中科大 电子顺磁共振(EPR2010秋-2)

合集下载

电子顺磁共振 实验报告

电子顺磁共振 实验报告

INSERT YOUR LOGO电子顺磁共振实验报告通用模板Through the summary and transfer of experience, individuals or units can timely understand the corresponding situation, find out the characteristics and laws, and find out the lessons that can be used for reference.撰写人/风行设计审核:_________________时间:_________________单位:_________________电子顺磁共振实验报告通用模板使用说明:本报告文档可用在单位或个人的场景里,通过总结和传递经验,让上下级个人或单位等有关人员及时了解相应的情况,掌握相关信息,并从中发现典型特征和推断规律,找出可以借鉴的教训。

为便于学习和使用,请在下载后查阅和修改详细内容。

一、实验目的1. 学习电子顺磁共振的基本原理和实验方法;;2. 了解、掌握电子顺磁共振谱仪的调节与使用;3. 测定DMPO-OH 的EPR 信号。

二、实验原理1.电子顺磁共振(电子自旋共振)电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。

1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2 、MnCl2等顺磁性盐类发现。

电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。

《电子顺磁共振》课件

《电子顺磁共振》课件

根据样品的属性和需求,选择合适的测量 参数,如磁场强度、射频频率等。
六、实验步骤
1
样品制备
将样品制备成薄片或粉末,保证样品的纯度和适合的形态。
2
设置仪器参数
根据实验要求设置仪器的磁场强度、射频波功率等参数。
3
获取光谱
使用适当的实验方法获取样品的电子顺磁共振光谱。
4
数据处理
对实验得到的数据进行处理和解析,提取有用的谱学信息。
发掘新在更 多领域发挥重要作用。
九、结语
1 总结
电子顺磁共振是一种重要的谱学技术,为材料科学和生命科学研究提供了关键的实验手 段。
2 感谢
感谢各位的聆听和关注,祝愿大家在电子顺磁共振领域有所收获。
3 参考文献
1. Smith, J. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, 2018. 2. Johnson, R. L. Electron Paramagnetic Resonance: Basic Principles and Practical Applications. Springer, 2017.
控制系统
用于控制脉冲导引磁铁和检 测器,调节样品参数和记录 实验数据。
四、实验方法与技术
简介
电子顺磁共振实验方法包括X波段和Q波段等多 种光谱法。
与核磁共振的比较
电子顺磁共振与核磁共振是两种不同的谱学技术, 具有不同的原理和应用领域。
五、样品制备和测量参数的选择
1 样品制备方法
2 选择测量参数
样品制备是电子顺磁共振实验的关键步骤, 包括样品纯化、制备成薄片或粉末等。

第八章 电子顺磁共振波谱 (EPR)

第八章  电子顺磁共振波谱 (EPR)
Eb = h -Ee -E振
由于光源能量较低,线宽较窄(约为0.01eV),只能使原子的外层价电 子、价带电子电离,并可分辨出分子的振动能级,因此被广泛地用来 研究气体样品的价电子和精细结构以及固体样品表面的原子、电子结 构。
2021/10/10
17
现代分析测试技术—电子能谱
紫外光电子能谱的特征
在紫外光电子能谱的能 量分辨率下,分子转动能 (Er)太小,不必考虑。而分 子振动能(Ev)可达数百毫电 子伏特(约0.05-0.5eV),且 分 子 振动周 期 约为 10-13s , 而 光 电 离 过 程 发 生 在 1016s的时间内,故分子的(高 分辨率)紫外光电子能谱可 以显示振动状态的精细结构。
显然,紫外光电子能谱法不适于进行元素定性分析工作。 由于谱峰强度的影响因素太多,因而紫外光电子能谱法尚
难于准确进行元素定量分析工作。
2021/10/10
20
现代分析测试技术—电子能谱
X射线光电子能谱
由于各种原子轨道中电子的结合能是一定的,因此 XPS 可用来测定固体表面的化学成分,一般又称为化学分析光电子 能谱法。
2021/10/10
6
现代分析测试技术—电子顺磁共振波谱
2)、一组等价磁性核的超精细耦合作用
当未成对电子同时受到几个相同的磁性核作用时,谱线的裂分数为: 2nI+1, 其强度比符合二项式展开。
例如,甲基自由基H3C,因受到3个等价氢的作用而呈现4条裂分谱线。 苯自由基阴离子则为7条谱线。
2021/10/10
试管不用旋转 溶液需除氧
2021/10/10
9
现代分析测试技术—电子顺磁共振波谱
电子顺磁共振波谱的应用
EPR 主要应用于鉴定含有未成对电子的物质,自由基是EPR的主要研究对象。 例如,用EPR证实在氢醌氧化还原体系有半醌自由基的存在。

EPR电子顺磁共振 - 2

EPR电子顺磁共振 - 2
2004研究生课程— EPR
电子顺磁共振(EPR)概论 或电子自旋共振(ESR)概论
陈 家 富
合肥微尺度物质科学国家实验室 顺磁共振室
二00四年十一月
Application Fields of ESR Spectroscopy
Magnetic substance photo-translation Transition metal ion Catalyst Metal complex Teeth, Bone Shell, Coral Quartz, Aging Radiation defects Coal, Oil Erosion Spin label Fluidity SOD activity Aging, Cancer Co-enzyme Vitamin C, E, K Combustion Spin trap Active oxygen Enzyme Glass-fiber
EPR—基本原理三
EPR现象的严格论述,必须运用量子力学。 电子自旋体系的哈密顿算符为:
Ĥ = gβHŜz
Ŝz的自旋本征函数为│α > 和│β >,其本征值分
别为1/2和-1/2。
Ŝz│α > = 1/2│α >
Ŝz│β > = -1/2│β >
EPR—基本原理三
因此,两自旋态的能量为:
Eα = < α│Ĥ │α > = < α│g βHŜz│α > = (1/2) g βH Eβ = < β│Ĥ │β > = < β│g βHŜz│β > = -(1/2) g βH 两能级差: ΔE = E - E = g βH α β 若在与H垂直的方向施加一微波hυ,使得 hυ= gβH,即产生磁共振吸收。

《电子顺磁共振》课件

《电子顺磁共振》课件

水质监测
通过电子顺磁共振技术可以检测 水体中的重金属离子、有机污染 物等有害物质,为水质监测和治 理提供技术支持。
土壤污染修复
电子顺磁共振技术可以用于土壤 污染修复过程中的自由基监测, 有助于了解土壤污染的修复机制 和效果评估。
05
电子顺磁共振的未来发展与 挑战
技术创新与突破
检测方法的改进
01
提高检测灵敏度、分辨率和稳定性,实现更快速、准确和自动
样品固定
采用适当的固定方法将样 品固定在实验装置中,以 便进行实验操作。
实验操的电子顺磁共振实验装 置。
参数设置
根据实验样品的特点,设置合适的实验参数,如 磁场强度、微波频率等。
实验操作
按照实验步骤进行操作,记录实验数据。
数据处理与分析
数据整理
整理实验获得的数据,确保数据的准确性和完整性。
通过电子顺磁共振技术可以研究催化剂的活性中心和反应过程中电 子结构的改变,有助于优化催化剂的性能。
化学键断裂与形成
电子顺磁共振可以检测化学键的断裂和形成过程中自由基的变化, 有助于理解化学键的本质和化学反应的动力学过程。
在生物学研究中的应用
自由基生物学
电子顺磁共振技术可以用于研究自由基生物学,探索自由 基在生物体内的生成、代谢和作用机制,以及自由基对生 物体的影响。
现状
目前,EPR已经成为一种重要的物理表征手段,广泛应用于 各个学科领域。
应用领域
物理
EPR在物理领域中主要用于研究物质 的电子结构和磁性性质,如铁电体、 超导体等。
生物学
EPR在医学领域中用于研究生物组织 的结构和功能,如肿瘤、心血管疾病 等。
化学
EPR在化学领域中用于研究分子的电 子结构和反应机理,如自由基反应、 化学键断裂等。

电子顺磁共振EPR

电子顺磁共振EPR

EPR—研究对象
二苯基苦基肼基(DPPH) Diphenyl Picryl Hydrazyl
Ph Ph NO 2 N N NO 2 NO 2
DPPH的ESR谱线:
EPR—研究对象
如:蒽分子它本身是逆磁性分子
An + K (真空无水条件)
An- + K+ (用四氢呋喃作溶剂)
An + H2SO4 (98%)
Aging
Cancer Inflammation
EPR—研究对象
SOD v.s. Potential Lifetime
EPR—研究对象
SOD 超氧歧化酶, 用于清除超氧阴离 子自由基。
EPR—研究对象
抗氧化剂:茶多酚,各种酒类
EPR—研究对象
DMSO溶液中,各种氧化的茶 多酚ESR谱图。
J. Ferreira Severino et al. Free Radical
Biology & Medicine 46 (2009) 1076–1088
EPR—研究对象
EPR—研究对象
烟草:清除烟草烟气自由基—某些有害成分。
如何提香、降害?—烟草制品的改进方向。
EPR—研究对象
—— 双基或多基
这类化合物含有两个或两个以上未成对电
子,且它们相距甚远,相互作用也很弱。
H3C CH3 CH3 CH3 N O
EPR—研究对象
O2 分子的顺磁性:
有关分子轨道理论可以解释
2O: [(1S)2 (2S)2 (2P)4] O2 :KK[(σ2s)2(σ*2s)2(σ2p)2(πy2p)2(πz2p)2 (πy*2p)1(πz*2p)1]
EPR—研究对象

电子顺磁共振(ESR)

电子顺磁共振(ESR)

氘原子的能级(体系的S=1/2, I=1)
[2] 一个未成对电子与多个磁性核的相互作用 ①含有两个I=1/2的等性核 含有两个I 1/2的等性核 CH2 OH基: 未成对电子与两个氢原子等性耦合 CH OH基 都无核磁矩) (12C和16O都无核磁矩)
根据跃迁选律 只有四个允许跃迁的能量 由于中间能级( 由于中间能级(MI =0) 相重合,中间M 相重合,中间MI =0处的 谱线强度是两侧的二倍, 谱线强度是两侧的二倍, 最终得到的是三条1:2:1 最终得到的是三条1:2:1 强度的谱线
EPR的灵敏度比 的灵敏度比NMR 的灵敏度高, [3]. EPR的灵敏度比NMR 的灵敏度高, EPR检出所需自由基的绝对浓度约在 EPR检出所需自由基的绝对浓度约在 数量级。 10-8M数量级。 [4]. EPR 和NMR 仪器结构上的差别: 仪器结构上的差别: 前者是恒定频率,采取扫场法, 前者是恒定频率,采取扫场法, 后者是恒定磁场,采取扫频法。 后者是恒定磁场,采取扫频法
若有n 若有n个I=1/2的等性核与未成对电子相互 1/2的等性核与未成对电子相互 作用则产生n 作用则产生n+1条等间距的谱线,其强度 条等间距的谱线, 正比于( 正比于(1+x)n 的二项式展开的系数
②含两个I=1的等性核 含两个I 两个氮核与一个未成对电子有等同的作用 14N核的I=1,M =1,0,-1 核的I 1,0,I
电子的磁共振
[
电子自旋磁矩的磁共振 电子轨道磁矩的磁共振
4.5.1 电子顺磁共振基本原理
物质的顺磁性是由分子的永久磁矩引起的 根据保里原理: 根据保里原理: 每个分子轨道上不能存在两个自旋态相同的电子, 每个分子轨道上不能存在两个自旋态相同的电子, 因而各个轨道上已成对的电子自旋运动产生的磁矩 是相互抵消的, 是相互抵消的,只有存在未成对电子的物质才具有 永久磁矩,它在外磁场中呈现顺磁性。 永久磁矩,它在外磁场中呈现顺磁性。

电子顺磁共振EPR

电子顺磁共振EPR

它是直接检测和研究含有未成对电子顺磁 性物质的一种波谱学技术 。
It is also often called ESR, Electron Spin Resonance, ESR.
2010研究生课程— EPR
What Is the Electron Spin?
The electron spin is the electron’s electromagnetic field angular momentum.
340
345
350
325
330
335
340
345
350
Magnetic Fi mT
EPR—研究对象
Unstable Radicals
EPR—研究对象
对一些不稳定、寿命短的活性粒子, 对一些不稳定、寿命短的活性粒子,必须采用一些特 殊的处理才能观察到它们的EPR信号,主要方法有: 信号, 殊的处理才能观察到它们的 信号 主要方法有:
电子自旋即电子的电磁角动量
电子内禀运动或电子内禀运动量子数的简称。 电子内禀运动或电子内禀运动量子数的简称。 电子具有电荷, 电子具有电荷,同时电子像陀螺一样绕一个 固定轴旋转,形成有南北极的自旋磁矩。 固定轴旋转,形成有南北极的自旋磁矩。
EPR—研究对象
一、 电子顺磁共振的研究对象
Application Fields of ESR Spectroscopy
J. Ferreira Severino et al. Free Radical Biology & Medicine 46 (2009) 1076–1088
EPR—研究对象
EPR—研究对象
烟草:清除烟草烟气自由基—某些有害成分 某些有害成分。 烟草:清除烟草烟气自由基 某些有害成分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 铁磁性 (B’>0,即B’与B0同向, B’随B0增大而急 剧增加, 但当B0 消失而本身磁性并不消失) • 反磁性(B’<0,即B’与B0反向) (逆、抗)
EPR—基本原理
反磁性(Diamagnetism) 反磁性的磁化率为负值。 所有物质都具有反磁性。在 外磁场作用下,电子的轨道 运动产生附加转动 (Larmor 进 动 ) ,动量矩发生变化,产生 与外磁场相反的感生磁矩, 表现出反磁性。
通常情况下,该分子磁矩的方向是随机的, 不呈现顺磁性。 当其处于外加磁场中,分子的永久磁矩 随外磁场取向,产生与外磁场同向的内磁 场,这就是物质顺磁性的来源。
回答了哪些物质是顺磁性的!
EPR—基本原理
物质的磁性
B0 — 指外磁场强度 B’ — 外磁场作用下,被诱导产生的附加磁场强度
• 顺磁性 (B’>0,即B’与B0同向)
物质的磁性是物质的宏观物性,它是分子内部 微观结构的总体反映。
EPR—基本原理
2、共振条件(Resonant Condition)
顺磁性物质的分子(或原子、离子)中存在 未成对电子,其电子总自旋角动量Ms不为零。
Ms =
S(S+1) h /2 =
S(S+1) h
其中,S是电子总自旋量子数,其值取决于未成对 电子的数目n (S= n/2 ),式中ћ =h/2π (Planck’s constant h = 6.626×10-34J.s)
2010研究生课程— EPR
Introduction of Electron Paramagnetic Resonance (EPR)
陈 家 富
合肥微尺度物质科学国家实验室 理化中心顺磁
二0一0年十一月
EPR—基本原理
二、 电子顺磁共振的基本原理 1、概述
电子自旋的磁特性
EPR—基本原理
What Is the Electron Spin?
e电子电荷;me电子质量, c光速。
EPR—基本原理
对含有未成对电子的分子而言,其磁矩为 将此分子臵于一外磁场 H 中,则 与 H 之间就 有相互作用,产生能级分裂,即Zeeman分裂。
电子自旋能级在外场中被分裂成两个能级的现象
作用能为:
H = - μHcosθ = - μz H E = - · = -(-gbms)H = gbmsH
但在含有不成对电子的 物质中被顺磁磁化率 ( 比反 磁性大1~3个数量级)掩盖。
EPR—基本原理
铁磁性物质:其永久磁矩之间存在强烈的偶合作用,
无外磁场时,永久磁矩在许多微小区域内成有序排
列,形成磁畴结构。外加磁场时,磁畴的磁矩方向
沿外磁场方向排列,则物质被强烈磁化。 当外磁场消失后,磁畴的磁矩方向仍呈规则排 列,物质的磁性并不马上消失,呈现滞后现象。
EPR—基本原理
我们知道,电子自旋在Zeeman分裂能级Ea、Eb上的分布满足 Boltzmann Distribution Rule:
na / n = exp( gbH/ kT) b
(k —Boltzmann常数1.38×10-23 J/K,Ea、Eb能级上对应的电 子自旋数分别为na 、nb , )
当T=300K时,H ~ 0.34 T ,(na /nb) = 0.9985 ~ 999/1000,即在
常温下,高低能级自旋数差仅千分之一; 但这对ESR具有重要
意义,否则,当na= nb时,ESR在理论上观测就不可能。
EPR—基本原理
若温度降低至77K即液氮温度时:
(na /nb) = 0.994 ~994/1000
EPR—基本原理
H =0时,每个自旋磁矩的方向是随机的,并处于同一个平均能态。 H≠0 时,自旋磁矩 就有规则 地排列起 来 (平行 外磁场 — 对 应能级的能量较低,或反平行于外磁场—对应能级 的能量较高)。
EPR—基本原理
若物质分子(原子、离子)中存在未成
对电子,其自旋产生磁矩,亦称永久磁矩。
EPR—基本原理
h = g bH
关系式β= eћ/2mc,也即β与m有关(成反比),由此 也可以了解为什么核磁共振所使用的激发能(射频 MHz)比顺磁共振的激发能(微波GHz)要小得多(小 ~103),因为mN ≈ 1836me (βN = eћ/2mNc ) 共振条件可简化为:
Hr (Gs) = h/gb = 714.484 × (GHz) /g
Stern-Gerlach实验:为了测量原子的磁矩,让原子束通过不均匀磁场,如果
原子的磁矩在磁场方向的分量有不同的数值,则原子在该方向受不同的作用 力,从而在该方向有不同的偏移距离。斯特恩 -格拉赫实验是电子有内禀的自 旋运动的实验基础之一。
EPR—基本原理
The first observation of an electron paramagnetic resonance peak was made in 1945 when Zavoisky detected a radiofrequency absorption line from a CuCl2 .2H2O sample. A resonance at a magnetic field of 4.76 mT for a frequency of 133 MHz; in this case the electron Zeeman factor g is approximately 2. Later experiments at higher (microwave) frequencies in magnetic fields of 100–300 mT showed the advantage of the use of high frequencies and fields.
EPR—基本原理
电子自旋能级的分裂
EPR—基本原理
h = g bH
h
ΔE = g bH
铁 磁 性 物 质
顺 磁 性 物 质
反 铁 磁 物 质
EPR—基本原理
例如:采用 = 9.5 GHz的微波频率,对自由电子 Hr = 714.484(/g) = 714.4849.5/2.0023 = 3390 Gs = 339 mT 或 = h/g b = 6.626 10-34 9.5 109/2.0023 9.274 10-28 (J.s)(1/s) / J/Gs = 3390 Gs
可见,能级分裂随外磁场H增强而增大
EPR—基本原理
如果体系中只有一个未成对电子,则ms 只取 ±1/2两个值,
其两种可能状态的能量分别是:
Eα = (1/2)gbH; Eβ = -(1/2)gbH 显然, H = 0时, Eα= Eβ = 0,两种自旋的电子具有相同的能量
EPR—基本原理
H ≠0时: 分裂为两个能级Eα和Eβ ,能级分裂
The technique of electron paramagnetic resonance spectroscopy may be regarded as a fascinating extension of the famed Stern-Gerlach experiment. Uhlenbeck and Goudsmit linked the electron magnetic moment with the concept of electron spin angular momentum. Rabi et al. studied transitions between levels induced by an oscillating magnetic field. This experiment was the first observation of magnetic resonance.
若温度降低至4K即液氦温度区:
(na /nb) = 0.892 ~892/1000
即降低温度,ESR信号增强,是因为高低能级上 的电子自旋差额增加的缘故。
EPR—基本原理
A: 受激激发,表现为吸收微波;E: 受激辐射,表现为发射微波
EPR现象的严格论述,必须运用量子 力学!!
EPR—基本原理
自旋哈密顿函数
的大小与H成正比 。 它们的能量差为: ΔE = Eα- Eβ = g bH
EPR—基本原理
若在垂直于磁场H的方向上施加频率为的
电磁波,根据磁能级跃迁的选择定律Δms =±1,
当满足下面条件(Planck’s law):
h = gbH
…… EPR共振条件 电子发生受激跃迁,即低能级电子吸收电磁波 能量而跃迁到高能级中。

e orb s


EPR—基本原理
大多数情况下,轨道磁矩的贡献很小,因此,
电子的磁矩主要来自自旋磁矩(> 99%)的贡献。
若轨道中所有的电子都已成对,则它们 的自旋磁矩就完全抵消,导致分子无顺磁性;
若至少有一个电子未成对,其自旋就会产
生自旋磁矩。 因此,EPR研究的对象必须具有未偶电子。
EPR—基本原理
电子自旋体系的哈密顿算符为:
Ĥ = gβHŜz
Ŝz的自旋本征函数为│a > 和│b>,其本征值分 别为1/2和-1/2。 Ŝz│a > = 1/2│a >
Ŝz│b > = -1/2│b >
EPR—基本原理
因此,两自旋态的能量为:
Eα = < a│Ĥ │a > = < a│gbHŜz│a > = (1/2) g bH Eβ = < b│Ĥ │b > = < b│gbHz b> = -(1/2) g bH 两能级差: ΔE = E - E = g bH α β 若在与H垂直的方向施加一微波h,使得 h = gβH,即产生磁共振吸收。
相关文档
最新文档