3.2.3指数函数与对数函数的关系习题课教师版
课时作业4:3.2.3 指数函数与对数函数的关系

3.2.3 指数函数与对数函数的关系一、选择题1.函数f (x )=log 12(x 2-2x -3)的单调增区间是( )A .(-∞,-1)B .(-∞,1)C .(1,+∞)D .(3,+∞)2.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)3.若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 的值为( ) A.24 B.22C.14D.124.已知函数f (x )=2log 12x 的值域为[-1,1],则函数f (x )的定义域是( )A .[22,2] B .[-1,1] C .[12,2] D .(-∞,22]∪[2,+∞) 5.已知函数f (x )=log 12(x 2-ax +3a )在区间[2,+∞)上为减函数,则a 的范围是( )A .(-∞,4)B .(-4,4]C .(-∞,-4)D .[-4,2)6.下面不等式成立的是( )A .log 32<log 23<log 25B .log 32<log 25<log 23C .log 23<log 32<log 25D .log 23<log 25<log 32二、填空题7.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________.8.已知log 0.45(x +2)>log 0.45(1-x ),则实数x 的取值范围是________.9.函数y =(log 14 x )2-log 12x +5在区间[2,4]上的最小值是________.三、解答题10.比较下列各组数的大小:(1)log 2π与log 20.9;(2)log 20.3与log 0.20.3;(3)log0.76,0.76与60.7;(4)log20.4,log30.4;(5)3log45,2log23.11.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是什么?12.已知函数f(x)=ln(a x-b x)(a>1>b>0).(1)求函数f(x)的定义域;(2)判断函数f(x)在定义域I上的单调性,并说明理由;(3)当a,b满足什么关系时,f(x)在[1,+∞)上恒取正值.1.解析:∵x 2-2x -3>0,可知x >3或x <-1.又0<12<1,∴y =log 12x 为减函数, ∴x <-1.答案:A2.解析:log a (a 2x -2a x -2)<0,∴a 2x -2a x -2>1,∴a x >3或a x <-1(舍),∴x <log a 3.答案:C3.解析:∵0<a <1,∴f (x )是单调减函数,∴在[a,2a ]上,f (x )max =log a a =1,f (x )min =log a 2a =1+log a 2.由题意得3(1+log a 2)=1,解得a =24. 答案:A4.解析:由-1≤2log 12 x ≤1得-12≤log 12x ≤12, 即log 12 (12)-12≤log 12 x ≤log 12 (12)12, ∴22≤x ≤ 2. 答案:A5.解析:由复合函数的单调性知x 2-ax +3a 在区间[2,+∞)上为大于零的增函数,故有: ⎩⎪⎨⎪⎧ a 2≤24-2a +3a >0⇒-4<a ≤4. 答案:B6.答案:A7.解析:f (x )=log a x ,∴f (2)=log a 2=1,∴a =2. 答案:log 2x8.解析:原不等式等价于⎩⎪⎨⎪⎧x +2>0x +2<1-x ,解得-2<x <-12. 答案:(-2,-12)9.解析:y =(12log 12 x )2-12log 12 x +5. 令t =12log 12x (2≤x ≤4), 则-1≤t ≤-12且y =t 2-t +5, ∴当t =-12时,y min =14+12+5=234. 答案:23410.解:(1)因为函数y =log 2x 在(0,+∞)上是增函数,π>0.9, 所以log 2π>log 20.9.(2)由于log 20.3<log 21=0,log 0.20.3>log 0.21=0, 所以log 20.3<log 0.20.3.(3)因为60.7>60=1,0<0.76<0.70=1, 又log 0.76<log 0.71=0,所以60.7>0.76>log 0.76.(4)底数不同,但真数相同,根据y =log a x 的图象在a >1,x >1时,a 越大,图象越靠近x 轴,如图1所示,知log 30.4>log 20.4,图1(5)利用换底公式化为同底.3log 45=3log 25log 24=32log 25=log 2125,2log 23=log 29<log 2125=3log 45.11.解:∵f (x )是R 上的奇函数, ∴f (-0)=-f (0),∴f (0)=0.设x <0,则-x >0,∴f (x )=-f (-x )=-lg(-x ),∴f (x )=⎩⎪⎨⎪⎧ lg x x >00x =0-lg -xx <0,由f (x )>0得⎩⎨⎧ x >0lg x >0或⎩⎪⎨⎪⎧ x <0-lg -x >0,∴-1<x <0或x >1.12.解:(1)要使f (x )=ln(a x -b x )(a >1>b >0)有意义,则a x -b x >0⇒(a b )x >1(a >1>b >0⇒a b>1), ∴所求定义域为(0,+∞).(2)函数在定义域上是单调递增函数, 证明:任取x 1,x 2,0<x 1<x 2,∵a >1>b >0,∴a x 1<a x 2,b x 1>b x 2, ∴a x 1-b x 1<a x 2-b x 2,∴ln(a x 1-b x 1)<ln(a x 2-b x 2),∴f (x 1)<f (x 2),所以原函数在定义域上是单调递增函数.(3)要使f (x )在[1,+∞)上恒取正值, 须f (x )在[1,+∞)上的最小值大于0. 由(2)知y max =f (1)=ln(a -b ),∴ln(a -b )>0,∴a -b >1.所以f (x )在[1,+∞)上恒取正值时有a -b >1.。
3.2.3对数函数与指数函数的关系

2、互为反函数的两个函数在公共定义域上单调性一致
三、求反函数的方法
问题4:如何求已知函数的反函数?
求函数反函数的步骤: 1 反解 2 x与y互换
3 注明反函数的定义域
(即原函数的值域)
练习P106A、B
小结
(0,1)
O
x 1 x y ( ) y y 10 10 x 1 x 大 y2 y( ) 2 大
y x
y log 2 x
y log 10 x 大
0
x y log
2
1 10
x
大 y log 1 x
对称性:
(1) y a 与y log a x的图象关于
x
y x成轴对称 1 x x ( 2) y a 与y ( ) 的图象关于 a y轴成轴对称
x y = 2 我们现在在同一坐标系下作出 , y = log 1 x的图像,并 y = log2 x 和 y = ( 1 ) x ,
观察分析它们之间的关系.
x … -3 -2 -1 0 1 y=2x … 1/8 1/4 1/2 1 2
… 1/8 1/4 1/2 1 2 y=log2x … -3 -2 -1 0 1 x
对数函数与指数函数的 关系
指数函数
的图像及性质
a>1
图 象
y=1
y
0<a<1
y=ax
(a>1)
y=ax
(0<a<1)
y
(0,1)
y=1 x
(0,1) 当 x > 00时,y > 1.
x
当 x < 0 时,y > 1;
0
当 x > 0 时, 0< y < 1。 当x <0: 时, . 0< y < 1 R 定义 域 性 值 域: ( 0,+ ∞ ) 恒 过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 . 质 在 R 上是单调 增函数 在 R 上是单调 减函数
北师大版必修1数学教学练习课件第三章指数函数和对数函数第二节指数扩充及其运算性质

第三章 指数函数和对数函数
〔跟踪练习 4〕 (1)设|x|<3,化简 x2-2x+1- x2+6x+9; (2)如果 m<-5,化简:|6-m|-|2m+1|+ m2+10m+25; (3)已知 y= 3x-2+ 2-3x+ 26,求实数 x 及 y 的值.
数 学 必 修 ① 北 师 大A 版
返回导航
A.-1
B.14
C.12 [解析]
因为 f(-2)=2-2=14,
D.32
数 学 必
所以 f[f(-2)]=f(14)=1- 14=1-12=12,故答案选 C.
修
①
北 师 大A 版
返回导航
第三章 指数函数和对数函数
3.若 b-3n=5m(m,n∈N+),则 b=_5_-__3m_n___.
[解析] 若 bn=am(m,n∈N+,a>0,b>0),则 b=amn ,所以由 b-3n=5m 知 b
数 学
3x-2≥0 2-3x≥0
,解得xx≥≤2323
.
必
修 ① 北
∴x=23,从而 y= 26.
师
大A
版
返回导航
第三章 指数函数和对数函数
空间
典例 5 已知 x-82- x-102=2x-18 成立,求 x 的取值范围.
[错解] ∵ x-82=x-8, x-102=x-10,
∴原方程可转化为(x-8)-(x-10)=2x-18.解得 x=10.
数
∴原方程可化为(8-x)-(10-x)=2x-18,解得 x x 的取值范围为 8≤x≤10.
北 师 大A 版
返回导航
·
第三章 指数函数和对数函数
『规律总结』 熟练掌握指数运算的性质及公式,是正确、迅速地化简、 求值的条件.
北师大版高中数学必修1《三章 指数函数和对数函数 3.2 指数函数y=2^x和y=(1%2)^x的图像和性质》示范课件_21

(2) y x2
(7) y xx
(3) y 2x (8)y (2a 1)x √
(4) y 2x
(5) y x√
(a 1 且a 1) 2
二:指数函数的图像与性质
1. y 2 x
y
1 2
x
的图像:
列表、描点、连线作图
在同一直角坐标系画出 的图像。
所以 1.7 2.5<1.73
5
4.5
4
3.5
3
fx
=
1.7x 2.5
2
1.5
1
0.5
-2
-1
-0.5
1
2
3
4
5
6
(2)0.80.1 < 0.80.2
解:因为 函数 y 0.8x
而指数-0.1>-0.2
所以0.80.1 0.80.2
在R上是减函数,
1.8 1.6
fx = 0.8x 1.4 1.2 1 0.8 0.6 0.4 0.2
y
2x
,
y
1 2
x
并观察:两个函数的图像有什么关系?
xy
问:如果已知 f (x) ax 的图像
-2 4
能否直接画出88
f
(
x)
1 a
x
的图像
-1 2
77
fx = 2x
01 1 0.5 2 0.25
66
两个函数图像55 关于y轴对称
xy
-2 0.25
44
例2:
(1)求使不等式 4x 32 成立x的集合;
对数函数与指数函数的关系

01
02
求函数反函数的步骤:
3 求原函数的值域
04
05
2 x与y互换
4 写出反函数及它 的定义域
03
1 反解
y y=2x
结论:
Q(a,b) y=x
(0,1)
O
(1,0)
P(b,a) y=log2x x
点(a,b)在函数y=f(x)的图像上
b=f(a)
点(b,a)在反函数y=f-1(x) 的图像上
a=f-1(b)
[例4]函数f(x)=loga (x-1)(a>0且a≠1)的反函数的图象
经过点(1, 4),求a的值.
解:依题意,得
1loag(41)
即 :loa3 g1 , a3.
点(a,b)在函数y=f(x)的图像上 点(b,a)在反函数y=f-1(x) 的图像上
b=f(a) a=f-1(b)
例 5: 已 知 函 数 ( f x) x2( 1x2) 求 出 f ( 14) 的 值 。
解 : 令x214, 解 之 得 : x5 又x2, x5.
点(a,b)在函数y=f(x)的图像上
b=f(a)
点(b,a)在反函数y=f-1(x) 的图像上 a=f-1(b)
理论迁移
f(x)log2(12x)
例4 已知函数
.
(1)求函数f(x)的定义域和值域;
(2)求证函定义域和值域互换 对应法则互逆
图像关于直线y=x对称
反函数的概念
指数函数y=ax(a>0,a≠1)与 对数函数y=logax(a>0,a≠1) 互为反函数
解:由y=3x-2(x∈R )得
x=y+2 3
高中数学第三章指数函数、对数函数和幂函数3.2对数函数3.2.1对数名师导航学案苏教版必修1

3.2.1 对数名师导航知识梳理一、对数与对数运算 1.对数的定义一般地,如果a x=N(a>0,a ≠1),那么数x 叫做以a 为底N 的对数,记作__________,其中a 叫做对数的__________,N 叫做对数的__________.对数恒等式为________________________________________. 2.对数的运算法则指数的运算法则: 对数的运算法则:(1)a m ·a n =a m+n;→ (1)______________;(2)n m aa =a m ·a -n =a m-n;→ (2)______________;(3)(a m )n=a mn;→ (3)_______________. 二、对数运算法则的证明 (学会证明方法)1.正因数的积的对数等于同一底数各个因数的对数的_______________; log a (MN)=log a M+log a N. 设log a M=p,log a N=q,则a p =M,a q=N,∴MN=a p ·a q =a p+q.∴log a (MN)=p+q=log a M+log a N.2.两个正数的商的对数等于被除数的对数___________除数的对数;log a N M =log a M-log a N.∵N M =q p aa =a p-q,∴log aNM=p-q=log a M-log a N. 3.正数的幂的对数等于幂的底数的对数____________幂指数;log a (N n)=n ·log a N. 根据对数恒等式:Na a log =N,∴N n=(aalog N)n=Nn a alog •.∴log a (N n)=n ·log a N.4.正数的正的方根的对数等于被开方数的对数______________根指数. log anN n1=·log a N.∵n N =n N 1,∴由法则3得log a n N =log a nN 1=n1·log a N. 三、对数的性质1.__________和__________没有对数.因为a >0,所以不论b 是什么数,都有a b >0,即不论b 是什么数,N=a b永远是正数,这说明在相应的对数式 b=log a N 中真数N 永远是正数,换句话说负数和零没有对数. 2.1的对数是__________.因为a 0=1(a >0,且a ≠1),所以根据对数的定义可得log a 1=0. 3.底数的对数等于__________.因为a 1=a ,根据对数的定义知log a a=1. 四、一组重要的对数公式——换底公式 1.log a b=abc c log log ,即有log c a ·log a b=log c b;2.log b a=ba log 1,即有log a b ·log b a=1;3.nmb a log =mnlog a b. 疑难突破如何将给出的对数式换成指定底数的对数?《考试大纲》要求知道用换底公式将一般对数转化成指定底数的对数.对数换底公式:log b N=bNa a log log (a >0且a ≠1,b >0且b ≠1,N >0),推论:log a b=a b log 1,mn b a nm =log log a b.更特别地有log a a n=n.问题探究问题1 对数式与指数式有何关系?在对数符号log a N 中,为什么规定a >0,a ≠1,N >0呢?探究思路:对数的概念是这么说的:一般地,如果a(a >0且a ≠1)的b 次幂等于N ,即a b=N ,那么就称b 是以a 为底N 的对数,记作log a N=b ,其中a 叫做对数的底数,N 叫做真数.从定义不难发现无论是指数式a b=N ,还是对数式log a N=b 都反映的是a 、b 、N 三数之间的关系. 在对数符号log a N 中,若a <0,则N 为某些值时,log a N 不存在,如log (-2)8不存在. 若a=0,则N 不为0时,log a N 不存在;N 为0时,log a N 可以为任何正数,不唯一.若a=1,则N 不为1时,log a N 不存在;N 为1时,log a N 可以为任何实数,不唯一.因此规定a >0且a ≠1.因为log a N=b ⇔a b=N ,在实数范围内,正数的任何次幂都是正数,因此N >0. 问题2 对于对数,除了对数的定义,还有对数的性质,你能说说这些相关的内容吗? 探究思路:对数部分,我们首先应当掌握对数的意义,即对数式与指数式之间的对应关系.另外对于对数我们应该掌握一些常用的性质:如(1)log a 1=0(1的对数是0); (2)log a a=1(底数的对数是1); (3)aalog N=N(对数恒等式);(4)log a N=aNb b log log (b >0且b ≠1)(换底公式);(5)log a M+log a N=log a MN ; (6)log a M-log a N=log a NM ; (7)nlog a N=log a N n; (8)mn log a N=log a m N n. 以上各式均有条件a >0且a ≠1.问题3 初学对数运算性质,容易犯下面的错误:log a (M ±N)=log a M ±log a N ,log a (M ×N)=log a M ×log a N ,log aN M =NM a a log log ,log a N n =(log a N)n.应该如何解决呢?探究思路:首先应把握对数运算的本质特征,运算性质是把真数的乘、除、乘方降级为对数的加、减、乘运算,是降级运算;其次,对数记号log a N 整体上才有意义,不能误把对数符号当作表示数的字母进行运算. 典题精讲例1 (1)将下列指数式写成对数式: ①210=1 024;②10-3=10001; ③0.33=0.027;④e 0=1.(2)将下列对数式写成指数式: ①log 0.46.25=-2;②lg2=0.301 0; ③log 310=2.095 9;④ln23.14=x.思路解析 应用指数式与对数式的等价关系求解. 答案:(1)①log 21 024=10;②lg 10001=-3;③log 0.30.027=3;④ln1=0. (2)①0.4-2=6.25;②100.301 0=2;③32.095 9=10;④e x=23.14.例2 计算:log 2487+log 212-21log 242.思路解析 这是几个对数式的加减运算,注意到每个对数式是同底的,则可以利用同底数的对数的运算公式化为一个对数式.当然也可以反其道而行之,即把每个对数的真数写成积或商的形式,再利用积或商的对数的运算性质化为同底对数的和与差,然后进行约简.解法一:原式=21(log 27-log 248)+log 23+2log 22-21(log 27+log 22+log 23) =21log 27-21log 23-21log 216+21log 23+2-21log 27-21=-21. 解法二:原式=log 2(347×12×671⨯)=-21. 例3 求下列各式的值: (1)3log 3128-;(2)7lg20×(21)lg0.7; (3)log 2(1+32+)+log 2(1+32-); (4)lg(5353-++).思路解析 (1)由幂的运算法则把其化成同底,用对数恒等式aalog N=N 化简计算.(2)通过取对数,先算出对数值,再求值.(3)运用对数运算法则化成一个对数,然后利用底数与真数的特殊关系求解. (4)运用对数运算法则巧去根号. 解答:(1)2722222)2(827log 27log 13log 31)3log 31(33log 3122222=====----. (2)设x=7lg20×(21)lg0.7,则lgx=lg20×lg7+lg0.7×lg(21)=(lg2+1)×lg7+(lg7-1)×(-lg2)=lg7+lg2=lg14, ∴x=14,即7lg20×(21)lg0.7=14. (3)log 2(1+32+)+log 2(1+32-)=log 2[(1+2)2-(3)2]=log 222=log 2232=23. (4)lg(5353-++)=21lg(5353-++)2=21lg(3+5+3-5+259-)=21lg10=21. 例4 已知11.2a=1 000,0.011 2b=1 000,那么a 1-b1等于( ) A.1 B.2 C.3 D.4 思路解析 本题有两种解题方法.解法一:用指数解.由题意11.2=a 11000,0.011 2=b11000, ∴两式相除得ba 111000-=0112.02.11=1 000.∴a 1-b1=1. 解法二:用对数解.由题意,得a ×lg11.2=3,b ×lg0.011 2=3, ∴a 1-b 1=31(lg11.2-lg0.011 2)=1. 答案:A例5 方程lg(4x +2)=lg2x+lg3的解是_____________.思路解析 把方程两边化为同底的对数式,然后比较真数得含有求知数的方程,解之即可.解:把两边化成同底的对数式为lg(4x +2)=lg(2x×3),比较真数,得方程4x +2=2x×3,利用换元法,解得2x =1或2x=2. 所以x=0或x=1. 答案:x 1=0,x 2=1 知识导学 1.对数的概念在实际应用中,一定要注意指数式与对数式的等价性,即log a N=b a b=N. 2.换底公式一般地,我们称log a N=aNb b log log 为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程. 3.常用对数与自然对数的概念有了对数的概念后,要求log 0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数.有了常用对数和自然对数再利用对数的运算性质,我们就可以求log 0.840.5的值了. 4.对数恒等式 对数恒等式:Na alog =N.它的证明也很简单,只要紧扣对数式的定义即可证明. ∵a b=N , ∴b=log a N. ∴a b=Na alog =N ,即Na a log =N.如5log 33=5、6log 44=6等.要熟记对数恒等式的形式,会使用这一公式化简对数式.疑难导析对数换底公式口诀:换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子. 问题导思指数式与对数式之间可以相互转化,它们之间可以理解为就像加法与减法一样的关系.后面我们会学习反函数,指数式与对数式之间的转化可以通过反函数进行. 这些常用的性质在指数运算中非常有用,需要记牢.有的性质可以用口诀来帮助记忆,比如,性质(5)(6)(7)可以这样来记: 积的对数变为加, 商的对数变为减,幂的乘方取对数, 要把指数提到前. 典题导考绿色通道 指数式与对数式之间的换算,就是利用log a N=b ⇔a b=N. 典题变式已知log a 2=m ,log a 3=n ,则a 2m-n=____________. 解答:∵log a 2=m ,log a 3=n , ∴a m =2,a n=3.∴a 2m-n=3432)(222===nm n m a a a a . 绿色通道 解决求值问题一般有两种解法:一是将式中的真数的积、商、幂、方根运用对数的运算法则化为对数的和、差、积、商,即“化整为零”,然后合并、消项、化简求值;二是将式中的对数的和、差、积、商运用对数运算法则将它们化为真数的积、商、幂、方根,即“化零为整”,然后“相约”,化简求值. 典题变式计算2log 525+3log 264-8log 71的值为( )A.14B.8C.22D.27 答案:C绿色通道 有关对数式的运算,除了要用到对数运算性质外,还要注意代数运算的其他性质的运用.如遇到不能直接运用对数运算法则进行运算的问题,有两种解决办法:一是取对数,先求出对数值,再求出真数的值,即为原式的值;二是运用对数恒等式aalog N=N 把任何正数N 化成含所需要的正数为底数的对数的一个幂,即可转化为用幂的运算法则和对数运算法则解决问题. 典题变式1.lg5lg8 000+(lg 32)2+lg0.06-lg6=______________.解答:原式=lg5(3+3lg2)+3lg 22+lg 606.0=3(1-lg2)(1+lg2)+3lg 22-2=3-2=1. 2.计算2lg5+32lg8+lg5·lg20+lg 22的值. 解答:原式=2lg5+2lg2+lg5(2lg2+lg5)+lg 22 =lg 25+2lg2·lg5+lg 22+2(lg5+lg2)=(lg5+lg2)2+2(lg5+lg2) =lg 210+2lg10 =1+2=3.绿色通道 因为指数与对数存在着互逆的运算关系,因而反映在具体问题中就一定从指数式、对数式两条思路分别运用幂的运算法则和对数运算法则解决问题.这就是对立统一的原则在具体思路上的指导和体现. 典题变式 已知a=lg(1+71),b=lg(1+491),试用a 、b 的式子表示lg1.4.答案:lg1.4=71(a-4b+1). 黑色陷阱 如果误以为原方程lg(4x+2)=lg2x+lg3可化为lg4x+lg2=lg2x+lg3,将导致解题错误.这也说明数学思维的严密性,如果百密一疏,则后悔莫及! 典题变式已知函数f(x)=⎩⎨⎧≤>,0,3,0,log 3x x x x 则f [f(91)]的值是( )A.9B.91C.-9D.-91答案:B。
(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。
∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
指数函数与对数函数练习题(含详解)

指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为。
2。
指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2。
对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,。
奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小。
指数函数习题一、选择题1.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(错误!-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a〉3 B.a≥3C.a〉 5 D.a≥错误!5.已知函数f(x)=错误!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[错误!,3) B.(错误!,3)C.(2,3) D.(1,3)6.已知a〉0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<错误!,则实数a的取值范围是( )A.(0,错误!]∪[2,+∞) B.[错误!,1)∪(1,4]C.[错误!,1)∪(1,2] D.(0,错误!)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大错误!,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1〈x2)的长度为x2-x1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 1
习题课
一、基础过关
1.函数f(x)=3x 1-x
+lg(2x -1)的定义域为 ( C ) A .(-∞,1) B .(0,1] C .(0,1) D .(0,+∞)
2.设2a =5b =m ,且1a +1b
=2,则m 的值为 ( A ) A.10 B .10 C .20 D .100
3.设a =log 32,b =ln 2,c =5-12
,则 ( C ) A .a <b <c B .b <c <a C .c <a <b D .c <b <a
4.下列函数中既不是奇函数也不是偶函数的是 ( D
) A .y =2|x| B .y =lg(x +x 2+1) C .y =2x +2-x D .y =lg 1x +1
5.已知函数f(x)=log a x(a>0且a≠1)满足f(9)=2,则a =_____3___.
6.已知函数f(x)=⎩⎪⎨⎪⎧
log 2x , x>0,2x , x≤0若f(a)=12,则a =
7.已知f(x)=log a x (a >0,a≠1),当0<x 1<x 2时,试比较f(x 1+x 22)与12
[f(x 1)+f(x 2)]的大小. 解: log a x 1+x 22-12[log a x 1+log a x 2]=log a x 1+x 22
-log a x 1x 2,又0<x 1<x 2,∴x 1+x 2-2x 1x 2=(x 1-x 2)2>0,即x 1+x 2>2x 1x 2,即x 1+x 22>x 1x 2.于是当a>1时,f(x 1+x 22)>12[f(x 1)+f(x 2)]同理0<a<1时f(x 1+x 22)<12
[f(x 1)+f(x 2)]. 8.已知f(x)=log a (3-ax)在x ∈[0,2]上单调递减,求a 的取值范围.
解:由a>0可知u =3-ax 为减函数,依题意则有a>1.又u =3-ax 在[0,2]上应满足u>0,故3-2a>0,即a<32
. 综上可得,a 的取值范围是1<a<32
. 二、能力提升
9.函数f(x)=log a |x|(a>0且a≠1)且f(8)=3,则有 ( C )
A .f(2)>f(-2)
B .f(1)>f(2)
C .f(-3)>f(-2)
D .f(-3)>f(-4)
10.当a >1时,函数y =log a x 和y =(1-a)x 的图象只可能是 ( B )
11.已知函数f(x)=l g ax +a -2x
在区间[1,2]上是增函数,则实数a 的取值范围是________. 解:因为f(x)在区间[1,2]上是增函数,所以g(x)=a+(a−2)/x 在区间[1,2]上是增函数,且g (1)>0.
于是a-2<0,且2a-2>0,解得1<a <2.故应填(1,2)
12.已知函数f(x)=log a (x +1)-log a (1-x),a>0且a≠1.
(1)求f(x)的定义域; (2)判断f(x)的奇偶性并予以证明; (3)若a>1,求使f(x)>0的x 的解集.
解:(1)定义域为{x|-1<x<1}(2)f(-x)=log a (-x +1)-log a (1+x)=-[log a (x +1)-log a (1-x)]=-f(x)故f(x)为奇函数.
(3) log a x +11-x =log a (-1+21-x ) .当a>1时,f(x)是增函数,所以f(x)>0⇐⇒x +11-x
>1.解得0<x<1. 三、探究与拓展13.已知函数f(x)=lg(a x -b x )(a>1>b>0).(1)求y =f(x)的定义域;
(2)在函数y =f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;
(3)当a ,b 满足什么条件时,f(x)在(1,+∞)上恒取正值.
解:(1)由a x -b x >0,得(a b )x >1,且a>1>b>0,得a b
>1,所以x>0,即f(x)的定义域为(0,+∞). (2)任取x 1>x 2>0,a>1>b>0,则ax 1>ax 2>0,bx 1<bx 2,所以ax 1-bx 1>ax 2-bx 2>0,即lg(ax 1-bx 1)>lg(ax 2-bx 2).故f(x 1)>f(x 2).所以f(x)在(0,+∞)上为增函数.
假设函数y =f(x)的图象上存在不同的两点A(x 1,y 1)、B(x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f(x)是增函数矛盾.故函数y =f(x)的图象上不存在不同的两点使过两点的直线平行于x 轴.
(3)因为f(x)是增函数,所以当x ∈(1,+∞)时,f(x)>f(1).这样只需f(1)=lg(a -b)≥0,即当a≥b +
1
时,f(x)在(1,+∞)上恒取正值.。