分析若p则q形式命题
命题和条件

的逆命题是(
)
A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|
C.若|a|≠|b|,则a≠-b
D.若|a|=|b|,则a=-b 【解析】 交换条件与结论,逆命题是:若|a|=|b|,则a=-b.
【答案】 D
2.(2011·浙江高考)设a,b为实数,则“0<ab<1”是“b<”的 ( )
A.充分而不必要条件 C.充要条件
【解析】 若a=2,则(a-1)(a-2)=0,
但(a-1)(a-2)=0,有a=1或a=2 ∴“a=2”是“(a-1)(a-2)=0”的充分不必要条件.
【答案】 A
π 3 4.在△ABC 中,“A= ”是“sin A= ”的________ 3 2 条件.
π 3 【解析】 当 A= 时,sin A= ; 3 2 3 π 2 但 sin A= 时,A= 或 A= π. 2 3 3 π 3 ∴“A= ”是“sin A= ”的充分不必要条件. 3 2
) 得 0 x≤0 或 x≥4 由 x( 4 x ≤ ∵命题 Q 假,∴ B={x|x≤0 或 x≥4}. 则{x|x≥3 或 x≤-1}∩{x|x≤0 或 x≥4} ={x|x≤-1 或 x≥4}; ∴A∩B=(-∞,-1]∪[4,+∞)
2
2
提高练习 : x (4 x ) ≤ 0 已知命题 P: lg(x 2 2 x 2) ≥ 0 的解集是 A; 命题 Q: 的解集是 B.若 P 是真命题,Q 是假命题,求 A∩ B.
解:由 lg(x -2x-2)≥0,得 x -2x-2≥1 ∴x≥3 或 x≤-1,∴ A , 1 3,
解:(l)若一个数是负数,则这个数的立方是负数; 真 结论 条件 (2)若一个四边形是正方形,则它的四条边相等. 真 结论 条件
四种命题的真假-P

分析:“当c>0时”是大前提,写其它命题时应该保留。
原命题的条件是“a>b”,结论是“ac>bc”。
解:逆命题:当c>0时,若ac>bc, 则a>b. 否命题:当c>0时,若a≤b, 则ac≤bc. 逆否命题:当c>0时,若ac≤bc, 则a≤b.
(真) (真) (真)
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、否命题、 逆否命题,并分别指出其真假。
布置作业:33页 3、4两题 。 课外延拓:各小组自编命题并判断真假。
练一练
1.判断下列说法是否正确。 1)一个命题的逆命题为真,它的逆否命题不一定为真;(对) 2)一个命题的否命题为真,它的逆命题一定为真。 (对) 3)一个命题的原命题为假,它的逆命题一定为假。 (错) 4)一个命题的逆否命题为假,它的否命题为假。 (错)
2.四种命题真假的个数可能为( 答:0个、2个、4个。
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。
解:逆命题:若m+n≤0,则m≤0或n≤0。 否命题:若m>0且n>0, 则m+n>0. 逆否命题:若m+n>0, 则m>0且n>0.
(真) (真) (假)
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
(假)
逆命题:若ac2>bc2, 则a>b。 否命题:若a≤b,则ac2≤bc2。 逆否命题:若ac2≤bc2,则a≤b。 4) 原命题:若a > b, 则 a2>b2。
逆命题:若a2>b2, 则a>b。 否命题:若a≤b,则a2≤b2。 逆否命题:若a2≤b2,则a≤b。
高中数学四种命题经典例题

例命题“若=,则与成反比例关系”的否命题是1 y x y k x[ ]A y x yB y kx x yC x y y .若≠,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k xk xD y x y .若≠,则与不成反比例关系k x分析 条件及结论同时否定,位置不变.答 选D .例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________.分析 只要确定了“p ”和“q ”,则四种命题形式都好写了. 解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角.例3 “若P ={x |x|<1},则0∈P ”的等价命题是________. 分析 等价命题可以是多个,我们这里是确定命题的逆否命题.解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ≠{x||x|<1}”例4 分别写出命题“若x 2+y 2=0,则x 、y 全为0”的逆命题、否命题和逆否命题.分析根据命题的四种形式的结构确定.解逆命题:若x、y全为0,则x2+y2=0;否命题:若x2+y2≠0,则x,y不全为0;逆否命题:若x、y不全为0,则x2+y2≠0.说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y不全为0”,这要特别小心.例5有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“若∪=,则”的逆否命题,其中真命题是A B B A B[ ] A.①②B.②③C.①③D.③④分析应用相应知识分别验证.解写出相应命题并判定真假①“若x,y互为倒数,则xy=1”为真命题;②“不相似三角形周长不相等”为假命题;③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;选C.例6 以下列命题为原命题,分别写出它们的逆命题,否命题和逆否命题.①内接于圆的四边形的对角互补;②已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d;分析首先应当把原命题改写成“若p则q”形式,再设法构造其余的三种形式命题.解对①:原命题:“若四边形内接于圆,则它的对角互补”;逆命题:“若四边形对角互补,则它必内接于某圆”;否命题:“若四边形不内接于圆,则它的对角不互补”;逆否命题:“若四边形的对角不互补,则它不内接于圆”.对②:原命题:“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,其中“已知a、b、c、d是实数”是大前提,“a=b,c=d”是条件,“a+c=b+d”是结论.所以:逆命题:“已知a、b、c、d是实数,若a+c=b+d,则a =b,c=d”;否命题:“已知a、b、c、d是实数,若a≠b或c≠d,则a +c≠b+d”(注意“a=b,c=d”的否定是“a≠b或c≠d”只需要至少有一个不等即可);逆否命题:“已知a、b、c、d是实数,若a+c≠b+d则a ≠b或c≠d”.逆否命题还可以写成:“已知a 、b 、c 、d 是实数,若a +c ≠b +d 则a =b ,c =d 两个等式至少有一个不成立”说明:要注意大前题的处理.试一试:写出命题“当c >0时,若a >b ,则ac >bc ”的逆命题,否命题,逆否命题,并分别判定其真假.例7 已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实根,求实数a 的取值范围.分析 如果从正面分类讨论情况要复杂的多,而利用补集的思想(也含有反证法的思想)来求三个方程都没有实根的a 范围比较简单.解由--<--<+<得 16a 4(34a)0(a 1)4a 04a 8a 02222⎧⎨⎪⎩⎪说明:利用补集思想,体现了思维的逆向性.例8 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.①>时,-+=无实根;m mx x 10214②当abc =0时,a =0或b =0或c =0.分析 改造原命题成“若p 则q 形式”再分别写出其逆命题、否命题、逆否命题.在判定各种形式命题的真假时要注意利用等价命题的原理和规律.解①原命题:“若>,则-+=无实根”,是真 m mx x 10214命题;逆命题:“若-+=无实根,则>”,是真命题;否命题:“若≤,则-+=有实根”,是真命题;逆否命题:“若-+=有实根,则≤”,是真命题.mx x 10m m mx x 10mx x 10m 222141414②原命题;“若abc =0,则a =0或b =0或c =0”,是真命题;逆命题:“若a =0或b =0或c =0,则abc =0”是真命题; 否命题:“若abc ≠0,则a ≠0且b ≠0且c ≠0”,是真命题;(注意:“a =0或b =0或c =0”的否定形式是“a ≠0且b ≠0且c ≠0”逆否命题:“若a ≠0且b ≠0且c ≠0,则abc ≠0”,是真命题.说明:判定四种形式命题的真假可以借助互为逆否命题的等价性.例若、、均为实数,且=-+π,=-+π,=-+π,求证:、、中至少有一个大于.9 a b c a x 2y b y 2z c z 2x a b c 0222236分析 如果直接从条件推证,方向不明,过程不可预测,较难,可以使用反证法.解 设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则有a +b +c ≤0,而a b c (x 2y )(y 2z )(z 2x )222++=-+π+-+π+-+π236 =(x 2-2x)+(y 2-2y)+(z 2-2z)+π=(x -1)2+(y -1)2+(z -1)2+(π-3)∴ a +b +c >0这与a +b +c ≤0矛盾.因此a 、b 、c 中至少有一个大于0.说明:如下表,我们给出一些常见词语的否定.。
第一章第三节充分条件、必要条件与命题的四种形式

5.(教材习题改编)设集合M={1,2},N={a2},则 “a=1”是“N⊆M”的________条件.
解析:若N⊆M,则需满足a2=1或a2=2,解得a=±1或 a=± 2.故“a=1”是“N⊆M”的充分不必要条件.
答案:充分不必要
返回
返回
1.充分条件与必要条件的两个特征. (1)对称性:若p是q的充分条件,则q是p的必要条件,即
D.既不充分又不必要条件
解析:|x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1x>1, ∴|x|>1是x>1的必要不充分条件.
答案:B
返回
2.(2019·福建高考)若向量a=(x,3)(x∈R),则“x=4”是
“|a|=5”的
()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
返回
怎么考 1. 本部分主要考查四种命题的概念及其相互关系,考查
充分条件、必要条件、充要条件的概念及应用. 2. 题型主要以选择题、填空题的形式出现,常与集合、
不等式、几何等知识相结合命题.
返回
返回
一、充分条件、必要条件与充要条件 1.“若p,则q”形式的命题为真时,记作p⇒q,称p是q
的充分条件,q是p的 必要 条件. 2.如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的 充
返回
返回
[精析考题]
[例1] (2019·山东高考)已知a,b,c∈R,命题“若a+b+c=
3,则a2+b2+c2≥3”的否命题是
()
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3
“p=-q”与“若P则q”的关系

“p=>q”与“若P则q”的关系“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。
人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”。
数学课程的学习,强调学生的数学活动,发展学生的……推理能力是很有必要的。
新课程教材对推理“p=>q”进行了说明,“p=>q”是:“‘若p则q,为真,是指由p经过推理可得出q,也就是说,如果P成立,那么q一定成立,记作“p=>q”。
可在教学中,有些教师认为”p=>q”与“‘若P则q’为真”是一样的,这是错误的。
从已知命题A1,A2,…,An。
出发,按一定规则推得一个新命题B的过程,称为推理。
根据新课程教材的说法,如果p成立,那么q一定成立,记作p=>q,是指由命题P成立经过推理可得出命题q成立。
此时,命题P称为前提,命题q 称为结论。
但是,推理的前提与结论是否真实,是属于推理内容方面的问题,不是逻辑应该回答的。
例如,无理数是实数,分数不是无理数,所以,分数不是实数。
这个推理的两个前提都为真,但推理形式不正确,因此,这个推理是一个不合乎逻辑的推理,并且,上述推理的前提与结论之间没有必然的联系,违反了推理规则。
数学推理形式“p=>q”,不仅要求推理形式正确,而且要求推理的前提与结论之间要有必然的联系,也就是说,它的“前提内容”与“结论内容”要有实质意义上的联系。
这与一般的逻辑推理是不一样的。
在逻辑学中,命题“若P则q”,表示两个命题P、q用逻辑联词“若……则……”联结起来得到的新命题。
这个命题记作p= >q,称为p、q的蕴涵式。
也称为充分条件假言判断。
它是用来断定某一事物情况存在是另一事物情况存在的条件判断。
什么是充分条件?两个命题p、q,如果有P必有q,那么,P就是q的充分条件。
有时,称P为前提条件,q为结论.而数学命题“若P则q”表示的蕴涵关系,不仅要涉及形式也要涉及内容,它是一种因果关系。
高中数学命题的四种形式例题解析

1.3.2命题的四种形式学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题.2.认识四种命题之间的关系以及真假性之间的联系.3.会利用命题的等价性解决问题.知识点一四种命题的概念命题“如果p,则(那么)q”是由条件p和结论q组成的,对p,q进行“换位”和“换质”,一共可以构成四种不同形式的命题.(1)原命题:如果p,则q;(2)条件和结论“换位”:如果q,则p,这称为原命题的逆命题;(3)条件和结论“换质”(分别否定):如果綈p,则綈q,这称为原命题的否命题.(4)条件和结论“换位”又“换质”:如果綈q,则綈p,这称为原命题的逆否命题.知识点二四种命题间的相互关系(1)四种命题间的关系(2)四种命题间的真假关系由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性,即两命题等价;②两个命题为互逆命题或互否命题,它们的真假性没有关系,即两个命题不等价.1.有的命题没有逆命题.(×)2.两个互逆命题的真假性相同.(×)3.对于一个命题的四种命题,可以一个真命题也没有.(√)4.一个命题的四种命题中,真命题的个数一定为偶数.(√)题型一四种命题的结构形式例1把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.解(1)原命题:若a是正数,则a的平方根不等于0.逆命题:若a的平方根不等于0,则a是正数.否命题:若a不是正数,则a的平方根等于0.逆否命题:若a的平方根等于0,则a不是正数.(2)原命题:若x=2,则x2+x-6=0.逆命题:若x2+x-6=0,则x=2.否命题:若x≠2,则x2+x-6≠0.逆否命题:若x2+x-6≠0,则x≠2.(3)原命题:若两个角是对顶角,则它们相等.逆命题:若两个角相等,则它们是对顶角.否命题:若两个角不是对顶角,则它们不相等.逆否命题:若两个角不相等,则它们不是对顶角.反思感悟由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其他三种命题的定义,确定所写命题的条件和结论.跟踪训练1写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.题型二四种命题的真假判断例2写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)若a>b,则ac2>bc2;(2)若四边形的对角互补,则该四边形是圆的内接四边形.解(1)逆命题:若ac2>bc2,则a>b.真命题.否命题:若a≤b,则ac2≤bc2.真命题.逆否命题:若ac2≤bc2,则a≤b.假命题.(2)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补.真命题.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形.真命题.逆否命题:若四边形不是圆的内接四边形,则该四边形的对角不互补.真命题.反思感悟若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假命题.原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆否命题的两个命题的真假性相同.在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0,要么是2,要么是4. 跟踪训练2下列命题中为真命题的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x-2是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④答案 B解析 ①原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.故为真命题.②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”.故为假命题. ③原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”. ∵方程无实根,∴判别式Δ=1+4m <0,∴m <-14<0.故为真命题.④原命题的逆否命题为“若x 不是无理数,则x -2不是有理数”. ∵x 不是无理数,∴x 是有理数.又2是无理数,∴x -2是无理数,不是有理数.故为真命题. 故正确的命题为①③④,故选B. 题型三 等价命题的应用例3 证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.证明 原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0, 则f (a )+f (b )<f (-a )+f (-b )”. 若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.反思感悟 因为原命题与其逆否命题是等价的,可以证明一个命题的逆否命题成立,从而证明原命题也是成立的.正确写出原命题的逆否命题是证题的关键.跟踪训练3 判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假. 解 先判断原命题的真假.因为a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集, 所以Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74,a ≥74⇒a ≥1,所以原命题为真,又因为原命题与其逆否命题等价,所以逆否命题为真.命题的等价性典例 主人邀请张三、李四、王五三个人吃饭,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能去了.”主人听了,随口说了句:“该来的没有来.”张三听了脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人离去的原因.解 张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因是:“不该走的又走了”的逆否命题是“没走的应该走”,李四觉得自己是应该走的.[素养评析] 逻辑推理是在数学活动中进行交流的基本思维品质,本例是利用原命题与其逆否命题的等价性的逻辑原理,得出相应的合理解释.1.命题“如果a ∉A ,则b ∈B ”的否命题是( ) A .如果a ∉A ,则b ∉B B .如果a ∈A ,则b ∉B C .如果b ∈B ,则a ∉A D .如果b ∉B ,则a ∉A答案 B解析 命题“如果p ,则q ”的否命题是“如果綈p ,则綈q ”,“∈”与“∉”互为否定形式.2.命题“若綈p ,则q ”的逆否命题为( ) A .若p ,则綈q B .若綈q ,则綈p C .若綈q ,则p D .若q ,则p 答案 C3.下列命题为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x =1,则x 2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题答案 A解析对A,即判断:若x>|y|,则x>y的真假,显然是真命题.4.在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题中,真命题的个数为________.答案 4解析逆命题为“若A∩B≠A,则A∪B≠B”;否命题为“若A∪B=B,则A∩B=A”;逆否命题为“若A∩B=A,则A∪B=B”,全为真命题.5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.解(1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.写一个命题的否命题时,要对命题的条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误.若由p经逻辑推理得出q,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明即可.一、选择题1.“如果x>y,则x2>y2”的逆否命题是()A.如果x≤y,则x2≤y2B.如果x>y,则x2<y2C.如果x2≤y2,则x≤y D.如果x<y,则x2<y2答案 C解析由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.2.命题“如果a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为() A.1 B.2 C.3 D.4答案 B解析原命题显然为真命题,故其逆否命题为真命题,而其逆命题为“如果a>-6,则a>-3”,这是假命题,从而否命题也是假命题,因此只有两个真命题.3.“△ABC中,若∠C=90°,则∠A,∠B全是锐角”的否命题为()A.△ABC中,若∠C≠90°,则∠A,∠B全不是锐角B.△ABC中,若∠C≠90°,则∠A,∠B不全是锐角C.△ABC中,若∠C≠90°,则∠A,∠B中必有一钝角D.以上都不对答案 B解析若∠C≠90°,则∠A,∠B不全是锐角,此处“全”的否定是“不全”.4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确答案 A解析设p为“如果A,则B”,那么q为“如果綈A,则綈B”,r为“如果綈B,则綈A”.故q与r为互逆命题.5.有下列四个命题:①“如果x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“如果q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为()A.①②B.②③C.①③D.③④答案 C解析 命题①:“如果x ,y 互为相反数,则x +y =0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题;命题③:“如果x 2+2x +q =0有实根,则q ≤1”是真命题;命题④是假命题.6.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A .真、真、真 B .假、假、真 C .真、真、假 D .假、假、假答案 A解析 从原命题、逆命题的真假入手,a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题、逆命题都为真命题,则其逆否命题、否命题也为真命题.7.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题为真命题,逆命题为假命题B .原命题为假命题,逆命题为真命题C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题 答案 A解析 逆否命题:若a ,b 都小于1,则a +b <2,是真命题,所以原命题是真命题.逆命题:若a ,b 中至少有一个不小于1,则a +b ≥2.例如,a =3,b =-3满足条件a ,b 中至少有一个不小于1,但a +b =0,故逆命题是假命题.故选A.8.关于命题“若拋物线y =ax 2+bx +c 开口向下,则{x |ax 2+bx +c <0}⇏∅”的逆命题、否命题、逆否命题的真假性,下列结论正确的是( ) A .都是真命题 B .都是假命题 C .否命题是真命题 D .逆否命题是真命题 答案 D解析 原命题为真命题,所以其逆否命题也为真命题.逆命题“若{x |ax 2+bx +c <0}D =/∅,则拋物线y =ax 2+bx +c 开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即拋物线的开口可以向上,因此否命题也是假命题,故选D. 二、填空题9.下列命题:①“如果xy =1,则x ,y 互为倒数”的逆命题; ②“四边相等的四边形是正方形”的否命题; ③“梯形不是平行四边形”的逆否命题; ④“如果ac 2>bc 2,则a >b ”的逆命题. 其中真命题是________.(填序号) 答案 ①②③解析 ①“如果xy =1,则x ,y 互为倒数”的逆命题是“如果x ,y 互为倒数,则xy =1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“如果ac 2>bc 2,则a >b ”的逆命题是“如果a >b ,则ac 2>bc 2”,是假命题.所以真命题是①②③.10.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________. 答案 [1,2]解析 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2,∴1≤m ≤2. 11.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有______;互为逆否命题的有________. 答案 ②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤解析 命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断. 三、解答题12.判断下列命题的真假.(1)对角线不相等的四边形不是等腰梯形;(2)若x∉A∩B,则x∉A且x∉B;(3)若x2+y2≠0,则xy≠0.考点四种命题间的相互关系题点利用四种命题的关系判断真假解(1)该命题的逆否命题是“若一个四边形是等腰梯形,则它的对角线相等”,它为真命题,故原命题为真.(2)该命题的逆否命题是“若x∈A或x∈B,则x∈A∩B”,它为假命题,故原命题为假.(3)该命题的逆否命题是“若xy=0,则x2+y2=0”,它为假命题,故原命题为假.13.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.14.已知命题“非空集合M中的元素都是集合P中的元素”是假命题,那么下列命题中真命题的个数为()①M中的元素都不是P的元素;②M中有不属于P的元素;③M中有属于P的元素;④M 中的元素不都是P的元素.A.1 B.2 C.3 D.4考点四种命题间的相互关系题点利用四种命题的关系判断真假命题的个数答案 B解析由于“M⊆P”为假命题,故M中至少有一个元素不属于P,∴②④正确.M中可能有属于P的元素,也可能都不是P的元素,故①③错误.故选B.15.已知条件p :|5x -1|>a >0,其中a 为实数,条件q :12x 2-3x +1>0,请选取一个适当的a 值,利用所给出的两个条件p ,q 分别作为集合A ,B ,构造命题“若A ,则B ”,并使得构造的原命题为真命题,而其逆命题为假命题,这样的一个原命题可以是什么? 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假解 由|5x -1|>a >0,得5x -1<-a 或5x -1>a ,即x <1-a 5或x >1+a 5. 由12x 2-3x +1>0,得2x 2-3x +1>0, 解得x <12或x >1. 为使“若A ,则B ”为真命题,而其逆命题为假命题,则需A B .令a =4,得p :x <-35或x >1, 满足题意,故可以选取a =4,此时原命题是“若|5x -1|>4,则12x 2-3x +1>0”。
湘教版 学案 1.1.2 命题的四种形式
1.1.2命题的四种形式1.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.会判断四种命题的真假.下列四个命题:(1)若f(x)是正弦函数,则f(x)是周期函数;(2)若f(x)是周期函数,则f(x)是正弦函数;(3)若f(x)不是正弦函数,则f(x)不是周期函数;(4)若f(x)不是周期函数,则f(x)不是正弦函数.观察命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?答:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件.对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.1.命题“若p则q”的四种形式原命题:若p则q;逆命题:若q则p;否命题:若¬p则¬q;逆否命题若¬q则¬p.2.四种命题间的关系3.四种命题的真假判断(1)原命题为真,它的逆命题可以为真,也可以为假.(2)原命题为真,它的否命题可以为真,也可以为假.(3)原命题为真,它的逆否命题一定为真.(4)互为逆否的两个命题是等价命题,它们同真同假,同一个命题的逆命题和否命题是一对互为逆否的命题,所以它们同真同假.要点一四种命题的概念例1分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)实数的平方是非负数;(2)若x、y都是奇数,则x+y是偶数.解(1)原命题是真命题逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)原命题是真命题逆命题:若x+y是偶数,则x、y都是奇数,是假命题.否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.逆否命题:若x+y不是偶数,则x、y不都是奇数,是真命题.规律方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当的添加一些词语,但不能改变条件和结论.跟踪演练1写出以下命题的逆命题、否命题和逆否命题.(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于这个平面;(2)如果x>10,那么x>0;(3)当x=2时,x2+x-6=0.解(1)逆命题:如果一条直线垂直于平面,那么该直线垂直于平面内的两条相交直线.否命题:如果一条直线不垂直于平面内的两条相交直线,那么这条直线不垂直于这个平面.逆否命题:如果一条直线不垂直于平面,那么这条直线不垂直于平面内的两条相交直线.(2)逆命题:如果x>0,那么x>10.否命题:如果x≤10,那么x≤0.逆否命题:如果x≤0,那么x≤10.(3)逆命题:如果x2+x-6=0,那么x=2.否命题:如果x≠2,那么x2+x-6≠0.逆否命题:如果x2+x-6≠0,那么x≠2.要点二四种命题的关系例2下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中是真命题的是________.答案①②③解析①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③.规律方法要判断四种命题的真假:首先,要熟练四种命题的相互关系,注意它们之间的相互性;其次,利用其他知识判断真假时,一定要对有关知识熟练掌握.跟踪演练2有下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若x≤-3,则x2-x-6>0”的否命题;③“同位角相等”的逆命题.其中真命题的个数是________.答案 1解析①“若x+y≠0,则x,y不是相反数”,是真命题.②“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,而x=4>-3不是不等式的解,故是假命题.③“相等的角是同位角”是假命题.要点三等价命题的应用例3判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.解法一原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断如下:因为抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,若a<1,则4a-7<0.即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真.法二先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,所以Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,所以a≥1.所以原命题成立.又因为原命题与其逆否命题等价,所以逆否命题为真.规律方法由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.跟踪演练3判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.1.命题“若a∉A,则b∈B”的否命题是()A.若a∉A,则b∉B B.若a∈A,则b∉B C.若b∈B,则a∉A D.若b∉B,则a∉A 答案 B解析命题“若p,则q”的否命题是“若¬p,则¬q”,“∈”与“∉”互为否定形式.2.命题“若A∩B=A,则A∪B=B”的逆否命题是()A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A答案 C解析注意“A∩B=A”的否定是“A∩B≠A”.3.命题“若平面向量a,b共线,则a,b方向相同”的逆否命题是______________________________,它是________命题(填“真”或“假”).答案若平面向量a,b的方向不相同,则a,b不共线假4.给出以下命题:①“若x2+y2≠0,则x、y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.其中为真命题的是________.答案①③解析①否命题是“若x2+y2=0,则x,y全为0”.真命题.②逆命题是“若两个多边形相似,则这两个多边形为正多边形”,假命题.③∵Δ=1+4m,若m>0时,Δ>0,∴x2+x-m=0有实根,即原命题为真.∴逆否命题为真.1.写四种命题时,可以按下列步骤进行:(1)找出命题的条件p和结论q;(2)写出条件p的否定¬p和结论q的否定¬q;(3)按照四种命题的结构写出所有命题.2.每一个命题都有条件和结论组成,要分清条件和结论.3.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.。
第2节 命题及其关系、充分条件与必要条件
第2节命题及其关系、充分条件与必要条件考纲要求 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒pp是q的必要不充分条件p⇒q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒q且q⇒p1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.区别A是B的充分不必要条件(A⇒B且B⇒A),与A的充分不必要条件是B(B⇒A且A⇒B)两者的不同.3.充要关系与集合的子集之间的关系,设A ={x |p (x )},B ={x |q (x )}, (1)若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.(2)若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件. (3)若A =B ,则p 是q 的充要条件.4.p 是q 的充分不必要条件,等价于綈q 是綈p 的充分不必要条件.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)“x 2+2x -3<0”是命题.( )(2)当q 是p 的必要条件时,p 是q 的充分条件.( )(3)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( ) 答案 (1)× (2)√ (3)√ (4)√解析 (1)错误.该语句不能判断真假,故该说法是错误的.2.设a ,b ∈R 且ab ≠0,则ab >1是a >1b 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 若“ab >1”,当a =-2,b =-1时,不能得到“a >1b ”,若“a >1b ”,例如当a =1,b =-1时,不能得到“ab >1”,故“ab >1”是“a >1b ”的既不充分也不必要条件.3.命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4答案 C解析 命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.4.(2020·长春模拟)已知命题α:如果x <3,那么x <5,命题β:如果x ≥3,那么x ≥5,则命题α是命题β的( ) A.否命题 B.逆命题 C.逆否命题 D.否定形式答案 A解析 两个命题之间只是条件、结论都作出否定,故为否命题关系. 5.(2020·天津卷)设a ∈R ,则“a >1”是“a 2>a ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 由a 2>a ,得a 2-a >0, 解得a >1或a <0,∴“a >1”是“a 2>a ”的充分不必要条件.6.(2021·合肥七校联考)已知集合A ={x |13<3x <27,x ∈R },B ={x |-1<x <m +1,m ∈R },若x ∈B成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________. 答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |13<3x <27,x ∈R ={x |-1<x <3}.∵x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.考点一 命题及其关系1.(2020·太原质检)命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a +c ≤b +c ,则a ≤bB.若a ≤b ,则a +c ≤b +cC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c答案 B解析 将条件和结论都进行否定,即命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”.2.(2021·成都七中检测)给出下列命题: ①“若xy =1,则lg x +lg y =0”的逆命题; ②“若a ·b =a ·c ,则a ⊥(b -c )”的否命题;③“若b ≤0,则方程x 2-2bx +b 2+b =0有实根”的逆否命题; ④“等边三角形的三个内角均为60°”的逆命题. 其中真命题的个数是( ) A.1 B.2 C.3 D.4答案 D解析 对于①,“若xy =1,则lg x +lg y =0”的逆命题为“若lg x +lg y =0,则xy =1”,该命题为真命题;对于②,“若a ·b =a ·c ,则a ⊥(b -c )”的否命题为“a ·b ≠a ·c ,则a 不垂直于(b -c )”,由a ·b ≠a ·c 可得a ·(b -c )≠0,据此可得a 不垂直于(b -c ),该命题为真命题;对于③,若b ≤0,则方程x 2-2bx +b 2+b =0的根的判别式Δ=(-2b )2-4(b 2+b )=-4b ≥0,方程有实根,原命题为真命题,则其逆否命题为真命题;对于④,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.3.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2)解析 根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).感悟升华 1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.考点二充分条件与必要条件的判定【例1】(1)(2020·浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B(2)A解析(1)由m,n,l在同一平面内,可能有m,n,l两两平行,所以m,n,l可能没有公共点,所以不能推出m,n,l两两相交.由m,n,l两两相交且m,n,l不经过同一点,可设l∩m=A,l∩n=B,m∩n=C,且A∉n,所以点A和直线n确定平面α,而B,C∈n,所以B,C∈α,所以l,m⊂α,所以m,n,l在同一平面内.故选B.(2)因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p,但綈p⇒綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.感悟升华充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练1】 (1)(2021·昆明诊断)设集合A ={x |(x +1)(x -2)≥0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x +1≥0.则“x ∈A ”是“x ∈B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件(2)(2020·北京卷)已知α,β∈R ,则“存在k ∈Z 使得α=k π+(-1)k β”是“sin α=sin β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 (1)B (2)C解析 (1)集合A ={x |(x +1)(x -2)≥0}={x |x ≥2,或x ≤-1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x +1≥0={x |x ≥2,或x <-1}.∴B A ,∴“x ∈A ”是“x ∈B ”的必要不充分条件.(2)若存在k ∈Z 使得α=k π+(-1)k β,则当k =2n (n ∈Z ),α=2n π+β,有sin α=sin(2n π+β)=sin β;当k =2n +1(n ∈Z ),α=(2n +1)π-β,有sin α=sin[(2n +1)π-β]=sin β. 若sin α=sin β,则α=2k π+β或α=2k π+π-β(k ∈Z ), 即α=k π+(-1)k β(k ∈Z ).故选C. 考点三 充分、必要条件的应用【例2】 (经典母题)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].【迁移1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由. 解 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10, ∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【迁移2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}. ∵綈p 是綈q 的必要不充分条件, p 是q 的充分不必要条件. ∴p ⇒q 且q ⇒p ,即P S .∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,又因为S 为非空集合, 所以1-m ≤1+m ,解得m ≥0, 综上,实数m 的取值范围是[9,+∞).感悟升华 1.根据充分、必要条件求解参数取值范围需抓住“两”关键 (1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题时要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练2】 设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 ⎣⎡⎦⎤0,12 解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎨⎧⎭⎬⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a+1)]≤0}={x |a ≤x ≤a +1}.由q 是p 的必要而不充分条件,知A B .所以a ≤12且a +1≥1,因此0≤a ≤12.A 级 基础巩固一、选择题1.(2019·天津卷)设x ∈R ,则“0<x <5”是“|x -1|<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 答案 B解析 由|x -1|<1可得0<x <2,由“0<x <5”不能推出“0<x <2”,但由“0<x <2”可以推出“0<x <5”. 故“0<x <5”是“|x -1|<1”的必要而不充分条件.2.(2021·百校联考考前冲刺)已知命题p :“任意a >0,且a ≠1,函数y =1+log a (x -1)的图象过点P ”的逆否命题为真,则P 点坐标为( ) A.(2,1) B.(1,1) C.(1,2) D.(2,2)答案 A解析 由逆否命题与原命题同真同假,可知命题p 为真命题,由对数函数性质可知,函数y =1+log a (x -1)的图象过定点(2,1),所以点P 的坐标为(2,1).3.(2019·北京卷)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 C解析 当b =0时,f (x )=cos x 为偶函数;若f (x )为偶函数,则f (-x )=cos(-x )+b sin(-x )=cos x -b sin x =f (x ),∴-b sin x =b sin x 对x ∈R 恒成立,∴b =0. 故“b =0”是“f (x )为偶函数”的充分必要条件. 4.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A.ac 2>bc 2B.a b >1C.a -c >b -cD.a 2>b 2答案 C解析 对于A ,a >b ,若c =0,则ac 2=bc 2,故A 错误;对于B ,a >b ,若a >0,b <0,则ab <1,故B 错误;对于C ,a >b ,则a -c >b -c ,故C 正确;对于D ,a >b ,若a ,b 均小于0,则a 2<b 2,故D 错误.5.(2020·长沙检测)若l ,m 是两条不同的直线,α是一个平面,且m ⊥α,则“l ⊥m ”是“l ∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析 当直线l ⊂α时,“l ⊥m ” ⇒ “l ∥α”,充分性不成立.若l ∥α,由线面平行的性质,可知在平面α内一定存在一条直线n 与l 平行,又m ⊥α,所以m ⊥n ,则m ⊥l ,可知必要性成立. 所以“l ⊥m ”是“l ∥α”的必要不充分条件. 6.(2020·石家庄模拟)下列说法中正确的是( ) A.若函数f (x )为奇函数,则f (0)=0B.若数列{a n }为常数列,则{a n }既是等差数列也是等比数列C.在△ABC 中,A >B 是sin A >sin B 的充要条件D.命题“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”的逆命题为假命题答案 C解析 A 错误,f (x )=1x 为奇函数,但f (0)无意义;B 错误,a n =0为常数列,但{a n }不是等比数列;C 正确,由于A >B ⇔a >b ⇔sin A >sin B .D 错误,若{a n }递减,则a n +1<a n ⇒a n +a n +12<a n ,n ∈N *,所以逆命题为真命题,D 不正确.7.(2021·贵阳模拟)设函数f (x )=e x 2-3x ,则使f (x )<1成立的一个充分不必要条件是( ) A.0<x <1B.0<x <4C.0<x<3D.3<x<4答案 A解析f(x)<1⇔e x2-3x<1⇔x2-3x<0,解得0<x<3.又“0<x<1”可以推出“0<x<3”,但“0<x<3”不能推出“0<x<1”.故“0<x<1”是“f(x)<1”的充分不必要条件.8.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]答案 A解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.二、填空题9.(2021·河南名校联考)设命题p:x>4;命题q:x2-5x+4≥0,那么p是q的________________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).答案充分不必要解析由x2-5x+4≥0得x≤1或x≥4,可知{x|x>4}是{x|x≤1或x≥4}的真子集,∴p是q 的充分不必要条件.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误;②原命题的逆命题为“若x,y 互为相反数,则x+y=0”,正确;③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.11.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.答案-1<k<3解析 直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2, 解得-1<k <3.12.已知不等式|x -m |<1成立的一个充分不必要条件是13<x <12,则m 的取值范围是________. 答案 ⎣⎡⎦⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝⎛⎭⎫13,12(m -1,m +1),故⎩⎨⎧m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43. B 级 能力提升13.(2020·武昌调研)给出下列说法:①命题“若x 2=1,则x ≠1”的否命题是“若x 2=1,则x =1”;②命题“若a >2且b >2,则a +b >4且ab >4”的逆命题为真命题;③命题“若函数f (x )=x 2-ax +1有零点,则a ≥2或a ≤-2”的逆否命题为真命题;④命题“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x >0”. 其中正确的序号为( )A.②B.③C.①③D.②④答案 B解析 对于①,由于否命题既否定条件又否定结论,因此命题“若x 2=1,则x ≠1”的否命题是“若x 2≠1,则x =1”,所以①错误;对于②,原命题的逆命题为“若a +b >4且ab >4,则a >2且b >2”,取a =1,b =5,满足a +b >4且ab >4,但不满足a >2且b >2,所以②错误;对于③,若函数f (x )=x 2-ax +1有零点,则Δ=a 2-4≥0,解得a ≥2或a ≤-2,原命题为真命题,由于原命题与其逆否命题同真同假,所以③正确;对于④,命题“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x ≥0”,所以④错误. 14.已知偶函数y =f (x )在[0,+∞)上单调递增,则对实数a ,b ,“a >|b |”是“f (a )>f (b )”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 因为y =f (x )是偶函数,所以f (x )=f (|x |).又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立;若f (a )>f (b ),则等价为f (|a |)>f (|b |),即|a |>|b |,即a >|b |或a <-|b |,即必要性不成立,则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 15.能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________. 答案 a =1,b =-1(答案不唯一,只需a >0,b <0)解析 若a >b ,则1a <1b 为真命题,则1a -1b =b -a ab<0,∵a >b ,∴b -a <0,则ab >0.故当a >0,b <0时,均能说明“若a >b ,则1a <1b”为假命题. 16.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32. 因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.。
细说“否命题”与“命题的否定”
细说“否命题”与“命题的否定”江苏省姜堰中学 张圣官(225500)在学习《常用逻辑用语》的过程中,不少同学常常把“否命题”与“命题的否定”混为一谈。
其实这两个概念是在不同的层面上研究问题时所出现的。
“否命题”出现在“命题及其关系”中,指的是当原有命题(即原命题)为“若P 则q ”形式时,同时否定它的条件和结论得到“若¬p 则¬q(读作若非p 则非q )”,这称为原命题的否命题;而“命题的否定”是指将命题p (通常是较简单的命题)直接进行否定得到¬p,也即是直接得到命题的反面。
1.要写出否命题,首先要将原命题改写成“若P 则q ”形式 例1.已知命题“全等三角形一定相似”,试写出它的否命题,并判断这两个命题的真假。
解:将原命题改写为:若两个三角形全等,则它们一定相似。
其否命题即为:若两个三角形不全等,则它们一定不相似。
原命题为真,否命题为假。
点评:将原命题首先改写成“若P 则q ”形式,是正确写出否命题的关键。
当然还要注意这里的“一定”是语气助词而不是谓语动词,不能把否命题写成:若两个三角形不全等,则它们不一定相似。
这样写就错了!违背了常用逻辑的基本规则。
事实上,在处理命题中含有“一定”、“必然”等词语的问题时有一个办法是切实可行的,这就是将它们去掉,因为它们仅仅是加强语气而已。
还有一点需要强调的是,原命题为真(假)时,否命题的真假性并不确定,即否命题可能为真也可能为假,这要根据具体的问题结论来确定。
在四种命题关系中,原命题与逆否命题真假性相同,逆命题与否命题真假性相同。
例2.写出命题“若0,,,<∈ac R c b a ,则方程02=++c bx ax 有两个不相等的实数根。
”的否命题。
分析:本题中对“P ”的理解很关键,“R c b a ∈,,”必须当做前提条件才行,而不能对它进行否定。
否命题应该写成“若0,,,≥∈ac R c b a ,则方程02=++c bx ax 没有两个不相等的实数根。
四种命题的真假-P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析“若p则q”形式命题
在现行教材有关命题的学习中对“若p则q”形式的命题是这样说的:“若p则q”为真,
⇒,或是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作p q ⇐,这时我们说,p是q的充分条件,q是p的必要条件。
在教师教学用书上又进行者q p
了这样的补充说明:需要指出,“若p则q”形式的命题,也是一种复合命题。
其中的p与q,可以是命题,也可以是开语句…;从逻辑的角度看,命题“若p则q”的否定是“p且非q” …。
这里出现这样一个问题,从初中教材学习命题起,教材中让学生练习将命题写成“如果…那么…”的形式,在教材中让学生练习将命题写成“若p则q”的形式。
如命题“12>5”,可以改成“如果一个数是12,那么这个数大于5.”;命题“3是12的约数” 可以改成“如果一个数是3,那么这个数是12的约数.”;命题“0.5是整数”可以改成“如果一个数是0.5,那么这个数是整数.”“如果…那么…”和“若p则q”意思相同。
那么对任意一个“若p则q”形式的命题是按简单命题对待还是按复合命题来对待呢?在实际的教学中许多学生问过这样的问题。
如命题“负数的平方是正数”改写成“若一个数是负数,则它的平方是正数”。
这个命题在没改之前是个简单命题,而改了之后按教师教学用书的补充说明应是符合命题。
这样前后就不同了,该怎样对待这个命题呢?对类似的命题有该怎样否定、区分合理呢?
一、命题改写成“如果…那么…”或“若p则q”的合理性
判断是对事物及其情况断定的一种思维形式,是一种思想.判断的形成和存在,判断的表达都要借助于语句.没有语句的判断是不存在的,这种语句就是我们学习的命题。
这也就有了对命题的一种定义:判断一件事情的句子叫命题。
命题是由条件(题设)和结论两部分组成的,所以从形式上讲命题写成“如果…那么…” 或“若…则…”的形式符合命题的本质含义。
二、简单命题的定义和分类
不含有逻辑联结词且在结构上不能再分解成其它命题的命题称作简单命题。
例如“7<21”。
简单命题按其所断定是对象的性质还是关系而分为性质命题和关系命题。
性质命题就是断定某事物具有(或不具有)某种性质的命题。
关系命题就是断定事物与事物之间关系的命题。
性质命题的判断词常用“是”,“不是”;用来判断主项是否符合某项性质。
例如“3是正数”就是性质命题。
关系命题的判断词常用“有”,“没有”,“存在”,“使”,“满足”;“不存在”,“不满足”用来判断主项是否符合某种关系。
在语义明确的情况下判断词常被省略。
例如“存在角A,使si nA=0”;“3>2” 就是关系命题
根据量词的不同,命题可分为单称命题,特称命题和全称命题。
单称命题的主项是单独的个体,量词“一个”通常被省略。
如“3是正数”就是单称命题。
全称命题的主项是对象的全体,常用的量词是“一切”,“所有”,“每一个”,“任何”,“都”等,也常被省略。
如“整数是有理数”的完整的表示是全称命题“所有整数都是有理数”。
特称命题的主项是对象的一部分,常用的量词是“有的”,“存在”,“至少有一个”,等,不能省略。
如“有的实数的平方不是正数”就是特称命题。
三、简单命题写成“若p则q”形式之后的类型和区分方法
①p所表达的是一个对象的简单的判断且这个判断的结论是q中的主项,例如:“如果一个数是0.5,那么这个数是整数”,这是一个单称命题所改写成的。
未改之前为“0.5是整数”。
②p所表达的是一类对象的简单的判断且这个判断的结论是q中的主项例如:“如果一个数是偶数,则这个数是自然数”。
这是一个全称命题所改写成的。
未改之前“所有的偶数都是自然数”
区分的方法:分析p和q之间是否是上述两种类型,若是则说明这是一个简单命题,否则认为其是“若p则q”形式的复合命题。
四、“若p则q”形式的复合命题的定义和理解
给定两个命题p、q,用联结词“若…则…”构成的复合命题“若p则q”叫做p、q的蕴涵式(或称假言命题),记为“p→q”.其中p称为前件,q称为后件。
假言命题往往反映了客观事物之间的联系和规律,数学中的大量定理都具有假言命题的形式。
“p→q”可以用多种语言形式表达.例如,如果p,那么q;由p可推出q;因为p,所以q。
这里的p和q之间蕴含一定的推理,这种推理可判断由p成立能不能推出q成立。
P和q是相互独立的。
由简单命题改写成“若p则q”之后,p和q之间是相互联系的,不能独立。
例如“负数的平方是正数”改成“若一个数是负数则它的平方是正数”后,p和q部分的内容是不能独立的,如果独立开来,则无法理解其意思。
所以它不是个复合命题。
应视为一个全称命题的简单命题。
五、对任意给出的“若p则q”形式命题的否定
根据原命题和它的否定命题真假相反的规律,总结如下的方法:
①对单称命题改写成的“若p则q”形式的命题
这种命题的否定就是“若p则非q”的形式,例如“ ”
②对全称命题改写成“若p则q”形式的命题
如果这个命题为真,则这个命题的否定就是“若p则非q”。
例如:“若一个数是偶数,则这个数是整数”,其否定就可写为“若一个数是偶数,则这个数不是整数”;
也可用全称命题本来的否定方法来否定,如刚才的命题的否定也可写为“有些偶数不是整数”。
如果这个命题为假,必须用全称命题本来的否定方法来否定。
例如:“若一个数是偶数,则这个数是自然数”,其否定不能写成“若一个数是偶数,则这个数不是自然数”,也不能写成“一个数是偶数且这个数不是自然数”,因为这两个命题均假,而原命题是真命题,这与复合命题的真值规律相矛盾。
其正确的否定为“有些偶数不是自然数”。
再例如“若一个整数能被5整除,则它的末位是0”,有人认为这是一个“若p 则q”的复合命题,其否定应按“若p则q”的复合命题的否定为“p且非q”来写。
即为“一个整数能被5整除且它的末位不是0”。
这是不对的。
这还是与复合命题的真值规律相矛盾。
应视其为全称命题的的一种简单命题,其否定为“有些能被5整除的整数末位不是0”
③一般特称命题不能写成“若p则q”,所以这种情况不用考虑。
在教学实际中,教师要按大纲的要求不要增加命题知识的难度,也不要主动提及这个问题。