(完整版),基本初等函数公式总结,推荐文档

合集下载

基本初等函数公式总结推荐文档

基本初等函数公式总结推荐文档

基本初等函数公式总结推荐文档在数学中,基本初等函数是指由已知的基本函数通过基本运算(如加、减、乘、除和函数复合)而产生的函数。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

1.常数函数:常数函数是指函数的取值在一个集合上恒为常数。

常见的常数函数有零函数和单位函数。

零函数的公式为f(x)=0,单位函数的公式为f(x)=12.幂函数:幂函数是指以一个固定的实数为底,以自变量的不同次幂为指数的函数。

常见的幂函数包括平方函数和立方函数等。

平方函数的公式为f(x)=x^2,立方函数的公式为f(x)=x^33.指数函数:指数函数是以指数为自变量的函数,其中底数为常数且大于0且不等于1、常见的指数函数包括以e为底的自然指数函数和以10为底的常用对数函数。

自然指数函数的公式为 f(x)=e^x,常用对数函数的公式为 f(x)=log(x)。

4.对数函数:对数函数是指以对数为自变量的函数,其中底数为常数且大于0且不等于1、常见的对数函数包括自然对数函数和常用对数函数。

自然对数函数的公式为 f(x)=ln(x),常用对数函数的公式为f(x)=log(x)。

5.三角函数:三角函数是以角度或弧度为自变量的函数,其中常见的三角函数包括正弦函数、余弦函数和正切函数等。

正弦函数的公式为f(x)=sin(x),余弦函数的公式为 f(x)=cos(x),正切函数的公式为f(x)=tan(x)。

6.反三角函数:反三角函数是三角函数的反函数,其中常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。

反正弦函数的公式为f(x)=asin(x),反余弦函数的公式为 f(x)=acos(x),反正切函数的公式为 f(x)=atan(x)。

总结起来,基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

掌握这些基本函数的公式和性质,能够帮助我们解决很多数学问题。

推荐的文档是《初等函数与普通函数》一书,该书详细介绍了基本初等函数的公式和性质,同时还包括了基本初等函数的图像和应用等内容。

基本初等函数16个公式

基本初等函数16个公式

基本初等函数16个公式1.幂函数公式:a^m*a^n=a^(m+n)幂函数指的是形如f(x)=a^x的函数,其中a是常数。

2.幂函数公式:(a^m)^n=a^(m*n)该公式表示对一个幂函数求幂。

3.倒数公式:1/a*a=1任何数的倒数乘以它本身等于14. 对数公式:log(a^n) = n * log(a)对数函数是幂函数的逆函数,将指数与底数互换。

5. 对数公式:log(a*b) = log(a) + log(b)对数函数在乘法上的性质。

6. 对数公式:log(a/b) = log(a) - log(b)对数函数在除法上的性质。

7. 对数公式:log(1) = 0对数函数中底数为1时,其结果为0。

8.指数函数公式:a^0=1任何常数的0次方等于19.指数函数公式:a^(-n)=1/(a^n)任何常数的负指数等于其正指数的倒数。

10. 三角函数公式:sin(-x) = -sin(x)正弦函数对称的性质。

11. 三角函数公式:cos(-x) = cos(x)余弦函数对称的性质。

12. 三角函数公式:tan(x) = sin(x)/cos(x)正切函数定义。

13. 三角函数公式:sec(x) = 1/cos(x), csc(x) = 1/sin(x),cot(x) = 1/tan(x)余切、正割和余割函数的定义。

14. 双曲函数公式:cosh(x) = (e^x + e^(-x))/2双曲余弦函数的定义。

15. 双曲函数公式:sinh(x) = (e^x - e^(-x))/2双曲正弦函数的定义。

16. 双曲函数公式:tanh(x) = sinh(x)/cosh(x)双曲正切函数的定义。

这些基本初等函数的公式是数学中非常重要的,它们在计算和应用中经常被使用。

通过理解并熟练掌握这些公式,我们可以更好地解决各种数学问题。

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。

它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。

下面将对基本初等函数的知识点进行总结。

一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。

它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。

多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。

二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。

指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。

三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。

对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。

四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。

三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。

五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。

它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。

反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。

基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。

(完整版)高数知识点总结

(完整版)高数知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。

3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。

例如:||x y =连续但不可导。

6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

(完整)高中基本初等函数总结归纳,推荐文档

(完整)高中基本初等函数总结归纳,推荐文档

③将 x f 1( y) 改写成 y f 1(x) ,并注明反函数的定义域.
(8)反函数的性质
①原函数 y f (x) 与反函数 y f 1(x) 的图象关于直线 y x 对称.
②函数 y f (x) 的定义域、值域分别是其反函数 y f 1(x) 的值域、定义域.
③若 P(a, b) 在原函数 y f (x) 的图象上,则 P' (b, a) 在反函数 y f 1(x) 的图象
上.
④一般地,函数 y f (x) 要有反函数则它必须为单调函数.
(1)幂函数的定义
〖2.3〗幂函数
一般地,函数 y x 叫做幂函数,其中 x 为自变量, 是常数.
(2)幂函数的图象
建议收藏下载本文,以便随时学习!
(3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,
图象分布在第一、二象限(图象关于 y 轴对称);是奇函数时,图象分布在第一、三象限(图
象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.
②过定点:所有的幂函数在 (0, ) 都有定义,并且图象都通过点 (1,1) .
③单调性:如果 0 ,则幂函数的图象过原点,并且在[0, ) 上为增函数.如果 0 ,
a 变化对图象的影响 在第一象限内, a 越大图象越靠低;在第四象限内, a 越大图象越靠高.
(6)反函数的概念
设函数 y f (x) 的定义域为 A ,值域为 C ,从式子 y f (x) 中解出 x ,得式子
x ( y) .如果对于 y 在 C 中的任何一个值,通过式子 x ( y) , x 在 A 中都有唯一
建议收藏下载本文,以第便二章随基时本初学等函习数(!Ⅰ)

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

基本初等函数公式及运算法则

基本初等函数公式及运算法则

基本初等函数公式及运算法则一、基本初等函数公式:1. 幂函数公式: $(a^m)^n=a^{mn}$;2. 对数函数公式: $\log_{a^n}b=\frac{1}{n}\log_ab$;3. 指数函数公式: $a^{\log_ab}=b$;4.三角函数公式:$\begin{aligned} (\sin x)^2+(\cos x)^2&=1\\ (\secx)^2&=1+(\tan x)^2 \\ (\csc x)^2&=1+(\cot x)^2 \end{aligned}$。

5.反三角函数公式:$\begin{aligned} \sin^{-1}x+\cos^{-1} x&=\frac{\pi}{2}\\\tan^{-1}x+\cot^{-1} x&=\frac{\pi}{2} \end{aligned}$。

6.双曲函数公式:$\begin{aligned} \cosh^2x-\sinh^2x&=1\\ \cos^2x+\sinh^2x&=1 \end{aligned}$。

二、基本初等函数运算法则:1.基本四则运算法则:加法、减法、乘法、除法;2. 复合函数法则:$(f\circ g)(x)=f(g(x))$;3. 取模运算法则:$(a+b)\bmod m=(a\bmod m+b\bmod m)\bmod m$;4. 取整函数法则:$\lfloor x+y\rfloor=\lfloorx\rfloor+\lfloor y\rfloor,\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$;5.比较大小法则:对于正整数$a,b,c$,若。

$(1)\ a>b>0,c>0$,则$ac>bc$;$(2)\ a>b>0,c<0$,则$ac<bc$;$(3)\ a<b<0,c>0$,则$ac<bc$;$(4)\ a<b<0,c<0$,则$ac>bc$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( f g)dx f dx gdx kfdx k f dx
运算公式:
fg dx f dg fg g df
分部积分法计算法则




ln x
x
ex
sin x 、 cos x
两两组合,位置排在前面的选 f ,排列在后面的选 g
dx c dx
1 dx d ln x x
凑微分公式 1 dx 2d x x
导数公式
(c) 0 (0) 0
(x) 1 (x2 ) 2x
(log a
x)
1 x ln a
(ln x) 1 x
(sin x) cos x (cos x) sin x
1 0
1 x
1 x2
(a x ) a x ln a
( f g) ( f ) (g) ( fg) ( f )g f (g) (kf ) k( f )
0 dx c
1 dx x c
x
dx
1 2
x2
c
1 x2
dx 1 c x
不定积分公式
1 x
dx 2
x c
ax dx ax c
ln a
不定积分运算法则: 加减法,数乘
x
dx
2
3
x2
c
3
xa dx 1 xa1 c
a 1
1 x
dx
ln |
x | c
ex dx ex c sin x dx cos x c cos x dx sin x c
(x a ) ax a1
( x) 1 2x
(e x ) e x
f g
(
f
)g g2
f
(g)
复合函数求导基本方法
sin 2x cos 2x2x 2 cos 2x
ln
x2
1 x2
x2
2 x
e x 2 e x 2 x 2 2xe x 2
y f ((x)) f ((x))(x)
原函数 F (x) 与被积函数 f (x)
之间的关系
dkx c kdx xdx 1 dx 2
2
e x dx de x
1 dx cos xdx d sin x 定积分公式
f (x)dx F (x) c
F (x) f (x)
b a
f
(x)
dx
F (x) |ba
F (b)
F (a)
b
b
b
( f g) dx f dx g dx
a
a
a
b
b
a kf dx k a f dx (为常
数)
b a
fg
dx
fg |ba
b a
f g
dx
a
f
( x)dx
0,
f
a
(
x)
f
( x)为为f
( x)为为为为为
a
2 0 f (x)dx, f (x) f (x)为为f (x)为为为为为
基本初等函数
1 常数函数: y c ; y 1; 2 幂

数: y x ; y x2 ; y x ; y x1 ;
ye
y m xn xn/m
3 指数函数: y ax ; y ex 5 三角函数: y sin x ;
4 对数函数: y loga x ; y ln x ; y log2 x ; y lg x 6 奇函数: f (x) f (x) 图形关于坐标原点对称;
y cos x 三角函数是有界函数,
偶函数: f (x) f (x) 图形关于 y 轴对称; 含有 ax ax 因子的是偶函数;含有 ax ax 因子的是奇函数,
sin x 奇函数; cos x 偶函数
两个重要极限 1 和 e
lim sin x 1 x0 x
lim x 1 x0 sin x lim s in x 0 x x
逆矩阵求法
用初等行变换求逆矩阵的方法: P | I 初等行变换 I | P-1
齐次方程 Amn X 0 有非零解和零解条件 当 r( A) n 时齐次方程 AX 0 只有零解。 当 r( A) n 时齐次方程 AX 0 有非零解。
结论:齐次方程一定有零解。
非齐次方程 Amn X b 有解(唯一解、无穷多解)、无解的条件 当 r( A) r( A | b) n 时非齐次方程 AX b 有唯一解。 当 r( A) r( A | b) n 时非齐次方程 AX b 有无穷多解。 当 r( A) r( A | b) 时非齐次方程 AX b 有无解。
lim1 1 x e x x
lim1
1
xx
e
x0
无穷小量×有界量=无穷小量 当 x 时, 1 sinn 是无穷小量
x 极限运算法则: lim( f g) lim f lim g
lim xs in x 0
x0
lim(kf ) k lim f ; lim fg lim f lim g
微分公式 dy ydx
dkx kdx d 2x (2x)dx 2dx de x (e x )dx e x dx
dx a (x a )dx ax a1dx
d
log
2
x
(log
2
x)dx
1 x ln
2
dx
d ln x (ln x)dx 1 dx x
da x (a x )dx a x ln adx d sin x (sin x)dx cos xdx d cos x (cos x)dx sin xdx
相关文档
最新文档