勾股定理实际应用教学设计

合集下载

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。

2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。

启发学生对空间的认知,为将来学习空间几何奠定根底。

二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。

2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。

三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。

【难点】:查找长方体中最短路线。

四、教学方法本课采纳学生自主探究归纳教学法。

教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。

五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。

思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。

【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

八年级数学上册《勾股定理》教案、教学设计

八年级数学上册《勾股定理》教案、教学设计
3.勾股定理的应用:结合实际例子,如测量旗杆高度、计算三角形面积等,让学生了解勾股定理在实际问题中的应用。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。

高中数学勾股定理教案

高中数学勾股定理教案

高中数学勾股定理教案
教学内容:勾股定理
教学目标:
1. 了解勾股定理的定义和原理
2. 掌握勾股定理的应用方法
3. 能够熟练使用勾股定理解决实际问题
教学重点:
1. 勾股定理的概念和原理
2. 勾股定理的推导方法
3. 勾股定理的应用
教学步骤:
一、导入(5分钟)
1. 引入勾股定理的概念,引导学生思考勾股定理的应用场景。

二、讲解(15分钟)
1. 讲解勾股定理的定义和原理,说明直角三角形中,直角边的平方等于两个直角边的平方和。

2. 示范勾股定理的推导方法,引导学生理解勾股定理的证明过程。

三、练习(20分钟)
1. 给学生分发练习题,让学生自行解题,并互相讨论交流。

2. 指导学生如何应用勾股定理解决实际问题,如测量建筑物的高度、距离等。

四、总结(10分钟)
1. 回顾勾股定理的定义和应用方法,强化学生对勾股定理的理解。

2. 提醒学生在日常学习和生活中多加应用勾股定理,提高解决问题的能力和应用能力。

五、作业布置(5分钟)
1. 布置勾股定理相关的作业,巩固学习内容。

2. 提醒学生课后多进行练习,加深对勾股定理的理解和掌握。

教学反思:
通过此次教学,学生对勾股定理的认识得到了加深,掌握了勾股定理的应用方法,提高了解决实际问题的能力。

下一步需要继续强化学生对勾股定理的理解和实际运用能力,拓展勾股定理的应用场景,激发学生对数学的兴趣。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

华东师大版八年级数学上册14.2勾股定理的应用教学设计

华东师大版八年级数学上册14.2勾股定理的应用教学设计
2.新课讲解:
-通过动态演示或实物模型,引导学生发现直角三角形三边之间的关系,从而引出勾股定理。
-结合图形,详细讲解勾股定理的公式及其推导过程,让学生深刻理解定理的内涵。
-通过例题,展示勾股定理在实际问题中的应用,如计算斜边长度、确定直角三角形的形状等。
3.课堂练习:
-设计不同难度的练习题,让学生独立完成,巩固勾股定理的知识。
2.实践应用题:设计一道与实际生活相关的勾股定理应用题,要求同学们运用所学知识解决问题。例如,假设学校旗杆的高度不易直接测量,但我们可以测得旗杆底端到地面的水平距离以及旗杆顶端到视线的垂直距离,请计算旗杆的大致高度。
3.创新思维题:请同学们思考并尝试证明勾股定理的逆定理,即在一个三角形中,如果一边的平方等于另外两边平方和,那么这个三角形是直角三角形。鼓励同学们运用多种方法进行证明,如几何法、代数法等。
2.学生在解决实际问题时,可能难以将勾股定理与问题情境有效结合。教师应通过丰富的实例,引导学生学会运用勾股定理分析问题、解决问题。
3.学生的几何直观能力和逻辑思维能力发展不平衡,部分学生可能在学习过程中感到困难。教师应关注学生的个体差异,提供不同难度的学习任务,使每个学生都能在原有基础上得到提高。
4.学生在合作学习过程中,可能存在交流不畅、分工不明确等问题。教师应引导学生学会倾听、表达和协作,提高学生的团队协作能力。
-针对学生的错误,及时进行讲解和指导,帮助学生克服难点。
4.小组合作:
-将学生分成小组,针对实际问题进行讨论和合作,培养学生的团队协作能力和解决问题的能力。
-引导学生运用勾股定理解决实际问题,如设计建筑物的高度、测量河流宽度等。
5.课堂小结:
-通过提问、总结等方式,帮助学生梳理本节课的知识点,形成知识结构。

《勾股定理》教学设计

《勾股定理》教学设计

③若a∶b=3∶4,c=10,求a, b.
3.求下列图中字母所表示的正方形的面积.
4.一个直角三角形的两边长分别为3 cm和4 cm,则第三边的为.
能力提升
5.如图,在△ABC中,∠ACB=,AB=10 cm,BC=6 cm,CD⊥AB与D.
求:(1)AC的长;(2)CD的长.
课后作业:教材P24 1、2题
反思:课程培训中,好几个专家都同时强调,学会课堂中放手,让学生学会学习,主动学习,这才是根本。

这堂课以学生活动为主线,寓教于学,同时充分利用一体机,直观图形的变化,取得了很好的效果。

其实作为班主任懂得放手,更加重要。

坚守教室、关爱学生,做事讲方法,让我一点一点的学会去做一个班级的管理者,学会和家长沟通,学会处理学生的问题,学会应对压力。

但是也不可否认遇到了瓶颈,我可能还不太会也不太敢放手,所以虽然班级整体越来越好,而我也越来越累,究其根本就是我不懂的放手。

我一直都在尝试,主题班会放手,家长会放手等等,令我印象最深的是有一次家长会,三天时间,开会决定形式,负责人,所有的事情全部由学生完成。

舞蹈、唱歌、情景剧、朗诵各种形式都在短时间内自发完成。

诧异于学生的主动,得意于他们的表现。

这两年我一共外出学习或比赛三次,最长的有十天,没找代理班主任,没麻烦家长们帮忙管理,他们依然保持优秀,我真的感觉学会管理才能真正出成效!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理应用的教学设计教学目标
1.会用勾股定理进行简单的计算。

2.通过探究,会运用勾股定理解释生活中的实际问题。

教学重点
勾股定理的应用。

教学难点
实际问题向数学问题的转化
教学过程
通过小组合作学习探究,研究勾股定理在实际中的应用
一、复习旧知
复习勾股定理以及一些简单的计算
(1)勾股定理:
(2)求出下列直角三角形中未知的边.
A
C B
二、合作探究
通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理。

问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为多少米.?
5 m处断裂,旗杆顶部落在离底部12 m处,问旗杆折断前
如下图,要将楼梯铺上地毯,则需要米长的地毯.
5米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为3米.
①球梯子的底端B距墙角O多少米?
②如果梯的顶端A沿墙下滑1米至C,请同学们猜一猜,底端B也将滑动1米吗?
算一算,底端滑动的距离。

(结果保留1位小数).
6
1
A
C
B
2
30°
C
B
2
2
三.深化新知
“引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴
岸,适与岸齐。

问水深、葭长各几何?”
四、课堂小结
本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么?
五、运用新知
1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树的顶
端飞到另一棵树的顶端,小鸟至少要飞米。

2如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离
是。

4、一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米。

3、小东拿着一根长竹竿进一个宽为三米的城门,他先横着拿不进去,又竖起来拿,结果竿比城
门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米。

六、课后反思
我学到了什么——————
还想知道什么——————。

相关文档
最新文档