物探电法野外工作方法
物探工作方法技术

1:5000激电中梯剖面测量1:5000激电中梯剖面测量采用长导线,针对重要异常带、矿化带进行,为寻找隐伏矿提供依据。
1、1:5000剖面敷设剖面端点用全站仪或GPS RTK布设,用木桩标记;测点采用GPS RTK分段控制、罗盘定向、测绳量距布设,用带有编号的红布标记。
质量检查按“一同三不同”的原则进行,检查点在空间上、时间上大致均匀,总检查量不低于5%,精度要求达到“B级”精度要求,即在相应比例尺图上平面点位限差<±2.5mm,点位中误差不超过12.5m;相邻点距误差限差10%,均方相对误差不超过5%。
2、野外工作方法激电剖面法采用中间梯度装置,AB=1200米,MN=40米,点距=20米。
采用时间域激电测量,正反向标准直流脉冲供电,脉冲宽度2秒。
以上参数可根据野外实际情况,通过现场试验进行适当调整。
激电观测参数为一次电位Vp、供电电流强度I及视充电率Ms,计算视电阻率ρs。
观测时,测量电极MN在供电电极AB的2/3区间移动,旁线距小于AB/5。
全区装置大小、观测参数设置应保持一致。
一条剖面不能在一个供电装置内完成时,每个装置接头处应有三个以上的重复观测点。
供电电流应使二次电位观测值大于最小可靠值,一般应使一次电位观测的观测值绝大部分在30mV以上。
野外要经常检查仪器、导线的漏电情况,对突变点、异常点应进行重复观测和加密观测,确保观测数据可靠。
3、电性参数测定电性参数测定主要采用露头法测定,有条件时,应采集一定的岩矿石标本,用标本法测定,并分别统计。
每类岩(矿)石标本不少于30块,参数测定的质量评定应以采用某一种岩性测定的全部标本检查结果来衡量,即用基本观测统计出来的常见值与检查观测结果统计出来的常见值相对误差不得超过20%。
4、质量标准视电阻率观测精度(<±7%),视充电率观测精度(<±12%),达到B 级精度;电性参数总平均相对误差≤±20%。
5、执行标准《时间域激发极化法技术规定》(DZ/T 0070-93);《物化探工程测量规范》(DZ/T0153—95)。
物探工作方法

5.3 物探工作5.3.1 激电测量布置于面积性异常查证区内,1:1万测量网度为100×40m,1:2万测量网度为200×40m。
采用中梯(短导线)装置,极距AB=1000-1500m、MN=40m。
观测范围限于AB极距2/3以内,测线长度大于2/3AB时,相邻测段需有2—3个重复观测点。
一线供电多线观测时,主测线距旁测线间距应小于AB距的1/5,可以用时间域激电也可以采用双频激电。
1、时间域激电具体要求如下:(1)参数选择采用双向短脉冲供电方式,占空比为1:1,供电周期、延时、采样宽度通过该地区实验确定。
(2)发电、整流、发射与接收仪器校验正式生产前,首先对生产设备进行技术校验,待所有参数满足要求后方可投入生产。
要求发电机必须运转正常,输出电压变化不得超过5%;整流器和假负载工作正常;发射机输出功率必须稳定,电流显示应高于±1个字;接收机应性能稳定,抗干扰能力强。
正式观测前应进行生产仪器的一致性对比试验,满足要求后方可投入生产。
(3)测量方法观测参数为一次场电位差(ΔV1)、视极化率(ηs),发射机直读并记录供电电流(I),通过计算装置系数(K),最后用公式ρs=K×△V1/I计算出视电阻率(ρs)。
(4)技术要求每日开工前与收工后要对供电电极、接收电极、接收线、发射线进行检查,确保不漏电、连接完整;每日供电前或每次布极后,检测AB两极的接地电阻,一般在1000欧姆米时开始供电;遇河流、水塘处导线必须悬空架设,不得放入水中;供电电极入土深度应保证在0.5m以上,测量电极必须接地良好;供电电流、总场电位差、视极化率必须保证三位有效数字;当观测困难时,应检查设备是否正常,查明原因后再继续工作;在野外观测中发现视极化率突变点或极化不稳时应进行重复观测,以合格观测结果的算术平均值作为最终观测结果。
参与平均的一组ηs中,最大值与最小值之差与平均值之比不得超过n2∙M,在需要用均方误差衡量观测质量的地段,最大值与最小值之差不得大于n2∙ε。
物探工作方法与技术

1、1∶1万激电工作方法技术(1)仪器激电工作使用WDFZ-2激电发射机和WDJS-1微机激电接收机。
接收仪开工作前分别用标准信号发生器进行校验和一致性检测,检测合格的仪器方可投入使用。
(2)测网或剖面布设激电剖面布设在具有寻找金属硫化物矿产前景的矿化蚀变带上,主要以激电剖面和电测深为主。
应尽量垂直于极化体的走向、地质构造方向或垂直于其它物化探异常的长轴方向,尽可能的与已有勘探线或地质剖面重合,提高异常解释水平和成果的有效性。
线距要求100-200米,点距40米。
(3)测点观测方法技术激电剖面工作采用中梯测量装置,AB=1200米,测量范围为AB 极间2/3AB区间。
发射机供电(测量)周期为8s,接收机测量叠加次数2次,延时100ms,采样宽度40ms。
其它技术要求严格按《时间域激发极化法技术规定》执行。
(4)精度要求与质量检查方法激电中梯方法各项工作实际技术指标如下表。
表4-13 激电及电阻率测量精度指标激电野外质检工作应与原始观测同步进行,质量检查采用一同三不同的质检方式,即同点位、不同仪器、不同时间、不同操作者,检查量为3%。
(5)电法资料整理主要包括仪器一致性资料的计算,视电阻率计算,精度统计及接口处理等内容,其视电阻率计算中的K值应经100%的对算,确保无误。
视电阻率计算采用以下公式:K =2π / (1/AM-1/AN-1/BM+1/BN)Ps=K×Vp/I电法资料的处理主要用于确定视极化率的背景场和对极化体的正演。
背景场的分析可选用趋势面分析(一般用二次)或数理统计的方法进行,以提供划分局部异常的基础性资料。
2、1∶1万磁法测量工作方法技术使用G-856质子磁力仪进行总场测量,测量参数为ΔT。
仪器试验、检查及测点观测方法技术按前述相关要求进行。
测网布设在筛选的具有寻找铁族元素矿产前景的1∶5万磁测异常中,线距要求100-200米,点距要求在20-50米。
测线应尽量垂直于地质构造方向或垂直磁异常的长轴方向,尽可能的与已有勘探线或地质剖面重合,提高异常解释水平和成果的有效性。
地球物理勘探电法电磁法

Hale Waihona Puke (4)固体电解质:离子导电,绝大多数造岩矿物,
如石英、云母、方解石、长石等,电阻率高
4、主要岩矿石电阻率及其变化范围
● ρ沉 < ρ变 < ρ火
● 沉积岩: 10 ~102Ω · m
● 火成岩: 102 ~106Ω · m
● 变质岩:介于两者之间。
5、影响电阻率的主要因素 (1)矿物成分、含量及结构 金属矿物含量↑,电阻率↓ 结构:侵染状 > 细脉状 (2)岩矿石的孔隙度、湿度 孔隙度↑,含水量↑,电阻率↓ 风化带、破碎带,含水量↑,电阻率↓ (3)水溶液矿化度 矿化度↑,电阻率↓
电化学活动性(η) 介电性(ε) 导磁性(μ)
直流电(稳定场) 人工场源
②利用场源多 天然场源
交电流(交变场)
传导类电法勘探(直 流电法)研究稳定电 流场 ③方法
电阻率法* 充电法
自然电场法 激发极化法 低频电磁法
种类多
感应类电法勘探(交 频率测深法 流电法)研究交变电 甚低频法 流场 电磁波法 大地电磁法
U MN s k I
ρ3
ρ1 ρ2
※ 视电阻率 —— 在电场有效作用范围内 各种地质体电阻率的综合影响值。
(3)影响视电阻率的因素
电极装置—供电电极(A、B)及测量电极(M、N) 的排列形式和移动方式 ① 电极装置类型及电极距的大小 ② 测点相对于地质体的位置; ③ 电场有效作用范围内各种地质体的真电阻率; ④ 各地质体的分布状态(即形状、大小、埋深及相 对位置)
地球物理勘探 电法、电磁法
什么是电法勘探:
它是以岩、矿石的电学性质(如导电性)差异为基 础,通过观测和研究与这些电性差异有关的(天然或 人工)电场或电磁场分布规律来查明地下地质构造及 有用矿产的一种物探方法,称为“电法”。
物探--2电法勘探

电法勘探是以岩石或矿石与围岩之间的电性差异为基础,对 天然产生的或人工建立起来的电场或电磁场的空间的或时间 的分布特征进行观测,以查明地质构造和有用矿产的一种物 探方法。
电法勘探分类 根据供电电源的性质可分为:直流电法和交流电法。 按场源分为:天然场源(被动)和人工场源(主动)。 按工作方法分为:电阻率法、天然电场法、充电法、激发极
电地面
电源
A
MN
B
地面
高阻体
电阻率法
度梯半 度空 法间 视中 电存
曲阻在 率低 与阻 电体 位中
线梯间
电均
阻匀
率半
与 电 位 梯
空 间 中 间 梯
度度
曲法
线视
岩矿石的电阻率(1)
电阻率(ρ):电阻率是表征物体导电性能的一个最基本的物理量。 数值上为对边长各为1米的正方体物质,垂直于一对横截面通电时, 所产生电阻的大小。其单位为:欧姆.米(Ω.m)。
ρo
图2 探测远离示意图
图3 探测方法剖面图
I
2r 2 ( E )
4r 2
( u ) r
4r 2
c r2
得 c I 2
则 U= I 2r
或 =2r U
I
E U I r 2r 2
j I
2r 2
在上式中:设I=20mA p=3.14Ω·m I 100
2
r=0.1 m
U=1000mV
r=1.0 m U=100mV
系中,
E du r dr r
在直角坐标系中
E EX i EY j EZ k
而
EX
U X
EY
U Y
EZ
U Z
由前几个式子得:
测绘技术中的物探测量方法介绍

测绘技术中的物探测量方法介绍测绘技术是现代社会发展和规划的重要组成部分。
它通过各种方法和技术手段来获取地理信息和测量数据,为社会发展和资源管理提供有力支持。
而在测绘技术中,物探测量方法是一种重要的手段,通过对地下物质性质和分布的测量,为工程勘察、资源勘探、地质调查等提供可靠依据。
本文将介绍几种常见的物探测量方法。
第一种方法是电法探测。
电法探测是基于地下物质导电性的差异来进行测量和分析的。
该方法通过在地下埋设电极,在其中施加一定电流,并测量地下电位差来判定地下物质的导电性质。
这种方法适用于寻找地下水、矿藏等。
通过在不同位置布置电极,可以得到整个区域的电阻率分布图,从而揭示地下物质的性质和分布情况。
第二种方法是地磁法探测。
地磁法采用地球磁场与地下物质的相互作用来进行测量。
地磁法探测仪器利用地球磁场的强度和方向的变化,通过测量地面上的磁场参数来判断地下物质的性质和分布。
这种方法适用于寻找矿藏、断层等地下构造的探测。
地磁法具有较高的分辨率和灵敏度,因此在地质勘探和环境监测中有广泛应用。
第三种方法是地震法探测。
地震法是一种利用地震波在地下的传播和反射特性进行测量的方法。
通过在地面上设置地震源,并记录地震波在地下的传播情况,可以推断地下岩石的密度、速度和构造等信息。
地震法适用于不同类型的地质勘探,如石油勘探、地下水勘探和地震灾害预测等。
这种方法被称为地球物理勘探的主要手段之一,其成像能力和解析度很高,能提供较为准确的地下信息。
第四种方法是重力法探测。
重力法是通过测量地球重力场的变化来推断地下物体的质量分布和形状。
利用高精度的重力仪器,测量地表上的重力值,并进行数据处理,可以得到地下物体的密度和分布情况。
重力法适用于大范围的地下构造和均质地层的勘探,常用于天然气、石油等资源勘探和地下水寻找。
以上所介绍的四种方法只是测绘技术中的一小部分,且每种方法都有各自的局限性和适用条件。
在实际应用中,通常需要结合多种方法进行综合分析,以提高勘探的效果和准确性。
测绘技术中常见的物探测量方法
测绘技术中常见的物探测量方法测绘技术在现代社会中扮演着非常重要的角色,它可以提供准确的地理空间数据用于城市规划、土地管理、资源调查等领域。
而物探测量方法则是测绘技术中的一种重要手段,用于探测地下的物质分布和构造情况。
本文将介绍几种在测绘技术中常见的物探测量方法,包括电法、磁法、重力法和地声波法。
电法是一种利用电荷运动特性进行探测的方法。
它通过在地表或井孔中放置电极,并施加恒定电流或电压,来观测地下不同岩土层的电导率变化。
电法测量时需要考虑地下岩土层的电阻率和电荷迁移的规律。
在实际应用中,电法可以用于识别和定位地下的各种岩石、矿石和水体,特别适用于找寻金属矿床、水源和地下水流方向等。
磁法是一种利用物体磁性差异进行探测的方法。
地球上的物质大多数具有磁性,通过在地表或井孔中放置磁场探测仪器,可以测量地下岩土层的磁场强度和方向变化。
磁法测量中需要考虑地下岩土层的磁化率和磁场传播的规律。
磁法在勘探地下矿床、识别地下构造、寻找埋藏物和建筑工程勘探等方面有着广泛应用。
重力法是一种利用物体质量差异进行探测的方法。
地球上的物质质量分布是不均匀的,通过在地表或井孔中放置重力仪器,可以测量地下岩土层的重力场强度变化。
重力法测量中需要考虑地下岩土层的密度和重力场传播的规律。
重力法常用于探测地下体积密度差异较大的物质,如矿床、岩石体、洼地和地下水体等。
地声波法是一种利用地震波传播特性进行探测的方法。
地球上的地震波会在地下不同介质中传播,并受到不同介质界面的反射和折射。
通过在地表或井孔中放置地震探测仪器,可以测量地下岩土层的地震波速度和传播路径。
地声波法测量中需要考虑地下岩土层的弹性模量和地震波传播的规律。
地声波法广泛应用于勘探地下地质构造、油气储层、地下水资源等。
虽然以上介绍的物探测量方法在测绘技术中都有重要的应用,但每种方法都有其适用范围和局限性。
因此,在实际应用中通常会根据需要综合应用多种方法,并进行数据处理和解释,以获取更准确、全面的地下信息。
物探方法概述
物探工作需要全面、合理、统筹布置工作:工作的布置是围绕着解决任务、目的要求去做的。
一定要明白你所做的工作的目的,预想达到的效果。
奔着预想的效果去寻找一切可能的依据。
全面性:要全面、系统考虑设计书规定的工作任务的布置,甚至要比设计书规定的工作任务还要多的工作考虑和布置。
给变更设计工作提供可能。
合理性:要依据工作区的实际情况及所掌握的以往资料提供的依据,经综合分析研究后,合情合理地布置工作。
统筹性:为快速完成任务、加速评价工作成果。
从时间上、方法上、技术上、各部门协作上、外部环境上、要统筹考虑安排布署工作。
要学会合理调配人员、设备、队伍。
达到即不窝工、又不浪费、高效快速地完成任务。
随着找矿工作的深入,特别是在寻找隐伏矿方面物探工作将起着不可低估的作用,所以要用好物探方法、正确地使用物探工作是我们每个搞物探(地质)工作者的职责,因此,这里主要介绍物探工作方法、思路。
一、任务的确定1、应结合具体情况,根据当地地质—地球物理特征寻找,具备物性前提的矿床、地层、控矿构造、有关蚀变岩石等作为物探工作目标物,要尽量发挥物探方法在构造研究,地质添图,直接和间接找矿,矿区勘探等多方面的作用。
2、物探工作主要解决的问题(1)配合大、中、小比例尺进行区域地质调查工作,提供研究基础地质的资料。
(2)成矿远景进行间接找矿,以圈出找矿靶区、包括贵金属、有色多金属、黑色金属、以及具有间接找矿前题的非金属矿种等。
(3)配合矿区及外围普查勘探,对异常进行详细研究、为寻找深部、隐状矿提供线索。
(4)勘查油气、煤矿床。
(5)在环境地质,水文地质及工程地质中的应用。
(6)其它工作,包括寻找爆炸物,地下管道、考古等人文活动遗迹调查等方面的应用。
3、当探测对象(矿种、矿床类型、间接找矿目标物等)物理前提不明,物性差异不明显、即探测目标与围岩之间的物性差异不够显著,不能肯定能测出目标物异常时,或工作区存在较严重的干扰因素、使方法技术的效果受到影响、只能做为实验研究项目来作。
物探工作设计书(高精度磁测和激电测深)
目录一、序言 (1)二、设计工作量 (1)三、野外工作方法及技术要求 (1)1.测地工作 (1)(1)测网布设原则 (1)(2)测网布设 (1)2.高精度磁测 (2)(1)仪器噪声测定 (2)(2)一致性测定 (2)(3)基点选择及日变站的建立 (3)(4)日变观测 (4)(5)野外测量 (4)(6)磁参数测定 (4)(7)质量检查 (5)(8)野外资料整理 (6)(9)图件编制 (7)3.大功率激电测深工作 (7)(1)仪器性能检查 (8)(2)装置类型选择 (8)(3)仪器参数的选择 (8)(4)极距的选择 (9)(5)供电电流 (9)(6)测量要求 (10)(7)电参数测定 (12)(8)质量检查 (12)(9)资料整理及图件绘制 (13)四、野外工作时间安排 (14)五、提交初步成果及时间 (14)六、经费预算 (14)1.编制依据 (14)2.经费预算 (15)一、序言二、设计工作量三、野外工作方法及技术要求1.测地工作执行标准:《地质调查GPS测量规程》(DZ/T2002)。
(1)测网布设原则高精度磁法扫面依据《地面高精度磁测技术规程》(DZ/T0071-93)中对1:2000高精度磁测工作网度的基本要求,结合工区自然地理、交通条件等方面的综合情况,在技术规程各项要求的前提下,从实际出发,采取半自由网的方式进行高精度磁测工作。
测区网度20 10m。
测区内在地形条件无法到达的情况下,操作员根据野外实际对线、点进行局部调整甚至舍弃部分测点。
根据区内地质构造情况和实际工作情况,为使测线能尽可能地切过不同构造单元,同时提高野外生产效率,测线布设为南北向,即坐标方位0°。
大功率激电测深工作依据《电阻率测深法技术规程》(DZ/T0072-93)和《时间域激发极化法技术规程》(DZ/T0070-93)中对1:2000激电测深工作网度的基本要求,结合工区自然地理、交通条件等方面的综合情况,在技术规程各项要求的前提下,从实际出发,采取规则网的方式进行激电测深工作。
环境与工程物探:电法勘探(充电法)
充电法的基本理论
•
• 当导电球体的规模不大或埋藏较深时, 可用“简单加倍”的方法近似考虑地 表—空气分界面 对水平地表电场的影响, 理想导电球体的充电电场实际上与位于 球心的点电源场没有区别。
• 由于电位梯度曲线较电位曲线有较强的 分辨能力,所以应用较多。
• 若导电球体位于电阻率为ρ的均匀岩石中, 球心埋深为h0,对球体的充电电流强 度为I,则按地下点电流源场可写出地表 电位的表达式:
将充电法的测量结果绘制成如下图件:
1、电位剖面图 2、电位剖面平面图 3、电位平面等值线图 4、电位梯度剖面图 5、电位梯度剖面平面图 6、电位梯度平面等值线图。
(三)充电法资料的解释
※根据等电位线的形状及密集带,可判定充电体在地 面上投影的形状和走向,并初步圈定其边界;
※根据剖面电位曲线:
利用其极值点推断充电体的顶部位置;利用其拐点 推断充电体的边界位置;利用其对称性推断充电体 的倾向。
(二)充电法的装备及工作方法
1、装备
B(∞)
与电阻率法相同
2、工作方法
(1) 电位观测法:Nቤተ መጻሕፍቲ ባይዱ置
基N点
于距充电体足够远的某一
固定基点上。M极沿测线
逐点移动,观测各测点相
对于固定基点的电位差,
即为该点的电位值)V。
(2)电位梯度观测法:MN置于同一测线上,保持相 对位置和间距不变,沿测线逐点移动,计算电位梯度 Δv /Δx = ΔvMN /MN
第二节 充电法和自然电场法
一、充电法
什么是充电法: 对地面上、坑道内或者钻孔中已经揭露的良导体直 接充电,以解决某些地质问题的一种电法勘探方法。
充电法的提出: 详查及勘探阶段,良导性地质体有露头但不知道其分 布情况,如矿体是否相连;矿体走向、产状;盲矿; 地下水流速、流向;滑坡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章野外工作方法和技术3.1频率域激电工作程序3.1.1 踏勘根据地质任务在选择测区时,应组织力量进行踏勘,踏勘的目的在于了解测区的地质特点和地球物理前提以及接地条件、干扰水平、生活驻地、交通运输等情况。
3.1.2试验工作对新的工作测区,在编写设计时应在典型的地质剖面上或具有代表性的地段,做一定数量的试验工作,具体实验工作量以能对测区的地球物理特征有一定的了解为宜。
3.1.3草查与普查对于1:5万~1:2.5万的大面积草查与普查时,其工作方法的选择以偶极法或近场源法(AMBN)为宜。
就某一具体测区而言,应根据地质任务,通过分析所掌握的地质及以往的物化探资料或通过试验,确定一个适当的极距进行面积性的工作,以迅速得到面积性的资料,达到发现异常的目的。
3.1.4 详查在普查所发现异常的基础上,开展1:1万~1:2千的详查工作,这时可用中梯装置扫面。
建议采用一线供电多线测量的工作方式,以便在短时间内圈出异常的形态、做出成果的解释推断以及对异常进行轻型山地工程揭露。
对精测剖面,可采用偶极装置,根据不同极距(一般4-6个)的观测结果勾绘出断面图,以判断矿体的埋深、倾向和形态,然后根据综合解释结果建议施钻验证,进而达到对异常的再解释。
在上述工作的同时,还要进行岩矿石物性测定和幅频特性的研究。
一、联合剖面法图2-10 联合和剖面装置如图2-10所示,装置系数计算方法和三极装置相同联合剖面法是两个三极排列AMN∞和MNB∞的联合。
所谓三极排列是指供电电极之一位于无穷远的排列。
采用联合剖面装置时,可以用A电极,也可以用B电极供电,而A和B有一个共同的无穷远电极C。
也就是当A或B供电时,供电迴路中另一电极C位于无穷远。
如果以O表示测量电极M和N的中点,则在联合剖面装置时,四个电极A、M、N和B极位于同一直线上(这条直线就是测线),且AO=BO。
无穷远极C一般铺设在测线的中垂线上,与测线之间的距离大于AO的五倍(CO>5AO)工作中将AMNB四个电极沿测线一起转动,并保持各电极间距离不变,中点O就作为测点的位置。
在每个测点上分别测出AMN∞排列和MNB∞排列Fs、ρs。
对于同一极化体,AMN、BMN的测量结果将在极化体上方形成交点。
利用这种交点性质和曲线的不对称性可判断极化体的产状、形态。
联合剖面法的工作比例尺一般都大于:1:10000,常用的有1:10000、1:5000、1:2000。
测线沿垂直于矿体走向布置。
测线间距相当于作图时所用比例尺的1厘米,即工作比例尺为为1:10000时,线距等于100米。
至于极距AO的选择则与勘探对象的埋深有关,一般要求AO>3H(H为矿顶埋深),而MN=(3/1—5/1)AO。
无穷远极垂直于测线方向布置,要求CO>5AO。
联合剖面法主要用于寻找低阻陡倾的硫化矿床或成矿有关的含水断裂破碎带。
由于联合剖面法工作中需要铺设无穷远电极,在每一个测点上都要观测两次,因此装置比较笨重,效率比较低,很少用于地质工作的普查阶段。
其优缺点可评述如下:1、这种装置,可预先布置电极以减少移动电极时间,但这需要准备很多电极,也要增加工作量。
2、联合剖面对各类极化体的反映能力可与偶极剖面相当,对板状体产状反映更灵敏。
3、在相同条件不,联剖的电位差比偶极剖面大,但比中梯小。
4、装置最大缺点是要一个无穷远极,且必须用长导线与发送机相联,带来很多不便。
二、中间梯度法中梯装置图2-1 中梯装置示意图中梯装置如图2-1所示,这种装置的特点是:供电电极AB 的距离取得很大,且固定不动;测量电极在其中间三分之一地段逐点测量。
记录点取在MN 中点。
其s ρ表达式为:IU K MN s ∆=ρ 其中()BN BM AN AM MN BN BM AN AM K ⨯+⨯⨯⨯⨯⨯=π2 此外,中间梯度装置还可在离开AB 连线一定距离(AB/6范围内)且平行AB 的旁侧线上进行观测(见图2-2)。
X图2-2 旁侧中梯装置示意图中间梯度法利用两个电极A 和B 供电,另两个电极M 和N 进行测量。
其特点是:供电电极距AB 很大,AB >MN 一般AB=(30—50)MN ;在工作中A 和B 是固定不动的,MN 则在AB 之间中间3/1范围内逐点移动进行观测。
中间梯度主要用来寻找陡倾的高阻含矿岩脉(如石英脉、伟晶岩脉等)野外工作中通常测线垂直于矿体走向布置,点距等于MN之间的距离。
中间梯度排列之所以应用较广,其原因主要有如下几点:1、在一段范围内不需要移动供电电极。
在一系列测量中,导线AB、电源及发送机也不要移动,只移动测量电极极MN(短导线测量方式)。
2、中间梯度排列中,可以一线供电,多线观测,甚至可以全域测量,因而生产效率高。
3、在AB中部,激发场接近水平均匀场,因此中间梯度的异常相对简单,甚至可用电磁类比法进行半定量解释。
由于中间梯度应用较广,因而它的一些缺点不易引起人们的重视,有必要说明如下:1、AB导线一般在1000米以上,铺设很费时间,在潮湿地区又容易造成漏电。
2、电磁感应偶合效应随AB增加而增加。
3、在AB中部,激发场接近水平,使陡倾斜良导极化体的异常很不明显。
4、说中间梯度异常形态简单,那是有条件的,即在AB中部,激发场接近水平均匀场,因而异常形态与垂直磁化的垂直磁异常相当。
如果极化体不在AB中部,情况就不同了。
三、偶极—偶极剖面法偶极装置图2-6 偶极装置如图2-6所示,其s ρ表达式为:IU K MN s ∆=ρ 其中)2n ()1n (n a +⨯+⨯⨯⨯=πK偶极排列,两个供电电极AB 和两个测量电极MN 彼此分开,各在一边,沿一直线排列,实际应用中的偶极排列一般是对称的。
即AB=MN=∫,AB 与MN 中点连线OO ’长度为L=(n+1)∫,n 为整数。
测量结果记录在OO ’中点,探测深度随n 增加而增加。
进行激电测量时,探测深度可以固定的,每次测量后,四个电极向前一起移动一个固定距离,一般为测点距,等于MN 。
有时也常在每一个测点测量几个深度上的IP 值。
在西方,偶极装置应用较广,但在我国作得很少,偶极排列有如下优缺点:1、偶极剖面对各类形态的地质体都有很好的反映,由于是以各种不同位置去激发极化体,总可以在某些条件下使极化体处于良好的极化形态,从而观测到较大的极化率。
2、偶极拟剖面图上,对各类极化体的产状,形态有较好的反应。
3、可采用短导线方式测量,并将AB 和MN 完成分开,使电磁感应耦合大大减弱。
4、导线短,布置和移动方便灵活,漏电机会也少。
5、为充分反映异常,最好作多极距测量,以便绘制拟剖面图,但由于每次观测后要移动电极位置,因而增加了野外工作量。
6、由于沿测线不断移动四个电极,有时导致测量结果发生变化,而这并不是极化体引起的,而是所谓的电极效应引起的。
四、激电测深图2-3 对称四极装置示意图 对称四极装置如图2-3所示,这种装置的特点是AM=NB ,记录点取在MN 的中点。
其s ρ表达式为:IU K MN s ∆=ρ 其中MN ANAM K ⨯⨯=π在激电测量中,对称排列,A 、M 、N 、B 四个电极同时沿测线移动,AB 和MN 共有一个中点O ,且O 点也作为记录点,规定MN=∫,AB=2L ,这类装置的探测深度随L 增加而增大。
在激电测深时,通常固定MN ,增加AM 和BN ,这样可在同一测点得到不同深度上的信息,据不同测点上的测深可编制电测深拟剖面图。
激电测深其优缺点可评述如下:1、和偶极剖面一样,四个电极都沿测线移动,工作量大。
由于极距增大时,AB电缆很长且笨重,移动困难。
因此测深的工效低。
2、只有当被探测的地质体是无限大的水平层时,它才能对二层、三层介质等反应为二层或三层曲线。
3、激电测量结果也可以绘制拟剖面图,以分析地质体形态和产状。
4、由于MN电线总会靠近AB电缆,电磁感应耦合效应会严重影响测量结果。
5、观测信号随极距增加而减小,但比偶极剖面的信号衰减慢。
在相同条件下,测得的信号是三极排列的三倍,约与中梯相当。
第四章岩矿石物性参数的测定岩矿石的电性差异是电法勘探的物性前提,也是成果解释的物理基础。
实践表明,合理地测定和利用电性参数,可以提高激电成果的解释水准和地质效果。
以数字式激电双频激电仪测定岩矿石的电性参数时,通常取用两个参量,即幅频率(F)和电阻率(ρ),物性参数的测量可参照选用以下方法。
4.1 露头测定法(1) 对称小四极法:在露头、探槽或坑道的岩矿石表面上,采用对称小四极装置测定自然条件下的电阻率和幅频率,供电电极和测量电极均可用直径2mm的铜丝或用其它材料做的小不极化电极。
选择露头时,应注意选择新鲜、无裂缝、宽度较大,表面较平整的岩矿石露头。
供电电极与测量电极应与岩石表面接触良好。
一般供电电极AB的排列方向应大致与野外工作中AB方向一致,且布置在露头的中间部位,以避免旁侧影响。
也可以多做几组排列方向,以了解岩石的各向异性。
应该指出,对致密块状矿体,当其与围岩边界明显时,应注意界面影响,有时可能会因界面积累电荷的影响使得观测常常出现反常现象。
当矿体露头致密到面极化程度时,不宜用对称小四极法在露头上获得幅频率(F),应改用其他方法测量。
(2) 对称小极距测深:在浮土较薄时,可用小极距测深了解下伏基岩的电阻率和幅频率。
对称小极距测深一般应布置在地质情况清楚,地形较平坦,岩层倾角不大的地段。
对称小极距测距的最大极距,以获得待测目的层之渐近线为准则。
4.2 标本测定法用双频仪测定岩矿石标本的物性时常用“强迫电流法”,其特点是使所供电流全部通过标本,做法上有标本架法、封腊法、泥团法。
4.3 检查电参数测定的检查工作量为总工作量的5~10%,标本测定的均方相对误差小于30%为合格,露头测定的均方相对误差小于20%为合格。
无论是露头测定还是标本测定,应注意使供电电线与测量线分开,以避免因电磁感应耦合造成测定的参数误差。
第五章内业资料整理室内资料处理人员应及时检查野外记录的完整性、可靠性,及时将观测数据输入到计算机中,及时进行数据的有关计算和预处理,及时绘制有关图件。
发现问题应及时汇报并敦促野外操作员改正,对质量不合格的测点应及时要求返工。
在数据处理过程中如发现异常点、可疑点应通知操作员及时重测或检查,确保数据的可靠性。
在解释过程中应参考野外人员的原始记录,特别注意记录中的矿化、岩性变化等记录。
第六章野外观测质量的评价1 为了衡量整个原始观测的精度,应对原始观测进行一定数量的检查观测。
一般检查的物理点数应不少于总物理点数的5—10%,如还达不到精度要求,则整个原始观测作废。
计算误差时被舍去的点不得超过参加计算点数的1%。
2 视电阻率的质量评价:视电阻率的质量评价以均方相对误差衡量:式中:n——检查观测的物理点数;ρsi——第i测点上原始观测视电阻率值;ρ′si——第i个测点上检查观测视电阻率值。