计量经济学资料整理

合集下载

计量经济学重点复习资料

计量经济学重点复习资料

计量经济学1、 P5 计量经济学的研究步骤① 模型设定 ②估计参数 ③模型检验 ④模型应用2、 P11 数据类型① 时间序列数据(同一空间不同时间)② 截面数据(同一时间不同空间) ③面板数据 ④虚拟变量数据3、P18 回归分析① 回归的现代意义:一个被解释变量对若干个解释变量依存关系的研究。

② 回归的实质:由解释变量去估计被解释变量的平均值。

4、P22-25总体和样本 总体回归函数:12()i i i E Y X X ββ=+ 样本回归函数:12ˆˆˆi i Y X ββ=+总体回归模型:12ii i Y X u ββ=++样本回归模型:12ˆˆi i iY X e ββ=++ 5、P22 “线性”的两种解释① 就变量而言是线性的——Y 的条件期望(均值)是X 的线性函数12()i i i E Y X X ββ=+:对参数“线性”,对变量“非线性” ② 就参数而言是线性的——Y 的条件期望(均值)是参数β的线性函数12()ln i i i E Y X X ββ=+:对变量“线性”,对参数“非线性”6、P22 随机扰动项随机扰动项是被解释变量实际值与条件均值的偏差,实际代表了排除在模型以外的所有因素对Y 的影响,i u 是其期望为0有一定分布的随机变量。

7、P23 总体回归线、样本回归线的意义① 样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回归线。

(SRF 不唯一)② 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。

③ 样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。

8、P25i e :剩余项或残差项① 表达式:ˆi ii e Y Y =- 或 12ˆˆi i iY X e ββ=++ ② 经济含义:被解释变量Y 的实际观测值不完全等于样本条件均值,二者之差用i e 表示 ③ 与随机扰动项的联系:i e 在概念上类似总体回归函数中的i u ,可视为对i u 的估计。

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。

它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。

计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。

本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。

二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。

2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。

三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。

2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。

3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。

4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。

四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。

2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。

3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。

4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。

五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。

2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。

计量经济学复习资料整理

计量经济学复习资料整理

1、建模型的注意事项与步骤、计量经济学功能的评价、影响计量经济学成功建立的要素、模型为什么需引入随机扰动项、计量经济学模型与数学函数之间的区别 功能以及其评价、影响计量经济学成功建立的要素功能:结构分析(定量揭示经济变量之间的相互关系,包括:弹性分析、乘数分析和比较静态分析)2、经济预测(计量经济学模型的预测是寻找出经济变量过去的变化规律,并据此对经济变量未来的值进行预测,如对股票价格、经济增长率的预测)3、政策评价(计量经济学模型具有“经济政策实验室”功能,刺激汽车购买政策的效果评价)4、检验与发展经济理论(计量经济学模型是检验经济理论的有效工具,在对经济学理论的检验过程中推动经济学理论的发展,消费理论的检验与发展) 评价:(1):四大功能中,检验经济理论与结构分析功能的可靠性强,而政策分析与经济预测功能的可靠性较弱。

(2):建立模型的理论、估计模型的方法与数据的质量是决定模型能否成功建立的三要素。

建立模型的步骤:1、确定模型包含的变量,被解释变量由问题确定,解释变量确定依据(a.经济学理论和经济学行为分析、b.用统计检验的方法确定)2、确定模型的数学形式:),,...,,(21u X X X f Y k =(加法模型:uX X X Y k k +++++=αααα...22110;乘法模型:u X X X Y kk βββ...2121=)确定解释变量与被解释变量的注意事项:1、现在和未来不能解释过去2、没有特别说明,计量经济学中的变量视为为随机变量 引入随机扰动项:随机扰动项是被解释变量与解释变量一定的条件下,被解释变量条件期望的差。

随机扰动项的引入:代表影响被解释变量的未知因素;代表众多对被解释变量有微小作用的变量的综合;代表数据观测误差。

计量经济学与数学函数的区别: 因果关系与相关关系的区别与联系相关关系:两变量之间线性关系,相关系数反映两变量之间的相关关系,定义: 设D(X)>0, D(Y)>0,称)()(),(Y D X D Y X Cov XY =ρ为变量x y 的相关系数相关性分析与回归分析的差异相关性分析:通过样本相关系数推断总体的相关性。

《计量经济学》期末考试复习资料

《计量经济学》期末考试复习资料

《计量经济学》期末考试复习资料第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4。

6)1。

什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。

计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。

4。

建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和-致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

6。

模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验.在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围.第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1。

相关分析与回归分析的概念、联系以及区别?2。

总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。

计量经济学复习资料2

计量经济学复习资料2

2、如果假设 4 满足,则假设 2 也满足。
以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模
型,也称为经典线性回归模型
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求样本回归函数尽可能好地拟合这组值.
普通最小二乘法给出的判断标准是:二者之差的平方和最小。
R 2 1 RSS /(n k 1) TSS /(n 1) 其中:n-k-1 为残差平方和的自由度,n-1 为总体平方和
的自由度。
R 2 1 (1 R 2 ) n 1 n k 1
三、方程的显著性检验(F 检验) H0: ß0= ß1= ß2= … =ßk=0 H1: ßj 不全为 0
TSS yi2 (Yi Y )2 总体平方和
ESS yˆi2 (Yˆi Y )2 回归平方和
RSS ei2 (Yi Yˆi )2 残差平方和
1、TSS=ESS+RSS 2、可决系数 R2 统计量

R 2 ESS 1 RSS
TSS
TSS
称 R2 为(样本)可决系数/判定系数 可决系数的取值范围:[0,1] R2 越接近 1,说明实际观测点离样本线越近,拟合优度越高。 T 检验 检验步骤: (1)对总体参数提出假设
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
1
1
xi2
(X i X )2
X
2 i
1 n
Xi 2
xi yi
(X i X )(Yi Y )
X
iYi
1 n
X i Yi
上述参数估计量可以写成:
ˆ1

计量经济学资料整理

计量经济学资料整理

计量经济学第一章:导论一.计量经济学一般性定义:计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

构成要素:经济理论、统计数据、数学方法。

表现形式:计量经济模型(数学表达式)二.计量经济学的三个方面:理论:即说明所研究对象经济行为的经济理论数据:对所研究对象经济行为观测所得到的信息方法:模型的构造、估计、检验、分析的方法三.计量经济学的研究内容:利用计量经济模型可以定量描述和分析经济变量之间的数量关系,即经济关系的量化分析。

计量经济学研究的经济关系具有两个特征:一是随机关系;二是因果关系。

四.计量经济学与其他学科的关系:1).计量经济学与经济学:1、区别⑴表达方式经济学:一般文字、图示、数学表达式(数理经济学)计量经济学:数学表达式⑵变量性质和变量间关系经济学:自变量和因变量均为确定性变量;函数因果关系。

计量经济学:自变量为确定性变量,因变量为随机变量;随机(相关)因果关系。

⑶模型参数经济学:模型参数不可以估计,仅作一般性描述(规定).计量经济学:模型参数可以具体估计。

2、联系⑴经济学是计量经济学的理论基础经济理论和经济运行机制既是设定计量经济模型的依据,又是检验计量经济模型合理与否的基本标准。

⑵计量经济学可以验证和发展经济学理论2).计量经济学与经济统计学:1、区别经济统计学:统计指标设计、统计调查(方式和方法)、统计整理(计算指标、编制数列、绘制图表)、统计分析(时间序列分析、指数分析、相关分析)。

计量经济学:模型设定、模型估计、模型检验、模型应用。

2、联系经济统计学为计量经济学提供统计指标以及收集、整理统计资料的方法。

计量经济学吸收统计学的思想即通过对客观事实的大量观察来分析经济现象的特征和变化规律,计量经济研究是对统计资料深层次挖掘和开发利用。

3).计量经济学与数理统计学关系:数理统计学是一门以概率论为基础、研究随机现象规律性的数学学科。

计量经济学考试复习资料

计量经济学考试复习资料

计量经济学1. 外生变量和滞后变量统称为前定变量。

2. 设消费函数为,其中虚拟变量,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为,。

3. 当模型存在序列相关现象时,适宜的参数估计方法是广义差分法。

4. 设某商品需求模型为,其中Y 是商品的需求量,X是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为完全的多重共线性。

5. 计量经济模型的基本应用领域有结构分析、经济预测、政策评价。

6. 完全多重共线性时,可以计算模型的拟合程度的判断是不正确的。

7. 当质的因素引进经济计量模型时,需要使用虚拟变量。

8. 半对数模型中,参数β1的含义是X的相对变化,引起Y的期望值绝对量变化。

9. 存在严重的多重共线性时,参数估计的标准差变大。

10. 在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为0.8327。

11. 对于模型,为了考虑“地区”因素(北方、南方),引入2个虚拟变量形成截距变动模型,则会产生完全多重共线性。

12. 模型中引入实际上与解释变量有关的变量,会导致参数的OLS估计量方差增大。

13. u t=ρu t-1+v t序列相关可用DW检验(v t为具有零均值,常数方差且不存在序列相关的随机变量)。

14. 关于经济计量模型进行预测出现误差的原因,正确的说法是既有随机因素,又有系统因素。

15. Goldfeld-Quandt方法用于检验异方差性。

16.判定系数R2的取值范围是0≤R2≤1。

17.经济计量模型的被解释变量一定是内生变量。

18.用OLS估计经典线性模型,则样本回归直线通过点。

19. 消费函数模型,其中I为收入,则当期收入I t对未来消费C t+2的影响是:I t增加一单位,C t+2增加0.1个单位。

20. 回归模型中,关于检验所用的统计量,说法正确的是服从21. 如果模型y t=b0+b1x t+u t存在序列相关,则cov(u t, u s) ≠0(t≠s)。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估计、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是根据其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学为什么是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论赋予经验内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学资料整理第一节 异方差性的概念●异方差性的实质同方差的含义 同方差性:对所有的 有:因为方差是度量被解释变量Y 的观测值围绕回归线的分散程度,因此同方差性指的是所有观测值的分散程度相同。

异方差的含义 设模型为如果对于模型中随机误差项ui 有: 则称具有异方差性。

进一步,把异方差看成是由于某个解释变量的变化而引起的,则●异方差产生的原因(一)模型中省略了某些重要的解释变量 假设正确的计量模型是:假如略去 ,而采用(1,2,...,)i i n =2Var()=i u σ12233...1,2,...,i i i k ki iY X X X u i nββββ=+++++=2Var(),1,2,3,...,i i u i nσ==12233E() (i)iikkiY X X X ββββ==++++22Var()()iii u f X σσ==12233iiiiY X X uβββ=+++*122i i iY X u ββ=++3iX (5.5)当被略去的 与 有呈同方向或反方向变化的趋势时,随 的有规律变化会体现在 式的 中。

(二)模型的设定误差模型的设定主要包括变量的选择和模型数学形式的确定。

模型中略去了重要解释变量常常导致异方差,实际就是模型设定问题。

除此而外,模型的函数形式不正确,如把变量间本来为非线性的关系设定为线性,也可能导致异方差。

(三)数据的测量误差样本数据的观测误差有可能随研究范围的扩大而增加,或随时间的推移逐步积累,也可能随着观测技术的提高而逐步减小。

(四)截面数据中总体各单位的差异通常认为,截面数据较时间序列数据更容易产生异方差。

这是因为同一时点不同对象的差异,一般说来会大于同一对象不同时间的差异。

不过,在时间序列数据发生较大变化的情况下,也可能出现比截面数据更严重的异方差。

第二节 异方差性的后果●对参数估计统计特性的影响2iX 2iX 3iX *iu(一)参数估计的无偏性仍然成立参数估计的无偏性仅依赖于基本假定中的零均值假定(即)。

所以异方差的存在对无偏性的成立没有影响。

(二)参数估计的方差不再是最小的同方差假定是OLS估计方差最小的前提条件,所以随机误差项是异方差时,将不能再保证最小二乘估计的方差最小。

●对参数显著性检验的影响由于异方差的影响,使得无法正确估计参数的标准误差,导致参数估计的t 统计量的值不能正确确定,所以,如果仍用t 统计量进行参数的显著性检验将失去意义。

●对预测的影响尽管参数的OLS估计量仍然无偏,并且基于此的预测也是无偏的,但是由于参数估计量不是有效的,从而对Y的预测也将不是有效的。

第三节异方差性的检验常用检验方法:●图示检验法(一)相关图形分析方差描述的是随机变量取值的(与其均值的)离散程度。

因为被解释变量 与随机误差项 有相同的方差,所以利用分析 与 的相关图形,可以初略地看到 的离散程度与 之间是否有相关关系。

如果随着 的增加, 的离散程度为逐渐增大(或减小)的变化趋势,则认为存在递增型(或递减型)的异方差。

(二)残差图形分析 设一元线性回归模型为:运用OLS 法估计,得样本回归模型为: 由上两式得残差:绘制出 对 的散点图 ◆如果 不随 而变化,则表明不存在异方差; ◆如果 随 而变化,则表明存在异方差。

● Goldfeld -Quanadt 检验作用:检验递增性(或递减性)异方差。

基本思想:将样本分为两部分,然后分别对两个样iX 12iiiY ββX u=++12ˆˆˆiiY =β+βX ˆ-i i ie Y Y =2i e iuiuiX iX本进行回归,并计算两个子样的残差平方和所构成的比,以此为统计量来判断是否存在异方差。

(一) 检验的前提条件1、要求检验使用的为大样本容量。

2、除了同方差假定不成立外,其它假定均满足(二)检验的具体做法 1.排序将解释变量的取值按从小到大排序。

2.数据分组将排列在中间的约1/4的观察值删除掉,记为 ,再将剩余的分为两个部分,每部分观察值的个数为 。

3.提出假设4.构造F 统计量分别对上述两个部分的观察值求回归模型,由此得到的两个部分的残差平方为 和 。

为前一部分样本回归产生的残差平方和, 为后一部分样本回归产生的残差平方c(-)/2n c 21ie∑22ie ∑21ie ∑[(-)/2]-n c kk222220112H :,=1,2,...,;H :i nσ=σi n σσ...σ≤≤≤22ie∑和。

它们的自由度均为,为参数的个数。

(三)检验的特点●要求大样本●异方差的表现既可为递增型,也可为递减型●检验结果与选择数据删除的个数的大小有关●只能判断异方差是否存在,在多个解释变量的情下,对哪一个变量引起异方差的判断存在局限。

● White检验(一)基本思想:不需要关于异方差的任何先验信息,只需要在大样本的情况下,将OLS估计后的残差平方对常数、解释变量、解释变量的平方及其交叉乘积等所构成一个辅助回归,利用辅助回归建立相应的检验统计量来判断异方差性。

(二)检验的特点要求变量的取值为大样本不仅能够检验异方差的存在性,同时在多变量的情况下,还能判断出是哪一个变量引起的异方差。

(四)检验的特点●变量的样本值为大样本●数据是时间序列数据●只能判断模型中是否存在异方差,而不能诊断出哪一个变量引起的异方差。

五、Glejser检验(一)检验的基本思想由OLS法得到残差,取得绝对值,然后将对某个解释变量回归,根据回归模型的显著性和拟合优度来判断是否存在异方差。

(二)检验的特点不仅能对异方差的存在进行判断,而且还能对异方差随某个解释变量变化的函数形式进行诊断。

该检验要求变量的观测值为大样本。

第四节异方差性的补救措施异方差性是指模型中随机误差项的方差不是常量,而且它的变化与解释变量的变动有关。

2.产生异方差性的主要原因有:模型中略去的变量随解释变量的变化而呈规律性的变化、变量的设定问题、截面数据的使用,利用平均数作为样本数据等。

3.存在异方差性时对模型的OLS估计仍然具有无偏性,但最小方差性不成立,从而导致参数的显著性检验失效和预测的精度降低。

4.检验异方差性的方法有多种,常用的有图形法、Goldfeld-Qunandt 检验、White 检验、ARCH 检验以及Glejser 检验,运用这些检验方法时要注意它们的假设条件。

5.异方差性的主要方法是加权最小二乘法,也可以用变量变换法和对数变换法。

变量变换法与加权最小二乘法实际是等价的。

第一节 什么是多重共线性()Rank kX当时,表明在数据矩阵X 中,至少有一个列向量可以用其余的列向量线性表示,则说明存在完全的多重共线性。

二、产生多重共线性的背景多重共线性产生的经济背景主要有几种情形:1.经济变量之间具有共同变化趋势。

2.模型中包含滞后变量。

3.利用截面数据建立模型也可能出现多重共线性。

4.样本数据自身的原因。

第二节多重共线性产生的后果2.对参数区间估计时,置信区间趋于变大3.假设检验容易作出错误的判断4.可能造成可决系数较高,但对各个参数单独的t 检验却可能不显著,甚至可能使估计的回归系数符号相反,得出完全错误的结论。

第三节多重共线性的检验一、简单相关系数检验法含义:简单相关系数检验法是利用解释变量之间的线性相关程度去判断是否存在严重多重共线性的一种简便方法。

判断规则:一般而言,如果每两个解释变量的简单相关系数(零阶相关系数)比较高,例如大于0.8,则可认为存在着较严重的多重共线性。

注意:较高的简单相关系数只是多重共线性存在的充分条件,而不是必要条件。

特别是在多于两个解释变量的回归模型中,有时较低的简单相关系数也可能存在多重共线性。

因此并不能简单地依据相关系数进行多重共线性的准确判断。

方差膨胀因子越大,表明解释变量之间的多重共性越严重。

反过来,方差膨胀因子越接近于1,多重共线性越弱。

经验表明,方差膨胀因子≥10时,说明解释变量与其余解释变量之间有严重的多重共线性,且这种多重共线性可能会过度地影响最小二乘估计三、直观判断法1. 当增加或剔除一个解释变量,或者改变一个观测值时,回归参数的估计值发生较大变化,回归方程可能存在严重的多重共线性。

2. 从定性分析认为,一些重要的解释变量的回归系数的标准误差较大,在回归方程中没有通过显著性检验时,可初步判断可能存在严重的多重共线性。

3. 有些解释变量的回归系数所带正负号与定性分析结果违背时,很可能存在多重共线性。

4. 解释变量的相关矩阵中,自变量之间的相关系数较大时,可能会存在多重共线性问题。

四、逐步回归法逐步回归的基本思想将变量逐个的引入模型,每引入一个解释变量后,都要进行F检验,并对已经选入的解释变量逐个进行t 检验,当原来引入的解释变量由于后面解释变量的引入而变得不再显著时,则将其剔除。

以确保每次引入新的变量之前回归方程中只包含显著的变量。

在逐步回归中,高度相关的解释变量,在引入时会被剔除。

因而也是一种检测多重共线性的有效方法。

第四节多重共线性的补救措施一、修正多重共线性的经验方法1. 剔除变量法把方差扩大因子最大者所对应的自变量首先剔除再重新建立回归方程,直至回归方程中不再存在严重的多重共线性。

注意: 若剔除了重要变量,可能引起模型的设定误差。

2. 增大样本容量如果样本容量增加,会减小回归参数的方差,标准误差也同样会减小。

因此尽可能地收集足够多的样本数据可以改进模型参数的估计。

问题:增加样本数据在实际计量分析中常面临许多困难。

3. 变换模型形式一般而言,差分后变量之间的相关性要比差分前弱得多,所以差分后的模型可能降低出现共线性的可能性,此时可直接估计差分方程。

问题:差分会丢失一些信息,差分模型的误差项可能存在序列相关,可能会违背经典线性回归模型的相关假设,在具体运用时要慎重。

4. 利用非样本先验信息通过经济理论分析能够得到某些参数之间的关系,可以将这种关系作为约束条件,将此约束条件和样本信息结合起来进行约束最小二乘估计。

5. 横截面数据与时序数据并用首先利用横截面数据估计出部分参数,再利用时序数据估计出另外的部分参数,最后得到整个方程参数的估计。

注意:这里包含着假设,即参数的横截面估计和从纯粹时间序列分析中得到的估计是一样的。

6. 变量变换变量变换的主要方法:(1)计算相对指标(2)将名义数据转换为实际数据(3)将小类指标合并成大类指标变量数据的变换有时可得到较好的结果,但无法保证一定可以得到很好的结果。

二、逐步回归法(1)用被解释变量对每一个所考虑的解释变量做简单回归。

(2)以对被解释变量贡献最大的解释变量所对应的回归方程为基础,按对被解释变量贡献大小的顺序逐个引入其余的解释变量。

若新变量的引入改进了R2和F 检验,且回归参数的t 检验在统计上也是显著的,则在模型中保留该变量。

相关文档
最新文档