量子力学论文
关于量子力学发展简史论文

关于量子力学发展简史论文关于量子力学发展简史论文摘要:量子理论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。
玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。
终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。
关键词:量子力学;量子理论;矩阵力学;波动力学;测不准原理量子力学揭示了微观物质世界的基本规律,为原子物理、固体物理学、核物理学和粒子物理学奠定了基础。
它能很好地解释原子结构、原子光谱的规律性、化学元素的性质,光的吸收与辐射等等方面。
从1900年到1913年量子论的早期提出,到经过许多科学家如玻恩、海森伯、玻尔等人的努力诠释,量子力学得到了进一步发展。
后来遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。
双方展开了一场长达半个世纪的论战,至今尚未结束。
一、量子论的早期1 普朗克的能量子假设普朗克在黑体辐射的维恩公式和瑞利公式之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。
但是,他经过几个月的紧张努力也没能从力学的普遍理论直接推出新的辐射定律。
最后只好用玻尔兹曼的统计方法来试一试。
他根据黑体辐射的测量数据计算出普适常数,后来人们称这个常数为普朗克常数,也就是普朗克所谓的“作用量子”,而把能量元称为能量子。
2光电效应的研究普朗克的出能量子假说具有划时代的意义,但是,不论是他本人还是同时代人当时对这一点都没有充分认识。
爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.1905年,爱因斯坦在其论文《关于光的产生和转化的一个试探性观点》中,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。
量子力学论文

量子力学论文集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#量子理论及技术的发展【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。
【关键词】量子力学激光半导体扫描隧道显微镜量子信息回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。
一、从“光量子假说”到激光技术1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。
随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。
1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。
激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。
其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到论的又一重大课题。
在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验偏离较大。
1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。
从1913年玻尔提出半经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。
量子力学中的隧穿效应的原理及其应用

量子与统计物理课题论文论文名称:量子力学中隧穿效应的原理及其应用所在班级:材料物理081小组成员:黄树繁(08920107)蒋昌达(08920108)摘要:量子隧穿效应为一种量子特性,是如电子等微观粒子能够穿过它们本来无法通过的“墙壁”的现象。
这是一种特殊的现象,这是因为根据量子力学,微观粒子具有波的性质,而有不为零的几率穿过位势障壁。
本文主要介绍量子隧穿效应的基本原理、简单和稍微复杂一点的情况的推导过程,然后介绍下隧穿效应在实际中的应用—扫描隧道显微镜(STM)。
关键词:量子力学;隧穿效应;STMAbstract:Tnneling effect is a property of quantum,is a effect of Microscopic particles ,for example electrons,can get through “barriers” which they cannot used to.It is a unique phenomenon in Quantum mechanics which do not exist in classical mechanics. This paper mainly introduce the basic principle of QM,and conduct the mathematical derivation of the modle. Finally,we introduce an important application in practice of quantum tunneling effect—Scanning Tunneling Microscope.Key Word: Quantum mechanics;Tunneling effect;STM0.引言对于一个经典粒子(具有一定的有效质量)在外加电磁场中的行为服从牛顿力学,同时还受到声子、杂质等的散射,无须考虑量子效应 ( 尺寸引起的量子化、量子力学隧穿透效应、量子相干效应等)。
量子力学小论文

= ������������(t1 − t0)其中������������
= ������������
2������
是动量为������������的简
谐波的相速度。由此,叠加的新的波包将相对 t0 时刻的波包在空间上存在扩展
效应。也就是说,德布罗意波的波包在经历时间的演化将在空间中逐渐扩展开,
粒子的非定域性也随时表现的越加明显。
量子力学的几率解释
对于存在电磁能量的量子—光子,我们可以将其描写为平均圆频率为
和总
能量为
的归一化波包。又因为作为描述波函数 k 和圆频率
的简谐
波的振幅的权重而引入的谱函数:
在描写光子时,则
将看做是解释光子处于波数为 k 的几率密度 P(k)的
一种度量。也即,找到光子处在波数为
之间的几率为
p(k)Δk = N|������(������)|2Δ������
这样的 一个组态称之为波包, f(k)为谱函数 对应于波函数为 k 和圆频率为 的简谐波的振幅。
考察一个简单的谱函数-----Gaussian 函数
其中 f(k)在 k=k0 处取得极大值, 和代替积分近似有:
为高斯谱函数的宽度并且通过有限项的求
对于时间的演化,在 t1>0 时刻: 由于组成波包的所有波包均以光速 c 移动了c ∗ t1,因此由这 t1 时刻叠加的新波 包较 t=0 时刻而言也仅仅表现为波包移动了c ∗ t1的距离而形状保持不变。故上 述形式的波包在任意时刻保持同样形状。
2������ 与光子的平面波类似,给出非相对论下关系:
上式即为物质波的德布罗意波。
对应的相速度
������������
=
������ = ������ 。
物理学专业优秀毕业论文范本量子力学中的量子纠缠与量子通信研究

物理学专业优秀毕业论文范本量子力学中的量子纠缠与量子通信研究在物理学专业中,量子力学是一个重要的研究领域。
量子力学中的一个重要概念就是量子纠缠,它是描述微观粒子之间的相互关系和相干性的基本性质。
本文将探讨量子纠缠在量子通信中的应用,并以优秀的毕业论文范本的形式进行论述。
第一部分:引言量子力学是描述微观世界的理论框架,它在过去几十年里取得了巨大的突破,并引发了众多颠覆性的科技创新。
其中,量子纠缠是量子力学中一个重要的现象,它描述了量子系统之间的非经典相关性。
量子纠缠的应用在量子通信领域具有重要意义。
第二部分:量子纠缠的概念与原理量子纠缠是指处于某个纯态的量子系统的多粒子状态无法被分解为单个粒子态的一个重要现象。
它表征了粒子间的相互依赖关系,即使这些粒子远离彼此,它们的状态仍然是密切相关的。
量子纠缠可以通过数学形式表示,例如贝尔态、GHZ态等。
量子纠缠的原理是量子力学的基本规律之一,它为量子通信的实现提供了理论基础。
第三部分:量子纠缠在量子通信中的应用1. 量子隐形传态量子纠缠在量子通信中的一个重要应用是量子隐形传态。
量子隐形传态是指利用量子纠缠将一个未知量子态传输给另一个空间位置上的粒子,而不需要将原有粒子本身传输过去。
这种传输方式在传统通信中是不可实现的,但在量子通信中可以通过量子纠缠的特性实现。
2. 量子密钥分发量子纠缠还可以用于实现安全的量子密钥分发。
传统的密钥通信方式容易受到窃听和破解的威胁,而利用量子纠缠的量子密钥分发可以实现完全安全的信息传输。
通过量子纠缠,可以将密钥拆分成两部分,并在传输过程中进行对应的密钥检测,以确保密钥的安全性。
第四部分:量子纠缠与量子通信的实验验证为了验证量子纠缠在量子通信中的应用,科学家们进行了一系列的实验研究。
这些实验证明了量子纠缠在量子通信中的有效性和可行性。
例如,利用量子纠缠成功实现了量子隐形传态和量子密钥分发等关键技术,为后续的量子通信应用打下了坚实的基础。
量子力学科学论文Word版

量子力学科学论文Word版量子力学科学论文
1. 引言
- 介绍量子力学的背景和重要性;
- 阐述本篇科学论文的研究目的和意义。
2. 量子力学的基本概念
- 介绍波粒二象性;
- 解释量子叠加和量子纠缠;
- 讲解量子态和测量。
3. 量子力学的数学描述
- 向读者阐述量子力学中的基本数学工具,如希尔伯特空间、本征值问题、波函数等;
- 解释量子力学中的算符和观测量。
4. 量子力学的主要原理
- 介绍不确定性原理和波函数塌缩;
- 阐述量子力学的时间演化算符和薛定谔方程。
5. 量子力学中的应用
- 介绍量子纠缠的应用,如量子隐形传态和量子密码学;- 解释量子力学在微观世界的实验验证和应用。
6. 研究方法与实验进展
- 分享近期关于量子力学的研究方法和实验进展;
- 讨论相关的数据和实验结果。
7. 讨论与展望
- 对量子力学的发展前景进行展望;
- 分析当前研究中存在的问题和挑战;
- 提出可能的解决方案。
8. 结论
- 总结本文的研究内容和重要发现;
- 强调量子力学的重要性和应用前景。
9. 参考文献
- 引用本文涉及到的研究论文、书籍和其他来源。
以上是《量子力学科学论文》的大纲,希望能对您的写作提供一些帮助。
根据需要,您可以进一步扩充和详细描述每个部分的内容。
注意使用适当的科技术语和准确的描述,以确保论文的学术性和专业性。
祝您写作顺利!。
量子力学论文

量子力学与经典力学异同之我见摘要:1.方法与任务经典力学的任务大致可以分为三类:(1)初值问题:给定系统初始时刻的状态,即每一个质点的坐标及速度,给定每一个质点的手里函数Fi(t),描写体系未来的状态(位置和速度)。
(2)定态问题:给定体系的受力条件,描写体系最后达到的平衡条件(质点或刚体的位置)。
(3)逆向问题:已知系统中质点的运动规律反推质点(或由无数质点组成的物体)的受力信息。
例如在汽车设计中,需要根据时速确定轮胎所受的离心力,从而设计所用的材料的强度。
量子力学作为力学也履行经典力学的三个任务。
所不同的是,面对初值问题确定系统的初试波函数时,很难用仪器直接测量。
通常将能量最低的本征态视为初态,其依据是量子体系特别是由少数粒子组成的体系容易达到统计力学平衡状态,这时系统处于最低能态的几率最大。
处理定态问题时由于量子力学引入了力学量算符,导致体系的力学量通常只能取一些分立值,即出现不连续的量子化现象。
量子力学将力学的第三个任务处理为散射问题,即由碰撞后粒子的运动状态确定碰撞过程中的作用力形式。
量子力学在履行上述任务时首先根据经典力学关于质点的哈密顿量写出相应的算符,由此确定体统的波函数Ψ(t)随时间的演化,而波函数模平方∣Ψ(t)∣²代表质点在空间某点出现的概率密度。
在这种意义上,可以说量子力学描写的东西仍然是质点在微观层次的运动状态,这是与经典力学相同的。
所不同的是,经典力学所给出的描写是唯一确定的,而量子力学通常只给出各种时间出现的概率,即便是任意时刻的波函数Ψ(t)已被完全确定。
2.自由电子如何飞翔与人们日常生活最密切相关的基本粒子是电子。
我们所感受到的各种物体的颜色、体积、软硬程度,都由电子运动状态决定;有关电视电脑等各种电器以及大量测量仪器的设计,其主要处理的物理对象也是电子。
如下图所示,电子枪将一个电子以速度v 射入真空室。
设电子进入真空室时的位置矢量为零,试问经历时间t 后,电子空间位置如何?R (t)=v*t按照速度的定义其测定必须观测粒子在给定时间间隔△t 内所经过的空间距离△s ,由此得到在△s 内的平均速度V=△s ∕△t 。
量子力学学术论文Word版

量子力学学术论文Word版引言量子力学是现代物理学的重要分支,对于理解微观世界的行为具有关键性的意义。
本文旨在研究量子力学的基本原理和一些重要的应用。
量子力学的基本概念量子力学的核心观念是波粒二象性。
根据波动粒子二象性理论,所有粒子都具有波动性质,而波动性质则通过波函数来描述。
波函数是描述粒子状态的数学函数,通过它可以获得粒子的位置、动量以及其他性质的概率分布。
根据薛定谔方程,波函数随时间的演化可以确定粒子的运动。
量子力学的基本原理量子力学的基本原理包括波函数叠加原理、观测与测量原理、确定原理等。
根据波函数叠加原理,当多个波函数叠加时,最终得到的波函数是各个波函数的叠加结果。
观测与测量原理指出,观测过程会导致系统的状态塌缩到一个确定的状态。
确定原理则表明在某一时刻,粒子的位置和动量无法同时精确确定。
量子力学的应用量子力学的应用非常广泛,涉及到量子计算、量子通信、量子力学光学等领域。
其中,量子计算是最具有潜力的应用之一。
量子计算利用量子比特的叠加和纠缠特性,可以执行一些传统计算机无法完成的任务,例如因子分解和优化问题。
此外,量子通信利用量子纠缠的特性,可以实现安全的加密通信,抵抗量子计算的破解。
量子力学光学则将光学和量子力学结合,研究光子的量子行为,在量子计算、量子通信等领域有着重要应用。
结论量子力学是解释微观世界的理论框架,通过波函数描述了粒子的特性和行为。
其基本原理展示了核心概念,而应用则表明了量子力学在未来科技发展中的重要性。
我们相信随着量子技术的不断发展,量子力学将为人类带来更多令人兴奋的突破。
以上是对量子力学的一个简要介绍,包括基本概念、基本原理以及应用领域等。
随着科学技术的发展,我们对量子力学的理解和应用将会不断深化。
新的发现和进展将进一步推动科技的发展,带来更多的创新和突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从波函数到薛定谔方程
摘要:本文从波函数出发,阐述薛定谔的推导过程,并且根据哈特里福克方程,克莱因戈尔登方程完善薛定谔方程的泡利不相容原理,洛伦兹不变性。
关键词:波函数薛定谔方程哈特里福克方程克莱因戈尔登方程
一.波函数:
微观粒子的运动状态称为量子态,是用波函数来描述的,这个波函数所反映的微观粒子波动性,这个波函数所反映的微观粒子波动性,就是德布罗意波。
(量子力学的基本假设之一)并且,玻恩指出:德布罗意波或波函数不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。
(1)推导过程:
在波动学中,描述波动过程的数学函数都是空间、时间二元函数一列沿X轴正向传播的平面单色简谐波的波动方程,即:
应用欧拉公式,可以推广到复数域:
再通过德布罗意公式,可以得到自由粒子的波函数:
(2)波函数性质
1.自由粒子的能量和动量为常量,其波函数所描述的德布罗意波是平面波。
2.对于处在外场作用下运动的非自由粒子,其能量和动量不是常量,其波函数所描述的
德布罗意波就不是平面波。
3.外场不同,粒子的运动状态及描述运动状态的波函数也不相同。
(3)波函数的统计假设
设描述粒子运动状态的波函数为,则
1.空间某处波的强度与在该处发现粒子的概率成正比;
2.在该处单位体积内发现粒子的概率(概率密度)与
的模的平方成正比。
(4)波函数统计意义的具备条件
1.连续- 因概率不会在某处发生突变,故波函数必须处处连续;
2.单值- 因任一体积元内出现的概率只有一种,故波函数一定是单值的;
3.有限- 因概率不可能为无限大,故波函数必须是有限的;
二.薛定谔方程:
1.1925年德国物理学家薛定谔提出的非相对论性的量子力学基本方程,质量为m的粒
子,在势能函数为的势场中运动,当其运动速度远小于光速时,它的波函数
所满足的方程为:
这就是薛定谔方程,它反映微观粒子运动状态随时间变化的力学规律,又称含时薛定谔方程。
其中,为哈密顿算符。
2.若粒子所在的势场只是空间函数,那么对应于一个可能态有一个能量值E,即可得到定态薛定谔方程:
3.定态是指波函数具有的形式。
它的特点是其概率密度与时间无关。
4.定态波函数中振幅函数满足统计的条件:
(1)连续,单值,有限的标准条件
(2)归一化条件
(3)对坐标的一阶导数存在并且连续
5.可以看出定态波函数和定态薛定谔方程可以通过势能函数互相导出。
三.哈特里-福克方程:
1.为了解决多电子体系薛定谔方程近似求解的问题量子化学家道格拉斯·哈特里在1928年提出了哈特里假设,他将每个电子看做是在其他所有电子构成的平均势场中运动的粒子,并且首先提出了迭代法的思路。
哈特里根据他的假设,将体系电子哈密顿算子分解为若干个单电子哈密顿算子的简单代数和,每个单电子哈密顿算子中只包含一个电子的坐标,因而体系多电子波函数可以表示为单电子波函数的简单乘积,这就是哈特里方程。
2.由于哈特里没有考虑电子波函数的反对称要求,事实上他的方程还是有问题的。
1930年,哈特里的学生弗拉基米尔·福克,提出了考虑泡利原理的自洽场迭代方程和单行列式型多电子体系波函数,这就是今天的哈特里—福克方程。
3.所以,在薛定谔没有解决的情况下,哈特里福克方程使得量子力学是满足泡利原理的。
4.哈特里-福克方程推导:
哈特里—福克方程源出于对多电子体系电子波函数的变分法处理。
在玻恩-奥本海默近似条件下,一个多电子体系的电子运动与能量可以与原子核的运动和能量相互分离,这样利用电子哈密顿算子和多电子波函数便可以计算体系的电子能量,其能量的表达式为:
式中表示体系基态电子能量,表示体系的电子哈密顿算子,代表基态多电子波函数。
是一个由体系单电子分子轨道波函数为基函数组建的斯莱特行列式形的多电子波函数,构建的各个分子轨道相互之间是正交归一的,因而有限制条件
是体系电子哈密顿算子,根据玻恩-奥本海默近似,
可以将分解为两部分
,算子
仅仅涉及一个电子,算子是涉及两个电子的算子,考虑分子轨道的正交归一性,应用拉格朗日乘因子法对函数
应用变分法进行处理,式中是拉格朗日待定因子,是的缩略形
式。
变分法的处理过程如下:
其中
考虑到流动坐标的不可区分性,可以简化为:
依照同样原理考虑流动坐标的不可分辨性,中的项有:
将两项相加,最终可以表示为:
若L函数处于最低点,则面对其中变量向各个方向的微小变化都应该有在此可以取,则在表达式中,第一项前会产生一个i的系数,对第一项取复共轭的第二项前会产生一个-i系数:
消去虚数单位,并与所获得的表达式相加,可以消去表达式中取复共轭的第二项:
在引入库仑算子和交换算子的概念之后,上述表达式可以改写为:
由于对任意方向的上述等式均应成立,因而必须有:
整理等式的形式得到:
引入Fock算子,方程可以表达为:
这就是哈特里—福克方程,为了方便方程的解,通过对分子轨道波函数进行酉变换处理,使得由构成的矩阵对角化,一般的,不可解的哈特里—福克方程转化为正则哈特里—福克方程:
四.克莱因戈尔登方程
1.洛伦兹不变性是时空的一个关键性质,出自于狭义相对论,适用于全域性的场合。
也是当年薛定谔没有在量子力学中推出的性质。
2.克莱因-戈尔登方程是相对论量子力学和量子场论中的最基本方程,它是薛定谔方程的相对论形式,用于描述自旋为零的粒子。
3.基本形式:
克莱因-戈尔登方程为。
很多时候会用自然单位(c=ħ=1)写成
由于平面波为此方程已知的一组解,所以方程形式由它决定:
遵从狭义相对论的能量动量关系式
跟薛定谔方式不同,每一个k在此都对应着两个,只有通过把频率的正负部份分开,才能让方程描述到整个相对论形式的波函数。
若方程在时间流逝下不变,则其形式为。
4.然后在相对论量子力学下进行推导,得到达朗贝尔算符,推出克莱因-戈尔登方程
是一个量子力学的波方程,从而意味着它满足洛伦兹不变性。
推导过程:
自由粒子的薛定谔方程是非相对论量子力学的最基本方程:
其中是动量算符。
利用狭义相对论中四维动量的不变性导出的相对论动量能量关系,相对论能量
替换薛定谔方程左边自由粒子的动能,
并最终得到它的协变形式:
其中:
达朗贝尔算符:
五.总结
从上述的各个结论和各个方程的推导来看,量子力学是满足场论和相对论的许多结论的,量子力学的正确性毋庸置疑。
本文并没有给出狄拉克方程的来源和推导,其实,在克莱因-戈尔登方程的建立后,由于存在负能量,狄拉克推出了狄拉克方程,保证了量子与相对论的统一性,量子力学建立起的模型和帝国已经越来越被物理学家接受。
选到这课,我也感到很幸运,毕竟很喜欢量子力学,有异于经典物理自然是很有趣,与许多生活事实都不同,这也激发了我的兴趣。
很多人认为量子力学难,其实对那些深刻的方程进行理解后,你就能知道物理学家想干什么了,但这需要大量的努力,所以我还是会继续学习量子力学,学习通过量子力学衍生的量子化学,量子计算机,量子算法。
我相信,量子的时间永远会给我带来神秘和学习的动力。