
(3Δt-12)
=-12(m/s),
即物体在 t=1 时的瞬时速度为-12 m/s.
3.求函数f(x)在某点处的导数
• 例题3 若函数y=x2+ax在x=2处的导数为8,求a的值.
8分
10 分 12 分
规律方法
利用导数定义求导数的三步曲:
(1)求函数的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)取极限,得导数 f′(x0)=Δlixm→0
Δy Δx.
简记为:一差,二比,三趋近. 特别提醒:取极限前,要注意化简ΔΔyx,保证使 Δx→0 时,分母
不为 0.
• 3.已知函数y=2x2+4x,(1)求函数在x=3处的导数. • (2)若函数在x0处的导数是12,求x0的值. 解析: (1)Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3) =12Δx+2(Δx)2+4Δx =2(Δx)2+16Δx, ∴ΔΔyx=2Δx2Δ+x 16Δx=2Δx+16. ∴y′|x=3=Δlixm→0 ΔΔyx=Δlixm→0 (2Δx+16)=16.
=Δx+1+ΔxΔx,
ΔΔyx=Δx+Δ1x+ΔxΔx=1+1+1Δx,
∴ lim Δx→0
ΔΔyx=Δlixm→0
1+1+1Δx=2,
从而 y′|x=1=2.
典例导航
1.求函数的平均变化率
• 例题1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均 变化率,并求当x0=2,Δx=0.1时平均变化率的值.
人教A版高中数学选修22变化率与导数PPT课件

在高台跳水运动中,运动 员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0t0.5 这段时间里,V = h(0.5) h(0) 4.05(m / s)
微积分的创立
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
0.5 0
(2)在1t2 这段时间里, V = h(2) h(1) -8.2(m / s)
21
人教A版高中数学选修22变化率与导数 PPT课 件
人教A版高中数学选修22变化率与导数 PPT课 件
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.
高中数学北师大版选修1-1课件:第三章变化率与导数2导数的概念及其几何意义

例2 已知曲线y=2x2上一点A(1,2),求:
(1)点A处的切线的斜率;
解
lim
Δx→0
ΔΔyx=Δlixm→0
21+Δx2-2×12 Δx
4Δx+2Δx2
= lim Δx→0
Δx
=lim (4+2Δx)=4, Δx→0
∴点A处的切线的斜率为4.
(2)点A处的切线方程.
解 点A处的切线方程是y-2=4(x-1),
得a=-7.
反思感悟 利用导数的几何意义将数与形联系起来,根据图像中切线与割线 的倾斜角的大小确定数据的大小.
跟踪训练4 (1)已知函数f(x)在R上可导,其部分图像如图所示,设 f2-f1= 2-1
a,则下列不等式正确的是 A.f′(1)<f′(2)<a
√B.f′(1)<a<f′(2)
C.f′(2)<f′(1)<a
反思感悟 根据切线斜率求切点坐标的步骤 (1)设切点坐标(x0,y0). (2)求导函数f′(x). (3)求切线的斜率f′(x0). (4)由斜率间的关系列出关于x0的方程,解方程求x0. (5)点(x0,y0)在曲线f(x)上,将x0代入求y0,得切点坐标.
跟踪训练3 已知直线l:y=4x+a与曲线C:y=f(x)=x3-2x2+3相切,求a的 值及切点坐标.
D.a<f′(1)<f′(2)
解析 由图像可知,在(0,+∞)上,函数f(x)为增函数,且曲线切线的斜率越
来越大,
f2-f1
∵
=a,∴易知 f′(1)<a<f′(2).
2-1
(2)曲线y=x3在点(a,a3)(a≠0)处的切线与x轴及直线x=a围成的三角形的面积 为 16,则a=__±_1__.
高中数学第二章变化率与导数2.1变化的快慢与变化率课件北师大版选修220831288

1.函数的平均(píngjūn)变化率
函数y=f(x)在区间[x1,x2]上的平均(píngjūn)变化率
(1)条件:已知函数y=f(x),自变量x从x1变为x2,函数值从f(x1)变为f(x2).
记Δx=x2-x1,Δy=f(x2)-f(x1).
( )-(1 )
(2)结论:商 2 -
探究(tànjiū)
一
探究(tànjiū)
二
探究
(tànjiū)三
思维辨析
瞬时变化率
【例2】 已知s(t)= gt1 2,其中g=10 m/s2.
2
(1)求t从3 s到3.1 s的平均速度;
(2)求t从3 s到3.01 s的平均速度;
(3)求t在t=3 s时的瞬时速度.
分析:函数的平均变化率和瞬时变化率即为平均速度和瞬时速度.
(2)由时间改变量Δt确定位移改变量Δs=s(t0+Δt)-s(t0);
(3)求平均速度 =
Δ
;
Δ
(4)运用逼近思想求瞬时速度:当 Δt 趋于 0
第十三页,共23页。
Δ
时, 趋于
Δ
v(常数).
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)
三
思维辨析
变式训练2以初速度v0(v0>0)垂直上抛的物体,t秒时的高度为s(t)=v0t1
解:(1)Δt=3.1-3=0.1 (s),Δt指时间改变量,
1
1
2
Δs=s(3.1)-s(3)=2·g·(3.1) -2·g·32=3.05(m),Δs
Δ
3.05
1 = =
=30.5(m/s).
Δ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴求 的解析式;
⑵证明:曲线 的图像是一个中心对称图形,并求其对称中心;
⑶证明:曲线 上任一点的切线与直线 和直线 所围三角形的面积为定值,并求出此定值.
【例74】已知抛物线 : 和 : ,如果直线 同时是 和 的切线,称 是 和 的公切线,公切线上两个切点之间的线段,称为公切线段.
⑵若 为线段 的中点,求证: 为此抛物线的切线;
⑶试问⑵的逆命题是否成立?请说明理由.
【例79】证明如下命题:
命题:设 是 轴正半轴上的一动点,过 的动直线与抛物线 交于 两点,则过 的抛物线的两切线的交点的轨迹方程为 ,且轨迹上任一点的横坐标一定是该点对应的切点弦 中点的横坐标.
【变式1】设 为直线 上任意一点,过 作抛物线 的两条切线,切点分别为 ,
A. B. C. D.
【例57】曲线 在点 处的切线与 轴、直线 所围成的三角形的面积为 ,则 .
【例58】曲线 在点 处的切线与坐标轴围成的三角形面积为()
A. B. C. D.
【例59】求曲线 的斜率等于 的切线方程.
【例60】若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.
由导数意义可知,曲线 过点 的切线的斜率等于 .
(二)典例分析:
【例25】已知曲线 上一点 ,用斜率定义求:
⑴过点A的切线的斜率;⑵过点A的切线方程.
【变式】已知曲线 上一点 ,用斜率定义求:
⑴过点A的切线的斜率;⑵过点A的切线方程.
【例26】 函数 的图象如图所示,下列数值排序正确的是()
A.
B.
C.
D.
【例27】求函数 的图象上过点 的切线方程.
【例28】曲线 在点 处的切线方程是()
A. B. C. D.
【例29】求曲线 在点 的切线 方程,与过点 的切线 的方程.
【例30】函数 在点 处的切线方程为()
A. B. C. D.
【例31】已知曲线 的一条切线的斜率为 ,则切点的横坐标为_______.
【例41】设 为曲线 : 上的点,且曲线 在点 处切线倾斜角的取值范围为 ,则点 横坐标的取值范围为()
A. B. C. D.
【例42】曲线 在点 处的切线方程为()
A. B. C. D.
【例43】设函数 ,曲线 在点 处的切线方程为 ,则曲线 在点 处切线的斜率为()
A. B. C. D.
【例44】设曲线 在点 处的切线与 轴的交点的横坐标为 ,则 等于()
【例66】曲线 有两条平行于直线 的切线,求此二切线之间的距离.
【例67】已知曲线 ,求经过点 且与曲线 相切的直线 的方程.
【例68】已知曲线 在点 处的切线 平行直线 ,且点 在第三象限,
⑴求 的坐标;⑵若直线 ,且 也过切点 ,求直线 的方程.
【例69】已知函数 .
若函数 的图象过原点,且在原点处的切线斜率是 ,求 , 的值.
A. B. C. D.
【例45】直线 与曲线 相切,则 ()
A. B. C. D.
【例46】已知直线 与曲线 相切,则 的值为( )
A. B. C. D.
【例47】在平面直角坐标系 中,点 在曲线 : 上,且在第二象限内,已知曲线 在点 处的切线的斜率为 ,则点 的坐标为____.
【例48】若存在过点 的直线与曲线 和 都相切,则 等于()
【变式】求函数 在 附近的平均变化率,在 处的瞬时变化率与导数.
【例22】⑴已知某物体的运动方程是 ,则当 s时的瞬时速度是_______.
⑵已知某物体的运动方程是 ,则 时的瞬时速度是_______.
【例23】如果某物体做运动方程为 的直线运动( 的单位为m, 的单位为s),那么其在 s末的瞬时速度为()
⑵曲线 过点 的切线方程是_________.
【例53】已知曲线 ,则过点 的切线方程是_______.
【例54】已知曲线 : 及点 ,则过点 可向 引切线的条数为_____.
【例55】曲线 和 在它们的交点处的两条切线与 轴所围成的三角形的面积是______.
【例56】曲线 在点 处的切线与坐标轴所围三角形的面积为()
“当 时, ”,或记作“ ”,符号“ ”读作“趋近于”.
函数在 的瞬时变化率,通常称为 在 处的导数,并记作 .
这时又称 在 处是可导的.于是上述变化过程,可以记作
“当 时, ”或“ ”.
3.可导与导函数:
如果 在开区间 内每一点都是可导的,则称 在区间 可导.这样,对开区间 内每个值 ,都对应一个确定的导数 .于是,在区间 内, 构成一个新的函数,我们把这个函数称为函数 的导函数.记为 或 (或 ).
【例3】若 ,则 ________.
【变式】若 ,则 _______.
【例4】设 在 可导,则 等于()
A. B. C. D.
【变式】若 ,则 等于()
A. B. C. D.
【变式】设 在 处可导, 为非零常数,则 _______.
A. B. C. D.
【例5】设 ,则 ()
A. B. C. D.
【例6】若 ,则当 无限趋近于 时, ______.
⑵ _____.
【例14】⑴ _________;⑵ ________.
【变式】 __________.
【例15】设函数 ,其中 ,已知对一切 ,有 和 ,求证: .
【例16】如图,函数 的图象是折线段 ,其中 的坐标分别为 ,则 ;函数 在 处的导数 .
【变式】 如图,函数 的图象是折线段 ,其中 的坐标分别为 , , ,则 ;
变化率和导数
要求层次
重难点
导数的概念
A
了解导数概念的实际背景;
理解导数的几何意义.
导数的几何意义
B
(一)知识内容
1.函数的平均变化率:
一般地,已知函数 , , 是其定义域内不同的两点,记 ,
,
则当 时,商 称作函数 在区间 (或 )的平均变化率.
注:这里 , 可为正值,也可为负值.但 , 可以为 .
【例7】已知函数 ,则 的值为 .
【例8】已知 ,则 的值是()
A. B. C. D.
【例9】若 ,则 _______.
【例10】已知函数 在 处可导,则 ______.
A. B. C. D.
【例11】计算 ________.
【变式】 _______.
【例12】 ______.
【例13】⑴若 ,则常数 _______.
【例70】已知函数 的图象过点 ,且在点 处的切线方程为 .求函数 的解析式.
【例71】已知直线 为曲线 在点 处的切线, 为该曲线的另一条切线,且 ,
⑴求直线 的方程;
⑵求由直线 、 和 轴所围成的三角形的面积.
【例72】设函数 ,曲线 在点 处的切线方程为 .
⑴求 的解析式;
⑵证明:曲线 上任一点处的切线与直线 和直线 所围成的三角形面积为定值,并求此定值.
【例61】曲线 在点 处的切线方程是.
【例62】函数 在点 处的切线方程是()
A. B. C. D.
【例63】已知函数 在 上满足 ,则曲线 在点 处的切线方程是()
A. B. C. D.
【例64】已知曲线 : ,求曲线 上横坐标为 的点的切线方程.
【例65】已知抛物线 通过点 ,且在点 处与直线 相切,求实数 、 、 的值.
【例32】(2008全国一4)
曲线 在点 处的切线的倾斜角为()
A. B. C. D.
【例33】过点 作曲线 的切线,则切线方程为__________.
【例34】曲线 在点 处的切线方程为__.
【例35】若曲线 与 在 处的切线互相垂直,则 等于()
A. B. C. D. 或
【例36】设曲线 在点 处的切线与直线 垂直,则 ()
求证:直线 必过定点 ,且线段 的中点的横坐标一定对应于 点的横坐标.
A. 或 B.Βιβλιοθήκη 或 C. 或 D. 或【例49】已知函数 的图象在 点处的切线方程为 ,又 点的横坐标为 ,则 ________.
【例50】设曲线 在点 处的切线与直线 平行,则实数 等于()
A. B. C. D.
【例51】已知函数 和 的图象在 处的切线互相平行,则 _______.
【例52】⑴曲线 在点 处的切线方程是____.
⑴则 取什么值时, 和 有且仅有一条公切线?写出此公切线的方程.
⑵若 和 有两条公切线,证明相应的两条公切线段互相平分.
【例75】设 ,点 是函数 与 的图象的一个公共点,两函数的图象在点 处有相同的切线.试用 表示 .
【例76】已知曲线 : 与 : ,直线 与 都相切,求直线 的方程.
【例77】已知函数 .
2.函数的瞬时变化率、函数的导数:
设函数 在 附近有定义,当自变量在 附近改变量为 时,函数值相应的改变 .
如果当 趋近于 时,平均变化率 趋近于一个常数 (也就是说平均变化率与某个常数 的差的绝对值越来越小,可以小于任意小的正数),那么常数 称为函数 在点 的瞬时变化率.
“当 趋近于零时, 趋近于常数 ”可以用符号“ ”记作:
导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.
(二)典例分析:
【例1】正三棱锥相邻两侧面所成的角为 ,则 的取值范围是()
A. B. C. D.
【变式】在正 棱锥中,相邻两侧面所成的二面角的取值范围是()
A. B. C. D.
【例2】对于任意 都有()
A. B.
C. D.
A. m/s B. m/s C. m/s D. m/s
【例24】求 在 处的导数.
(一)知识内容