合理构造函数解导数问题
2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()
常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2
运用构造函数法解答导数问题的步骤

导数问题的难度较大,对同学们的数学抽象思维能力和运算能力有着较高的要求.导数与函数之间的联系紧密,所以在解答导数问题时,通常要根据已知条件来构造合适的函数模型,利用函数的图象、性质来求得问题的答案.这就是构造函数法.运用构造函数法解答导数问题的步骤为:1.仔细研究题目中给出的关系式的结构特征;2.灵活运用幂函数的求导公式(x n)′=nx n-1、指数函数的求导公式(a x)′=a x ln a(特例(e x)′=e x,(e nx)′=ne nx(n∈N*,n≥2))、对数函数的求导公式(log a x)′=1x ln a(特例(ln x)′=1x)、三角函数的求导公式(sin x)′=cos x,(cos x)′=-sin x等,对已知关系式中的部分式子进行求导或积分;3.根据导数的运算法则(u±v)′=u′±v′,(uv)′=u′v+uv′,(u v)′=u′v-uv′v2将目标式或已知关系式进行变形,并将变形、化简后的式子构造成新函数模型;4.根据导函数与函数的单调性之间的关系判断出函数的单调性;5.根据函数的单调性求函数的极值,比较函数式的大小.把导数问题转化为函数问题来求解,可以达到化繁为简、化难为易的目的.例1.已知函数f(x)是定义在(-∞,0)上的可导函数,且xf′(x)+3f(x)>0,那么不等式(x+2021)3f(x+2021)+27f(-3)>0的解集是().A.(-2024,+∞)B.(-2022,-2021)C.(-∞,-2022)D.(-2024,-2021)解:在不等式xf′(x)+3f(x)>0的两边同乘以x2,可得x3f′(x)+3x2f(x)>0,即x3f′(x)+(x3)′f(x)>0,得(x3f(x))′>0.设函数g(x)=x3f(x),则g′(x)>0,所以g(x)在(-∞,0)上单调递增.而(x+2021)3f(x+2021)+27f(-3)>0可变形为(x+2021)3f(x+2021)>(-3)3f(-3),即g(x+2021)>g(-3).可得-3<x+2021<0,解得-2024<x<-2021.故选D.先根据指数函数的求导公式(x3)′=3x2以及导数的运算法则(uv)′=u′v+uv′将xf′(x)+3f(x)>0变形,即可化简不等式;再构造出函数g(x)=x3+f(x),探讨其单调性,便可根据函数的单调性求得问题的答案.例2.已知函数f(x)是R上的可导函数,且(x-1)⋅(f′(x)-f(x))>0,f(2-x)=f(x)e2-2x,那么一定正确的是().A.f(1)<f(0)B.f(2)>ef(0)C.f(3)>e3f(0)D.f(4)<e4f(0)解:将不等式(x-1)(f′(x)-f(x))>0变形,可得(x-1)∙e x f′(x)-(e x)′f(x)(e x)2>0,即(x-1)∙(f(x)e x)′>0,设函数g(x)=f(x)e x,易知:当x>1时,g′(x)>0;当x<1时,g′(x)<0,所以函数g(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.将f(2-x)=f(x)e2-2x变形,可得f(2-x)e2-x=f(x)e x,即g(2-x)=g(x),所以函数g(x)的图象关于直线x=1对称.根据函数g(x)的单调性、对称性可得g(0)=g(2)<g(3),即f(0)e0<f(3)e3,因此e3f(0)<f(3).故选C.我们以指数函数的求导公式(a x)′=a x ln a为切入点,根据导数的运算法则(u v)′=u′v-uv′v2,构造商式函数g(x)=f(x)e x,即可根据其单调性和对称性求得问题的答案.备考指南54例3.已知函数f (x )是定义在(1,+∞)上的可导函数,对∀x ∈(1,+∞)均有f '(x )ln x >1+ln x xf (x )恒成立,则().A.12f (2)>3f (4)>f (8)B.3f (4)>12f (2)>f (8)C.f (8)>3f (4)>12f (2)D.f (8)>12f (2)>3f (4)解:在f ′(x )ln x >1+ln x xf (x )的两边同乘以x ,移项可得f ′(x )x ln x -(1+ln x )f (x )>0,再变形得f ′(x )ln x -(x ln x )′f (x )(x ln x )2>0,得(f (x )x ln x )′>0,显然该不等式对∀x ∈(1,+∞)恒成立.设函数g (x )=f (x )x ln x,则g ′(x )>0,所以函数g (x )在(1,+∞)上单调递增.所以g (2)<g (4)<g (8),即f (2)2ln 2<f (4)4ln 4<f (8)8ln 8,变形得f (2)2ln 2<f (4)8ln 2<f (8)24ln 2,可得f (8)>3f (4)>12f (2).故选C.根据已知条件和对数函数的求导公式(log a x )′=1x ln a,得到(x ln x )′=1+ln x ,便可根据导数的运算法则(uv )′=u ′v +uv ′和(u v )′=u ′v -uv ′v 2,将不等式进行变形、化简,进而构造出函数g (x )=f (x )x ln x,利用函数的单调性即可解题.例4.已知函数f (x )是定义在(-π2,π2)上的可导函数,且f ′(x )cos x +f (x )sin x >0恒成立,那么下列不等式不成立的是().A.2f (π3)<f (π4)B.2f (-π3)<f (-π4)C.f (0)<2f (π4) D.f (0)<2f (π3)解:将f ′(x )cos x +f (x )sin x >0变形,得f ′(x )cos x -f (x )(cos x )′(cos x )2>0,即(f (x )cos x )′>0,设g (x )=f (x )cos x,得g ′(x )>0,所以函数g (2)在(-π2,π2)上单调递增.因为-π2<-π3<-π4<0<π4<π3<π2,所以f (-π3)cos(-π3)<f (-π4)cos(-π4)<f (0)cos 0<f (π4)cos π4<f (π3)cos π3,化简得2f (-π3)<2f (-π4)<f (0)<2f (-π4)<2f (π3),所以A 选项不正确.故本题选A.由f ′(x )cos x +f (x )sin x >0的结构特征,可联想到三角函数的求导公式(cos x )′=-sin x 以及导数的运算法则(uv )′=u ′v +uv ′,将不等式进行变形、化简,便可构造出新函数g (x )=f (x )cos x.例5.设定义在R 上的函数f (x )是连续可导函数,对任意的x ∈R 都有f (x )+f (-x )=2x 2.当x ∈(0,+∞)时,f ′(x )<2x .若不等式f (2-a )-f (a )≥4-4a 成立,则实数a 的取值范围是().A.(0,1]B.[1,2)C.(-∞,1]D.[1,+∞)解:当x ∈(0,+∞)时,根据不等式f ′(x )<2x ,可得f ′(x )-2x <0,再变形得f ′(x )-(x 2)′<0,即(f (x )-x 2)′<0.设函数g (x )=f (x )-x 2,则g ′(x )<0,所以函数g (x )在(0,+∞)上单调递减.因为对任意的x ∈R 都有f (x )+f (-x )=2x 2,所以g (x )+g (-x )=f (x )-x 2+f (-x )-(-x )2=0,所以函数g (x )是R 上的奇函数.因为f (x )是连续函数,所以函数g (x )在R 上单调递减.不等式f (2-a )-f (a )≥4-4a 可变形为f (2-a )-(2-a )2≥f (a )-a 2,即g (2-a )≥g (a ).由函数g (x )的单调性可知2-a ≤a ,解得a ≥1.故选D.根据已知条件f ′(x )<2x ,可知需要利用指数函数的求导公式(x 2)′=2x 以及导数的运算法则(u ±v )′=u ′±v ′,将不等式变形并化简,进而构造函数g (x )=f (x )-x 2,分析其函数的单调性、奇偶性,即可解题.对于本题,还可以将f (x )+f (-x )=2x 2变形为f (x )-x 2+f (-x )-(-x )2=0,再根据f (x )-x 2与f (-x )-(-x )2的结构特征构造函数g (x )=f (x )-x 2.导数问题侧重于考查一些常见的求导公式与导数的四则运算法则(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′,(u v )′=u ′v -uv ′v2的灵活应用.导数问题较为复杂,同学们不仅要灵活运用导数和函数知识,还需培养数学抽象、逻辑推理以及数学运算能力,才能轻松解题.(作者单位:甘肃省河州中学教育集团附属中学)备考指南55。
必须掌握的7种构造函数方法——巧解导数难题

必须掌握的7种构造函数方法——巧解导数难题文:郑州市第四十四中学苏明亮近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
合理构造函数妙解导数问题.

合理构造函数妙解导数问题构造法是解决导数问题的重要方法之一,许多导数问题的解决需要巧妙的构造函数,如何构造函数显得非常重要在解决问题中,下面剖析几例。
一.特征构造例1(2018•银川二模)f (x )是定义在非零实数集上的函数,f ′(x )为其导函数,且x>0时,xf '(x )﹣f (x )<0,记a=0.20.2(2)2f ,b=22(0.2)0.2f ,c=22(log 5)log 5f ,则( ) A .a <b <c B .b <a <c C .c <a <b D .c <b <a【分析】令g (x )=()f x x,通过求导得到g (x )的单调性,从而解决问题. 解:令g (x )=()f x x,则g '(x )=2()()xf x f x x -', ∵x >0时,xf '(x )﹣f (x )<0,∴g (x )在(0,+∞)递减,又2log 5>2log 42=,1<0.22<2,20.2=0.04,∴2log 5>0.22>20.2,∴g (2log 5)<g (20.2)<g (0.22),∴c <a <b ,故选:C .【点评】本题考查了函数的单调性问题,考查了导数的应用,考查了指数,对数的性质,解决本题的关键是根据所比较的三个数,合理构造函数,利用函数的单调性比较大小即可。
二.变形后构造函数例2. (2018•合肥二模)定义在R 上的偶函数f (x )的导函数为f '(x ),若对任意的实数x ,都有2f (x )+xf '(x )<2恒成立,则使x 2f (x )﹣f (1)<x 2﹣1成立的实数x 的取值范围为( )A .{x|x ≠±1}B .(﹣∞,﹣1)∪(1,+∞)C .(﹣1,1)D .(﹣1,0)∪(0,1)【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出x <0的取值范围.解:当x >0时,由2f (x )+xf ′(x )﹣2<0可知:两边同乘以x 得:2xf (x )﹣x 2f ′(x )﹣2x <0设:g (x )=x 2f (x )﹣x 2,则g '(x )=2xf (x )+x 2f '(x )﹣2x <0,恒成立:∴g (x )在(0,+∞)单调递减,由x 2f (x )﹣f (1)<x 2﹣1∴x 2f (x )﹣x 2<f (1)﹣1,即g (x )<g (1),即x >1;当x <0时,函数是偶函数,同理得:x <﹣1综上可知:实数x 的取值范围为(﹣∞,﹣1)∪(1,+∞),故选:B【点评】主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,解决本题需要注意对x 的讨论。
构造函数法解决导数不等式问题(二)

构造函数法解决导数不等式问题(二)考点四构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ).【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为()A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R答案C解析设g (x )=f (x )-(3x +6),则g ′(x )=f ′(x )-3<0,所以g (x )为减函数,又g (-1)=f (-1)-3=0,所以根据单调性可知g (x )>0的解集是{x |x <-1}.(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.答案(0,2)解析构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12<0,∴函数F (x )在R 上是减函数.由f (1)=1,得F (1)=f (1)-12=1-12=12∴f (log 2x )>log 2x +12⇔f (log 2x )-12log 2x >12⇔F (log 2x )>F (1)⇔log 2x <1⇔0<x <2.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈-π2,3π2时,不等式f (2cos x )>32-2sin 2x2的解集为()A B -π3,C D -π3,答案D解析令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x2,即g (2cos x )>0,∴2cos x >1,又x ∈-π2,3π2,∴x -π3,(4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是()A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)答案A解析令G (x )=f (x )-x 2,则G ′(x )=f ′(x )-2x .当x ∈[0,+∞)时,G ′(x )=f ′(x )-2x >0,∴G (x )在[0,+∞)上是增函数.由f (a -2)-f (a )≥4-4a ,得f (a -2)-(a -2)2≥f (a )-a 2,即G (a -2)≥G (a ),又f (x )是定义在R 上的偶函数,知G (x )是偶函数.故|a -2|≥|a |,解得a ≤1.(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是()A -12,B ∞CD ∞答案D解析设g (x )=f (x )-32x 2,则g ′(x )=f ′(x )-3x .因为当x ≥0时,f ′(x )>3x ,所以当x ≥0时,g ′(x )=f ′(x )-3x >0,即g (x )在[0,+∞)上单调递增.因为f (-x )=f (x ),所以g (-x )=f (-x )-32x 2=f (x )-32x 2=g (x ),所以g (x )是偶函数.因为f (x )-f (x -1)<3x -32,所以f (x )-32x 2<f (x -1)-32(x -1)2,即g (x )<g (x -1),所以g (|x |)<g (|x -1|),则|x |<|x -1|,解得x <12.故选D .(6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.答案(0,1)解析由于函数y =f (x )为R 上的奇函数,则f (0)=0.当x >0时,f (x )+f ′(x )·x ln x <0,则f (1)<0.当x >0时,构造函数g (x )=f (x )ln x ,则g ′(x )=f ′(x )ln x +f (x )·1x =f (x )+f ′(x )·x ln xx <0,所以函数y =g (x )在区间(0,+∞)上单调递减,且g (1)=0.当0<x <1时,ln x <0,g (x )>g (1)=0,即f (x )ln x >0,此时f (x )<0;当x >1时,ln x >0,g (x )<g (1)=0,即f (x )ln x <0,此时f (x )<0.又f (1)<0,所以当x >0时,f (x )<0.由于函数y =f (x )为R 上的奇函数,当x <0时,f (x )>0.对于不等式(x -1)f (x )>0,当x <0时,x -1<0,则f (x )<0,不符合题意;当0<x <1时,x -1<0,则f (x )<0,符合题意;当x >1时,x -1>0,则f (x )>0,不符合题意.综上所述,不等式(x -1)f (x )>0的解集为(0,1).(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是()A.2f(2)-3f(1)>5B.若f(1)=2,x>1,则f(x)>x2+12x+12C.f(3)-2f(1)<7D.若f(1)=2,0<x<1,则f(x)>x2+12x+12解析CD答案设函数g(x)=f(x)-x2x+1,则g′(x)=(x+1)f′(x)-f(x)-(x2+2x)(x+1)2.因为(x+1)f′(x)-f(x)<x2+2x对任意x∈(0,+∞)恒成立,所以g′(x)<0,故g(x)在(0,+∞)上单调递减,从而g(1)>g(2)>g(3),整理得2f(2)-3f(1)<5,f(3)-2f(1)<7,故A错误,C正确.当0<x<1时,若f(1)=2,因为g(x)在(0,+∞)上单调递减,所以g(x)>g(1)=12,即f(x)-x2x+1>12,即f(x)>x2+12x+12,故D正确,从而B不正确.即结论正确的是CD.(8)已知函数f(x),对∀x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)答案B解析因为对∀x∈R,都有f(-x)+f(x)=x2,所以f(0)=0,设g(x)=f(x)-12x2,则g(-x)=f(-x)-12x2,所以g(x)+g(-x)=f(x)-12x2+f(-x)-12x2=0,又g(0)=f(0)-0=0,所以g(x)为奇函数,且f(x)=g(x)+12x2,所以f(4-m)-f(m)=g(4-m)+12(4-m)2-g(m)+12m2=g(4-m)-g(m)+8-4m≥8-4m,则g(4-m)-g(m)≥0,即g(4-m)≥g(m).当x>0时,g′(x)=f′(x)-x<0,所以g(x)在(0,+∞)上为减函数,又g(x)为奇函数,所以4-m≤m,解得m≥2.(9)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+f(x)x >0,则函数F(x)=xf(x)+1x的零点个数是()A.0B.1C.2D.3答案B解析依题意,记g(x)=xf(x),则g′(x)=xf′(x)+f(x),g(0)=0,当x>0时,g′(x)=x[f′(x)+f(x)x]>0,g(x)是增函数,g(x)>0;当x<0时,g′(x)=x[f′(x)+f(x)x]<0,g(x)是减函数,g(x)>0.在同一坐标系内画出函数y=g(x)与y=-1x的大致图象,结合图象可知,它们共有1个公共点,因此函数F(x)=xf(x)+1x的零点个数是1.(10)函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,当x>0时,f(x)的极值状态是___________.答案没有极大值也没有极小值解析因为x2f′(x)+2xf(x)=e x x,关键因为等式右边函数的原函数不容易找出,因此把等式左边函数的原函数找出来,设h (x )=x 2f (x ),则h ′(x )=e x x ,且h (2)=e 22,因为x 2f ′(x )+2xf (x )=e x x ,则f ′(x )=e x -2h (x )x 3,判断f (x )的极值状态就是判断f ′(x )的正负,设g (x )=e x -2h (x ),则g ′(x )=e x -2h ′(x )=e x -2·e xx =e x ·x -2x ,这里涉及二阶导,g (x )在x =2处取得最小值0,因此g (x )≥0,则f ′(x )≥0,故f (x )没有极大值也没有极小值(有难度,但不失为好题目).【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为()A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)1.答案B解析由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B .2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为.2.答案{x |x <-1或x >1}解析设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即不等式的解集为{x |x <-1或x >1}.3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是()A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)3.答案D解析令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D .4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x +3的解集为________.4.解析(1,+∞)答案由x 2f ′(x )+1>0得f ′(x )+1x 2>0,构造函数g (x )=f (x )-1x -3,则g ′(x )=f ′(x )+1x2>0,即g (x )在(0,+∞)上是增函数.又f (1)=4,则g (1)=f (1)-1-3=0,从而g (x )>0的解集为(1,+∞),即f (x )>1x+3的解集为(1,+∞).5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为.5.答案(0,+∞)解析令φ(x )=f (x )-sin x ,∴当x ≥0时,φ′(x )=f ′(x )-cos x <0,∴φ(x )在[0,+∞)上单调递减,又f (x )为R 上的奇函数,∴φ(x )为R 上的奇函数,∴φ(x )在(-∞,0]上单调递减,故φ(x )在R上单调递减且φ(0)=0,不等式f (x )<sin x 可化为f (x )-sin x <0,即φ(x )<0,即φ(x )<φ(0),故x >0,∴原不等式的解集为(0,+∞).6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)6.答案D解析令h (x )=f (x )g (x ),当x <0时,h ′(x )=f ′(x )g (x )+f (x )g ′(x )>0,则h (x )在(-∞,0)上单调递增,又f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以h (x )为奇函数,所以h (x )在(0,+∞)上单调递增.又由g (-3)=0,可得h (-3)=-h (3)=0,所以当x <-3或0<x <3时,h (x )<0,故选D .7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有()A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )7.解析C答案令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.8.答案[1,+∞)解析令g (x )=f (x )-x 22,则g (-x )+g (x )=0,g (x )是R 上的奇函数.又当x ∈(0,+∞)时,g ′(x )=f ′(x )-x <0,所以g (x )在(0,+∞)上单调递减,所以g (x )是R 上的单调减函数.原不等式等价于g (2-m )+g (-m )≥0,g (2-m )≥-g (-m )=g (m ),所以2-m ≤m ,m ≥1.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>09.答案B解析∵f (x )f ′(x )+x <1,f (x )是定义在R 上的减函数,f ′(x )<0,∴f (x )+xf ′(x )>f ′(x ),∴f (x )+(x -1)f ′(x )>0,∴[(x -1)f (x )]′>0,∴函数y =(x -1)f (x )在R 上单调递增,而x =1时,y =0,则x <1时,y <0,故f (x )>0.x >1时,x -1>0,y >0,故f (x )>0,∴f (x )>0对任意x ∈R 成立,故选B .10.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为()A .1B .2C .0D .0或210.答案C 解析令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x>0,所以h ′(x )x >0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0考点五构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1](1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则()A .a >2bB .a <2bC .a >b 2D .a <b 2答案B解析由指数和对数的运算性质得2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增.又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b .故选B .(2)已知α,β∈-π2,π2,且αsin α-βsin β>0,则下列结论正确的是()A .α>βB .α2>β2C .α<βD .α+β>0答案B解析构造函数f (x )=x sin x ,则f ′(x )=sin x +x cos x .当x ∈0,π2时,f ′(x )≥0,f (x )是增函数,当x ∈-π2,f ′(x )<0,f (x )是减函数,又f (x )为偶函数,∴αsin α-βsin β>0⇔αsin α>βsin β⇔f (α)>f (β)⇔f (|α|)>f (|β|)⇔|α|>|β|⇔α2>β2,故选B .(3)(多选)若0<x 1<x 2<1,则()A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x x D .12e x x <21e x x 答案AC解析令f (x )=x -ln x ,∴f ′(x )=1-1x =x -1x,当0<x <1时,f ′(x )<0,∴f (x )在(0,1)上单调递减.∵0<x 1<x 2<1,∴f (x 2)<f (x 1),即x 2-ln x 2<x 1-ln x 1,即x 1+ln x 2>x 2+ln x 1.设g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,g ′(x )<0,即g (x )在(0,1)上单调递减,∵0<x 1<x 2<1,∴g (x 2)<g (x 1),即22e x x <11e x x ,∴12e x x >21e x x ,故选AC .A .(a +1)a +2>(a +2)a+1B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1a D .log a +1(a +2)<a +2a +1答案ABD解析若A 成立,则(a +1)a +2>(a +2)a +1,两边取自然对数,得(a +2)ln(a +1)>(a +1)ln(a+2),因为a ≥2,所以ln(a +1)a +1>ln(a +2)a +2.令f (x )=ln xx ,则x ≥3,f ′(x )=1-ln x x 2<0,故f (x )在[3,+∞)上单调递减,所以ln(a +1)a +1>ln(a +2)a +2,故A 成立;若B 成立,则log a (a +1)>log a +1(a +2),即ln(a +1)ln a >ln(a +2)ln(a +1),设g (x )=ln(x +1)ln x ,x ≥2,则g ′(x )=ln x x +1-ln(x +1)x (ln x )2=x ln x -(x +1)ln(x +1)x ·(x +1)(ln x )2,令h (x )=x ln x ,x ≥2,则h ′(x )=ln x +1>0,故h (x )在[2,+∞)上单调递增,所以x ln x -(x +1)ln(x +1)<0,所以g ′(x )<0,故g (x )在[2,+∞)上单调递减,所以ln(a +1)ln a >ln(a +2)ln(a +1),故B 成立;若C 成立,则log a (a +1)<a +1a ,即ln(a +1)a +1<ln a a ,由A 知f (x )=ln xx 在[2,e)上单调递增,在(e ,+∞)上单调递减,取a =2,故C 不成立;若D 成立,则log a +1(a +2)<a +2a +1,即ln(a +2)a +2<ln(a +1)a +1,由A 知D 成立.故选ABD .(6)(2021·全国乙)设a =2ln1.01,b =ln1.02,c =1.04-1,则()A .a <b <cB .b <c <aC .b <a <cD .c <a <b答案B 解析b -c =ln1.02- 1.04+1,设f (x )=ln(x +1)-1+2x +1,则b -c =f (0.02),f ′(x )=1x +1-221+2x=1+2x -(x +1)(x +1)1+2x,当x >0时,x +1=(x +1)2>1+2x ,故当x >0时,f ′(x )=1+2x -(x +1)(x +1)1+2x<0,所以f (x )在(0,+∞)上单调递减,所以f (0.02)<f (0)=0,即b <c .a -c =2ln 1.01- 1.04+1,设g (x )=2ln(x +1)-1+4x +1,则a -c =g (0.01),g ′(x )=2x +1-421+4x =2[1+4x -(x +1)](x +1)1+4x,当0<x <2时,4x +1=2x +2x +1>x 2+2x +1=(x +1)2=x +1,故当0<x <2时,g ′(x )>0,所以g (x )在(0,2)上单调递增,所以g (0.01)>g (0)=0,故c <a ,从而有b <c <a ,故选B .(7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且=1e ,则()A .f 0B .f (x )在x =1e 处取得极大值C .0<f (1)<1D .f (x )在(0,+∞)上单调递增答案ACD解析由题知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),xf ′(x )-f (x )=x ln x ,即满足xf ′(x )-f (x )x 2=ln x x .因为f (x )x ′=xf ′(x )-f (x )x 2,所以f (x )x ′=ln x x ,所以可设f (x )x =12ln 2x +b (b 为常数),所以f (x )=12x ln 2x +bx .因为=12·1e ln 21e +b e =1e ,解得b =12,所以f (x )=12ln 2x +12x ,所以f (1)=12,满足0<f (1)<1,所以C 正确;因为f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,且仅有f 0,所以B 错误,A ,D 正确.故选ACD .【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c1.答案C解析设f (x )=ln xx ,则f ′(x )=1-ln x x2,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,即有f (6)<f (4)<f (3),所以ln 66<ln 44=ln 22<ln 33,故c <a <b .2.设a ,b >0,则“a >b ”是“a a >b b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.答案D解析因为a ,b >0,由a a >b b 可得a ln a >b ln b .设函数f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0可得x >1e ,所以函数f (x )=x ln x a >b 不一定有a ln a >b ln b ,即a a >b b ,所以充分性不成立;当a a >b b ,即a ln a >b ln b 时,不一定有a >b ,所以必要性不成立,所以“a >b ”是“a a >b b ”的既不充分也不必要条件,故选D .3.已知0<x 1<x 2<1,则()A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 23.答案D解析设f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0,得x >1e,所以函数f (x )调递增;由f ′(x )<0,得0<x <1e f (x )f (x )在(0,1)上不单调,所以f (x 1)与f (x 2)的大小无法确定,从而排除A ,B ;设g (x )=ln xx ,则g ′(x )=1-ln x x 2,由g ′(x )>0,得0<x <e,即函数g (x )在(0,e)上单调递增,故函数g (x )在(0,1)上单调递增,所以g (x 1)<g (x 2),即ln x 1x 1<ln x 2x 2,所以x 2ln x 1<x 1ln x 2.故选D .4.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是()A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)4.答案C解析由a b =b a 两边取对数得b ln a =a ln b ⇒ln a a =ln b b .对于y =ln xx,由图象易知当b <e<a 时,才可能满足题意.故(1)正确,(2)错误;另外,由a b =b a ,令a =4,b =2,则a >e ,b <e ,ab =8>e 2,故(4)正确,(3)错误.因此,选C .5.设x ,y ,z 为正数,且2x =3y =5z ,则()A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z5.答案D解析令2x =3y =5z =t (t >1),两边取对数得x =log 2t =ln t ln 2,y =log 3t =ln t ln 3,z =log 5t =ln tln 5,从而2x =2ln 2ln t ,3y =3ln 3ln t ,5z =5ln 5ln t .由t >1知,要比较三者大小,只需比较2ln 2,3ln 3,5ln 5的大小.又2ln 2=4ln 4,e<3<4<5,由y =ln x x 在(e ,+∞)上单调递减可知,ln 33>ln 44>ln 55,从而3ln 3<4ln 4<5ln 5,3y <2x <5z ,故选D .6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则()A .c <b <a B .b <c <a C .a <c <bD .a <b <c6.答案D解析方法一由已知e 55=e a a ,e 44=e bb,e 33=e c c ,设f (x )=e xx ,则f ′(x )=(x -1)e x x 2,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (3)<f (4)<f (5),f (c )<f (b )<f (a ),所以a <b <c .方法二设e x=e 55x ,①,e x =e 44x ,②,e x=e 33x ,③,a ,b ,c 依次为方程①②③的根,结合图象,方程的根可以看作两个图象的交点的横坐标,∵e 55>e 44>e 33,由图可知a <b <c.7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为()A .12B .1C .eD .2e7.答案B解析ln x 1x 1-ln x 2x 2≤1x 2-1x 1,即ln x 1x 1+1x 1≤ln x 2x 2+1x 2,令f (x )=ln x x +1x,则f (x )在(0,a )上为增函数,所以f ′(x )≥0在(0,a )上恒成立,f ′(x )=-ln xx 2,令f ′(x )=0,解得x =1,所以f (x )在(0,1)上为增函数,在(1,+∞)上为减函数,所以a ≤1,所以a 的最大值为1,选B .8.下列四个命题:①ln 5<5ln 2;②ln π>πe;③;④3eln 2>42.其中真命题的个数是()A .1B .2C .3D .48.答案B解析构造函数f (x )=ln xx ,则f ′(x )=1-ln x x 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.①ln 5<5ln 2⇒2ln 5<5ln 2⇒ln 55<ln 22,又2<5<e ,故错误.②ln π>πe ⇒2ln π>πe ⇒ln ππ>12e=ln e e ,又e>π>e ,故正确.③⇒11ln 2<ln 11=2ln 11⇒ln 22=ln 44<ln 1111,又4>11>e ,故正确.④3eln 2>42⇒322eln 2>2×322⇒3232ln 22>ln e e ,显然错误.因此选B .A .0<a <b <1B .b <a <0C .1<a <bD .a =b 10.答案ABD 解析因为实数a ,b 满足2a +3a =3b +2b ,所以设f (x )=2x +3x ,g (x )=3x +2x ,在同一平面直角坐标系中作出f (x )与g (x )的图象如图所示.由图象可知:①当x <0时,f (x )<g (x ),所以当2a +3a =3b +2b 时,b <a <0,故B 正确;②当x =0或1时,f (x )=g (x ),所以当2a +3a =3b +2b 时,a =b =0或a =b =1,故D 正确;③当0<x <1时,f (x )>g (x ),所以当2a +3a =3b +2b 时,0<a <b <1,故A 正确;④当x >1时,f (x )<g (x ),所以当2a +3a =3b +2b 时,1<b <a ,故C 错误.故选ABD .11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为()A .(-∞,e]B .(-∞,e)C ∞D ∞,e 211.答案D 解析因为x ∈(0,+∞),所以x 1f (x 1)<x 2f (x 2),即函数g (x )=xf (x )=e x -ax 2在x ∈(0,+∞)上是单调增函数,则g ′(x )=e x -2ax ≥0在x ∈(0,+∞)上恒成立,所以2a ≤e x x在x ∈(0,+∞)上恒成立.令m (x )=e x x ,则m ′(x )=(x -1)e x x 2,当x ∈(0,1)时,m ′(x )<0,m (x )单调递减,当x ∈(1,+∞)时,m ′(x )>0,m (x )单调递增,所以2a ≤m (x )min =m (1)=e ,所以a ≤e 2.故选D .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是()A .f (x )在(0,+∞)单调递增B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值12.答案B 解析由x 2f ′(x )+xf (x )=ln x ,得xf ′(x )+f (x )=ln x x ,构造F ′(x )=xf ′(x )+f (x )=ln x x ,F (x )=xf (x )=ln 2x 2+m ,当x =e 时,xf (x )=ln 2x 2+m ,又e f (e)=ln 2e 2+m ,所以m =12,所以f (x )=ln 2x +12x,所以f ′(x )=-(ln x -1)22x 2≤0,f (x )在(0,+∞)单调递减,选B .13.(多选)下列不等式中恒成立的有()A .ln(x +1)≥x x +1,x >-1B .ln x x >0C .e x ≥x +1D .cos x ≥1-12x 213.答案ACD 解析A 选项,因为x >-1,令t =x +1>0,f (t )=ln t +1t -1,则f ′(t )=1t -1t 2=t -1t2,所以当0<t <1时,f ′(t )=t -1t 2<0,即f (t )单调递减;当t >1时,f ′(t )=t -1t 2>0,即f (t )单调递增,所以f (t )min =f (1)=0,即f (t )=ln t +1t -1≥0,即ln t ≥t -1t,即ln(x +1)≥x x +1,x >-1恒成立,故A 正确;B 选项,令f (x )=ln x x >0,则f ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2≤0显然恒成立,所以f (x )=ln x x >0上单调递减,又f (1)=0,所以当x ∈(0,1)时,f (x )>f (1)=0,即ln x B 错;C 选项,令f (x )=e x -x -1,则f ′(x )=e x -1,当x >0时,f ′(x )=e x -1>0,所以f (x )单调递增;当x <0时,f ′(x )=e x -1<0,所以f (x )单调递减,则f (x )≥f (0)=0,即e x ≥x +1恒成立,故C 正确;D 选项,令f (x )=cos x -1+12x 2,则f ′(x )=-sin x +x ,令h (x )=f ′(x )=-sin x +x ,则h ′(x )=-cos x +1≥0恒成立,即函数f ′(x )=-sin x +x 单调递增,又f ′(0)=0,所以当x >0时,f ′(x )>0,即f (x )=cos x -1+12x 2单调递增;当x <0时,f ′(x )<0,即f (x )=cos x -1+122单调递减,所以f (x )min =f (0)=0,因此cos x ≥1-12x 2恒成立,故D 正确.。
用构造函数解导数问题

f (2 − x) =f (x)e2−2x
⇔
f
(2 − e2−x
x)
⇔
f (x) ex
⇔
F (2
−
x=)
F (x) ⇒ F (x)关于x=
1 对 称 , 则 当 x <1 时 ,
F (x)在(-∞,1]上单调递减。根据单调性和大致图像可知
3
离对称轴远,故有 F (3) > F (0) ⇒
f (3) > e3
F (x)在(0, ∞)上也单调递增,= 根据 f (1) 0= 可得F (1) 0 和 F (−1) =0 ,根据函数的单调性和奇偶性可得函数的
大致图像,注意 f (x) 与 x 同号为正,异号为负,根据图像可知 f (x) > 0 的解集为 (−∞, −1) ∪ (1, +∞) 。
公众号:数学其实没那么难
二、利用利用 f (x) 与 ex 构造
因为 ex 的特殊性(恒大于 0 且导数为本身),故常见的题型为 f '(x) ± f (x) 。和 f (x)与x 构造方式相同,此
时 g(x) = ex ,构造 F (x) =
f (x)ex 或者 F (x) =
f (x)
,主要是利用:
ex
= F (x) f (x)ex ,= F '(x) f= (x)ex ' ex ( f '(x) + f (x))
f (x)
。原
xn
理如下:
F (x) = xn f (x) , F '(x) =xn f '(x) + nxn−1 f (x) =xn−1[xf '(x) + nf (x)] ;
专题18构造函数法解决导数问题(解析版)

专题18 构造函数法解决导数问题1.以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.2.(1)当题设条件中存在或通过变形出现特征式“f ′(x )±g ′(x )”时,不妨联想、逆用“f ′(x )±g ′(x )=[f (x )±g (x )]′”.构造可导函数y =f (x )±g (x ),然后利用该函数的性质巧妙地解决问题. (2)当题设条件中存在或通过变形出现特征式“f ′(x )g (x )+f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )+f (x )g ′(x )=[f (x )g (x )]′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题.(3)当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),再利用该函数的性质巧妙地解决问题. 3.构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x .(5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x.题型一 构造y =f (x )±g (x )型可导函数1.设奇函数f (x )是R 上的可导函数,当x >0时有f ′(x )+cos x <0,则当x ≤0时,有()A .f (x )+sin x ≥f (0)B .f (x )+sin x ≤f (0)C .f (x )-sin x ≥f (0)D .f (x )-sin x ≤f (0)解析:观察条件中“f ′(x )+cos x ”与选项中的式子“f (x )+sin x ”,发现二者之间是导函数与原函数之间的关系,于是不妨令F (x )=f (x )+sin x ,因为当x >0时,f ′(x )+cos x <0,即F ′(x )<0,所以F (x )在(0,+∞)上单调递减,又F (-x )=f (-x )+sin(-x )=-[f (x )+sin x ]=-F (x ),所以F (x )是R 上的奇函数,且F (x )在(-∞,0)上单调递减,F (0)=0,并且当x ≤0时有F (x )≥F (0),即f (x )+sin x ≥f (0)+sin 0=f (0),故选A.2.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是()A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-kk -1>-1, 移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.3.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0, 则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为()A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0, 故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x -1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1, 从而0<|3x -1|<2,解得x <1且x ≠0,故选A.4.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________. 解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0, 可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减. 又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1, 故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}.5.定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.解析:由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数.因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).题型二 构造f (x )·g (x )型可导函数1.设函数f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0,则不等式f (x )g (x )>0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析:利用构造条件中“f ′(x )g (x )+f (x )g ′(x )”与待解不等式中“f (x )g (x )”两个代数式之间的关系, 可构造函数F (x )=f (x )g (x ),由题意可知,当x <0时,F ′(x )>0,所以F (x )在(-∞,0)上单调递增. 又因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以F (x )是定义在R 上的奇函数, 从而F (x )在(0,+∞)上单调递增,而F (3)=f (3)g (3)=0,所以F (-3)=-F (3), 结合图象可知不等式f (x )g (x )>0⇔F (x )>0的解集为(-3,0)∪(3,+∞),故选A.2.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于()A .-501B .-502C .-503D .-504解析:由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0, 故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0, 故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0. 由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x , 故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C.3.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是()A .f (x )在R 上单调递减B .f (x )在R 上单调递增C .f (x )在R 上有最大值D .f (x )在R 上有最小值解析:根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e -x =3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.4.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数, 所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.5.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0, 故不等式f (x )<3ex +2的解集为(-∞,0).6.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是()A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0.7.已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e x f (x )-e 2x >0的解集为________.解析:由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ), 则h ′(x )=12e 2x [f (x )+2f ′(x )]>0,所以函数h (x )=e 2xf (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e xf (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2, 所以不等式e x f (x )-e 2x >0的解集为(2,+∞).题型三 构造f (x )g (x )型可导函数 1.设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是()A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0,∴g (x )在(0,+∞)上是减函数.∵f (x )是奇函数,f (-1)=0,∴f (1)=-f (-1)=0,∴g (1)=f (1)=0, ∴当x ∈(0,1)时,g (x )>0,从而f (x )>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0;当x ∈(-1,0)时,f (x )<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1).2.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f⎝⎛⎭⎫1x 1x <f (x )x,即F ⎝⎛⎭⎫1x <F (x ), 所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 3.已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有()A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)解析:构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x <0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e-2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D. 4.已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0. 若a ,b ∈R +且a ≠b ,则有() A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab )B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab )C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab )D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )解析:根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.5.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则()A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2AC .f (cos A )·sin 2B >f (sin B )·cos 2AD .f (cos A )·sin 2B <f (sin B )·cos 2A 解析:根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.6.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x2f (x 1)的大小关系为()A .e x 11f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x2f (x 1)的大小关系不确定解析:设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)e x 2,所以e x 1f (x 2)>e x2f (x 1).专项突破练构造函数法解决导数问题一、单选题1.已知()f x 是定义在R 上的偶函数,()f x '是()f x 的导函数,当0x ≥时,()20f x x '->,且()13f =,则()22f x x >+的解集是()A .()()1,01,-⋃+∞B .()(),11,-∞-⋃+∞C .()()1,00,1-D .()(),10,1-∞-⋃【解析】令()()2g x f x x =-,因为()f x 是定义在R 上的偶函数,所以()()f x f x -=,则()()()()2g x f x g x x ---==-,所以函数()g x 也是偶函数,()()2g x f x x ''=-,因为当0x ≥时,()20f x x '->,所以当0x ≥时,()()20g x f x x '-=≥',所以函数()g x 在()0,∞+上递增,不等式()22f x x >+即为不等式()2g x >,由()13f =,得()12g =,所以()()1g x g >,所以1x >,解得1x >或1x <-,所以()22f x x >+的解集是()(),11,-∞-⋃+∞.故选:B.2.定义在R 上的函数()f x 的图象是连续不断的一条曲线,且()()2f x f x x -+=,当0x <时,()f x x '<,则不等式()()112f x f x x +≥-+的解集为() A .1,12⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,2⎛⎫- ⎪⎝⎭D .1,2⎛⎤-∞ ⎥⎝⎦【解析】设()()212g x f x x =-,根据题意,()()()()221122g x f x x x f x g x -=--=-=-,所以()g x 为R 上的奇函数,当0x <时,()()0g x f x x ''=-<,因为()g x 在R 上的图象连续不断,所以()g x 为R 上的减函数,()()112f x f x x +≥-+可化为()()()2211111222g x x g x x x ++≥-+-+, 即()()1g x g x ≥-,所以1x x ≤-,故不等式的解集为1,2⎛⎤-∞ ⎥⎝⎦.故选:D.3.()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且()32e f =,()1e f =,则不等式()2121e0x f x --->的解集为() A .(),1-∞-B .3,2⎛⎫-∞- ⎪⎝⎭C .()1,+∞D .3,2⎛⎫+∞ ⎪⎝⎭【解析】令函数()()x f x g x =e ,则()()()e xf x f xg x '-'=.因为()()f x f x '>,所以()0g x '>, ()g x 在R 上单调递增.又()()111ef g ==,而()2121e0x f x --->等价于()21211e x f x -->,即()()211g x g ->,所以211x ->,解得1x >.故选:C.4.已知函数()f x 是定义在R 上的奇函数,()20f =,当0x >时,有()()0xf x f x '->成立,则不等式()0xf x >的解集是()A .()()22-∞-⋃+∞,, B .()()202-⋃+∞,, C .()()202-∞-⋃,, D .()2+∞,【解析】()()0xf x f x '->成立设()()f xg x x=, 则()()()()20f x f x x f x g x x x ''⎡⎤-'==>⎢⎥⎣⎦,即0x >时()g x 是增函数, 当2x >时,()()20g x g >=,此时()0f x >;02x <<时,()()20g x g <=,此时()0f x <. 又()f x 是奇函数,所以20x -<<时,()()0f x f x =-->;2x <-时()()0f x f x =-->则不等式()0x f x ⋅>等价为()00f x x >⎧⎨>⎩或()00f x x <⎧⎨<⎩,可得2x >或2x <-,则不等式()0xf x >的解集是()()22-∞-⋃+∞,,,故选:A . 5.已知函数()1y f x =-的图像关于直线1x =对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,若()1.5 1.522a f =,()()ln3ln3b f =,112211log log 44c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则() A .a b c >>B .b a c >>C .c a b >>D .b c a >>【解析】函数()1y f x =-的图像关于直线1x =对称,可知函数()y f x =的图像关于直线0x =对称, 即()y f x =为偶函数,构造()()g x xf x =,当(),0x ∈-∞,()()()0g x f x xf x =+'<', 故()y g x =在(),0∞-上单调递减,且易知()g x 为奇函数,故()y g x =在()0,∞+上单调递减,由 1.512122log ln 304>=>>,所以()()1.51212log ln34g g g ⎛⎫<< ⎪⎝⎭.故选:D. 6.已知函数()f x 的定义域为()0,+∞,且满足()()0f x xf x '+>(f x 是()f x 的导函数),则不等式()()()2111x f x f x --<+的解集为()A .(),2-∞B .()1,+∞C .1,2D .1,2【解析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,即()g x 在()0,+∞上递增,又10x +>,则()()()2111x f x f x --<+等价于22(1)(1)(1)(1)x f x x f x --<++,即2(1)(1)g x g x -<+,所以22101011x x x x ⎧->⎪+>⎨⎪-<+⎩,解得12x <<,原不等式解集为1,2.故选:C7.已知f (x )为定义在R 上的可导函数,()f x '为其导函数,且()()f x f x '<恒成立,其中e 是自然对数的底数,则() A .()()20222023f ef < B .()()20222023ef f < C .()()20222023ef f = D .()()20222023ef f >【解析】设函数()()x f x g x e =,可得()()()xf x f xg x e '-'=, 因为()()f x f x '<,可得()()0f x f x '->,所以()0g x '>,可得()g x 单调递增, 则()()2022202320222023f f e e <,即()()20222023ef f <.故选:B. 8.已知函数()f x 的定义域为()0,∞+,其导函数为()f x ',若()()2xf x f x '>,则下列式子一定成立的是() A .()()422f f >B .()()442f f >C .()()24e 2>f fD .()()44e 2f f >【解析】令2()()(0)f x g x x x =>,则3()2(())xf x x x f x g '-=',又不等式()()2xf x f x '>恒成立,所以()()20xf x f x '->,即()0g x '>,所以()g x 在(0,)+∞单调递增, 故()()24g g <,即()()224242f f >,所以()()442f f >,故选:B . 9.已知函数()f x 为R 上的可导函数,其导函数为()f x ',且满足()()1f x f x '+<恒成立,()02022f =,则不等式()2021e 1xf x -<+的解集为()A .()e,+∞B .(),e -∞C .(),0∞-D .()0,∞+【解析】构造函数()e [()1]x g x f x =-,(0)(0)12021g f =-=,则()e [()()1]0x g x f x f x '=+'-<,故()e [()1]x g x f x =-为R 上的单调减函数,不等式()2021e 1-<+xf x ,即[()1e 2021}x f x -<,即()(0)g x g <,0x ∴>,故选:D10.已知定义在R 上的函数()f x ,()f x '为其导函数,满足①()()2f x f x x =--,②当0x ≥时,()210f x x '++≥.若不等式()()221331f x x x f x +++>+有实数解,则其解集为()A .2,3⎛⎫-∞- ⎪⎝⎭B .()2,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭C .()0,∞+D .()2,0,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【解析】构造函数()()2F x f x x x =++,当0x ≥时,()()()''210,F x f x x F x =++≥递增,由于()()2f x f x x =--,所以()()()()22f x x x f x x x ++=-+-+-,即()()F x F x -=,所以()F x 是偶函数,所以当0x <时,()F x 递减.不等式()()221331f x x x f x +++>+等价于:()()()()()()22212121111f x x x f x x x +++++>+++++,即()()211F x F x +>+,所以211x x +>+,两边平方并化简得()320x x +>,解得23x <-或0x >,所以不等式()()221331f x x x f x +++>+的解集为()2,0,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选:D11.已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e 为自然对数的底数,若关于x的不等式()20f x ax x x--+≤恒成立,则实数a 的取值范围为() A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭【解析】由2()1()f x f x x x'+=,得1()()xf x f x x '+=,设()()g x xf x =,1()()()g x xf x f x x ''=+=,则()ln g x x c =+,从而有ln ()x cf x x+=. 又因为12(e)e ec f +==,所以1c =,ln 1()x f x x +=,2ln ()x f x x -'=,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以max ()(1)1f x f ==. 因为不等式()20f x ax x x--+≤恒成立,所以2()20f x x x a -+-≤, 即2()(1)1f x x a --+≤,又因为2()(1)12f x x --+≤,所以2a ≥.故选:B.12.已知函数()1f x +为定义域在R 上的偶函数,且当1≥x 时,函数()f x 满足()()2ln 2xxf x f x x '+=,14ef=,则()4e 1f x <的解集是()A .(),2-∞⋃+∞B .(2C .()(),2e e,-∞-⋃+∞D .()2e,e -【解析】由题可知,当1≥x 时,()2ln x x f x x '⎡⎤=⎣⎦.令()()2g x x f x =,则()()2g x f x x=, ()()()()2432ln 2x g x xg x x g x f x x x'--'==,令()()ln 2h x x g x =-,()()112ln 2x h x g x x x -''=-=,令()0h x '=,解得x =()h x 在)+∞上单调递减﹐在(上单调递增.又20hg==,所以()0h x ≤,()0f x '≤,所以函数()f x 在[)1,+∞上单调递减,()4e 1f x <,可化为()14ef x f <=,又函数()f x 关于1x =对称,故11,11x x --<11x ->,所以不等式的解集为(),2-∞⋃+∞.故选:A13.已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有()A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f e f x x <D .(0)(1)f <【解析】若()f x 是奇函数,则()()f x f x -=-,又因为()0f x >,与()()f x f x -=-矛盾, 所有函数()y f x =不可能时奇函数,故A 错误; 令()()22ex g x f x =,则()()()()()()222222eeex x x g x x f x f x xf x f x '''=+=+,因为22e 0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数, 所以()()11g g -<,即()()1122e 1e 1f f -<,所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <<sin 1x <<,所以sin cos x x >, 故()()sin cos g x g x >,即()()22sin cos 22e sin ecos x xf x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f ,故D 正确. 故选:D.14.定义在R 上的函数()f x 满足()()1f x f x '>-,且()06f =,()f x '是()f x 的导函数,则不等式()5x x e f x e ⋅>+(其中e 为自然对数的底数)的解集为()A .()(),01,-∞⋃+∞B .()(),03,-∞+∞C .()0,∞+D .()3,+∞【解析】设()()()x xg x e f x e x R =⋅-∈,可得()()()()()1x x x xg x e f x e f x e e f x f x '''=⋅+⋅-=+-⎡⎤⎣⎦.因为()()1f x f x '>-,所以()()10f x f x -'+>,所以()0g x '>,所以()y g x =在定义域上单调递增,又因为()5x xe f x e ⋅>+,即()5g x >,又由()()0000615g e f e =⋅-=-=,所以()()0g x g >,所以0x >,所以不等式的解集为()0,∞+.故选:C .15.设函数()f x '是定义在()0π,上的函数()f x 的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是() A .a b c >> B .b c a >> C .c a b >>D .c b a >>【解析】设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos ()22a f ππ==,1()cos ()2333b f f πππ==,333()cos ()444c f f πππ==, 因为3324πππ<<,所以33cos ()cos ()cos ()332244f f f ππππππ<<,所以c a b >>.故选:C . 16.已知定义在R 上的函数()f x 满足:()()0xf x f x '+>,且()12f =,则()2e e x xf >的解集为() A .()0,+∞B .()ln2,+∞C .()1,+∞D .0,1【解析】设()()g x xf x =,则()()()0g x xf x f x ''=+>,故()g x 为R 上的增函数,而()2e exx f >可化为()()e e 211x x f f >=⨯即()()g e 1x g >, 故e 1x >即0x >,所以不等式()2e e xxf >的解集为()0,+∞,故选:A. 二、多选题17.设()f x ,()g x 是定义在R 上的恒大于零的可导函数,且满足()()()()0f x g x f x g x ''->,则当a x b <<时,有()A .()()()()f x g x f b g b >B .()()()()f x g a f a g x >C .()()()()f x g b f b g x <D .()()()()f x g x f a g a >【解析】令()()()f x h x g x =,则()()()()()()2f xg x f x g xh x g x ''-'=⎡⎤⎣⎦. 由()()()()0f x g x f x g x ''->,得()0h x '>,所以函数()h x 在R 上单调递增.当a x b <<时,有()()()()()()f a f x f bg a g x g b <<,又()f x ,()g x 是定义在R 上的恒大于零的可导函数, 所以()()()()f x g a f a g x >,()()()()f x g b f b g x <.故选:BC18.已知定义在R 上的函数()f x 图像连续,满足()()6sin 2f x f x x x --=-,且0x >时,()3cos 1f x x '<-恒成立,则不等式()()3sin()333f x f x x πππ≥--++中的x 可以是()A .6π-B .0C .6πD .3π 【解析】由()()6sin 2f x f x x x --=-整理得()3sin ()()3sin()f x x x f x x x +-=-+---, 设()()3sin g x f x x x =+-,则有()()g x g x =-,所以()g x 是偶函数,因为0x >时,()3cos 1f x x '<-,所以()()13cos 0g x f x x ''=+-<,所以()g x 在(0,)+∞单调递减,又()g x 是偶函数,所以()g x 在(,0)-∞单调递增,又不等式()()3sin()333f x f x x πππ≥--++等价于()3sin f x x x +-()()33f x x ππ≥-+-3sin()3x π--,即()()3g x g x π≥-,根据()g x 的单调性和奇偶性可得3x x π≤-,解得6x π≤,故选:ABC19.定义在[0,)+∞上的函数()f x 的导函数为()f x ',且()()2()0f x x x f x '++<恒成立,则必有()A .3(3)2(1)f f <B .4(2)5(5)f f <C .3(1)5(5)f f >D .2(3)3(7)f f >【解析】设函数()()1xf x g x x =+,0x ≥,因为()()2()0f x x x f x '++< 则()()()222()()(1)()()0(1)(1)f x x x f x f x xf x x xf x g x x x ''++++-⎡⎤⎣⎦'==<++, 所以()g x 在[0,)+∞上单调递减,从而()()()()()12357g g g g g >>>>, 即(1)2(2)3(3)5(5)7(7)23468f f f f f >>>>, 则必有()()3321f f <,4(2)5(5)f f >,3(1)5(5)f f >,6(3)7(7)f f >. 又()g x 在[0,)+∞上单调递减,所以x >0时,()()00g x g <=, 所以x >0时,()0f x <,又6(3)7(7)f f >,所以72(3)(7)3(7)3f f f >>.故选:ACD. 20.已知()f x 是R 上的可导函数,且()()f x f x '<对于任意x ∈R 恒成立,则下列不等关系正确的是()A .()()1e 0f f <,()()20202020e 0f f <B .()()1e 0f f >,()()211f e f >-C .()()1e 0f f <,()()211f e f <- D .()()1e 0f f >,()()20202020e 0f f >【解析】设()()x f x g x =e ,所以()()()e xf x f xg x '-'=,因为()()f x f x '<,所以()0g x '<,所以()g x 在R 上是减函数, 所以()()10g g <,()()20200<g g ,()()11-<g g ,即()()1e 0f f <,()20002020e f <,()()()201e 1f f f <-,故选:AC.三、填空题21.已知()f x 是R 上的奇函数,()g x 是在R 上无零点的偶函数,()20f =,当0x >时,()()()()0f x g x f x g x ''-<,则使得()()lg 0lg f x g x <的解集是________【解析】令()()()f x h x g x =,则()()()()[]2()()f x g x f x g x h x g x ''-'=,当0x >时,()0h x '<, 故()h x 在()0,∞+上单调递减,又()f x 是奇函数,()g x 是偶函数,故()h x 是奇函数,()h x 在(),0∞-上单调递减,又()20,(0)0f f ==,可得(2)0,(2)0,(0)0h h h =-==, 故()h x 在()2,0,(2,)-+∞上小于0,由()()lg (lg )0lg f x h x g x =<,得2lg 0-<<x 或lg 2x >,解得11100<<x 或100x >.故答案为:11(100,)100⎛⎫⋃+∞ ⎪⎝⎭,. 22.已知函数()f x 是R 上的奇函数,()20f =,对()0,x ∀∈+∞,()()0f x xf x '+>成立,则()()10x f x -≥的解集为_________.【解析】设()()F x xf x =,则对()0,x ∀∈+∞,()()()0F x f x xf x ''=+>,则()F x 在()0,+∞上为单调递增函数,∵函数()f x 是R 上的奇函数,∴()()f x f x -=-, ∴()()()()()F x x f x xf x F x -=--==,∴()F x 为偶函数,∴()F x 在(),0-∞上为单调递减函数, 又∵()20f =,∴()()220F F -==,由已知得()00F =,所以当2x <-时,()()0,0F x f x ><;当20x -<<时,()()0,0F x f x <>; 当02x <<时,()()0,0F x f x <<;当2x >时,()()0,0F x f x >>; 若()()10x f x -=,则0,1,2,2x =-;若()()10x f x ->,则()100x f x ->⎧⎨>⎩或()100x f x -<⎧⎨<⎩,解得2x >或2x <-或01x <<;则()()10x f x -≥的解集为(][][),20,12,-∞-+∞.23.已知函数()f x 的导函数为()f x ',且对任意x ∈R ,()()0f x f x '-<,若()22e f =,()e tf t <,则t 的取值范围是___________. 【解析】构造函数()()x f x g x =e ,则()()()0xf x f xg x e '-'=<,故函数()g x 在R 上单调递减, 由已知可得()()2221e f g ==,由()e tf t <可得()()()12e tf tg t g =<=,可得2t >. 故答案为:()2,+∞.24.定义在R 上的函数满足()11f =,且对任意R x ∈都有()'102f x -<,则不等式()122x f x ->的解集为__________.【解析】构造函数()()()()111,1102222x F x f x F f =--=--=,()()''102F x f x =-<,所以()F x 在R 上递减,由()122x f x ->,得()1022x f x -->, 即()()1F x F >,所以1x <,即等式()122x f x ->的解集为(),1-∞. 25.若()f x 为定义在R 上的连续不断的函数,满足2()()4f x f x x +-=,且当(,0)x ∈-∞时,1()42f x x '+<.若3(1)()32f m f m m +≤-++,则m 的取值范围___________. 【解析】2()()4f x f x x +-=,22()2()20f x x f x x ∴-+--=,设21()()22g x f x x x =-+,则()()0g x g x +-=,()g x ∴为奇函数, 又1()()402g x f x x '='-+<,()g x ∴在(,0)-∞上是减函数,从而在R 上是减函数, 又3(1)()32f m f m m +≤-++,等价于22(1)2(1)()2()f m m f m m +-+≤---,即(1)()g m g m +≤-, 1m m ∴+≥-,解得12m ≥-,故答案为:1,2⎡⎫-+∞⎪⎢⎣⎭.26.已知函数()f x 是定义在()()00,-∞+∞,的奇函数,当()0x ∈+∞,时,()()xf x f x '<,则不等式()()()21120f x x f -+-<的解集为___________. 【解析】函数()f x 是定义在()()00,-∞+∞,的奇函数,构造函数()()()0f x F x x x =≠,()()()()f x f x F x F x x x--===-, 所以()F x 为偶函数,当0x >时,()()()''20xf x f x F x x-=<,()F x 递减,当0x <时,()F x 递增. ()()()21120f x x f -+-<,()()()2112f x x f -<-,当10x ->,即1x <时,()()1212f x f x -<-,()()12F x F -<,121x x ->⇒<-. 当10x -<,即1x >时,()()()()()12,12212f x f F x F F x->->=--,21013x x -<-<⇒<<.综上所述,不等式()()()21120f x x f -+-<的解集为()(),11,3-∞-.故答案为:()(),11,3-∞-27.已知定义在()0,∞+的函数()f x 满足()()0xf x f x '-<,则不等式()210x f f x x ⎛⎫-< ⎪⎝⎭的解集为___________. 【解析】令()()f xg x x =,则()()()20xf x f x g x x '-'=<, 所以函数()g x 在()0,∞+上单调递减,又由()210x f f x x ⎛⎫-< ⎪⎝⎭得()11f f x xx x⎛⎫⎪⎝⎭<,即()1g g x x ⎛⎫< ⎪⎝⎭,10x x ∴>>,解得01x <<,故答案为:()0,1.28.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【解析】构造()3()x f x F e x =,则()3363()3()()3()x x x x e f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()xf x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.29.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()0f x f x '->﹐2021(2021)e f =,则不等式1(ln )3f x <的解集为___________.【解析】令()()x f x g x =e ,所以()()()0e xf x f xg x '-'=>,所以()g x 在R 上单调递增, 且()()20212021e 20211e f g ==,因为1ln 3f x ⎛⎫< ⎪⎝⎭(f <(f f g==,所以(1g <,所以(()2021gg <,所以02021x >⎧⎪⎨⎪⎩,所以60630e x <<,所以解集为()60630,e. 30.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()33f t f t t ⎛⎫⎛⎫≤-- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________【解析】由()()2sin f x f x x --=得()sin ()sin()f x x f x x -=---,令()()sin g x f x x =-, 则()()g x g x =-,()g x 是偶函数,0x ≤时,()1f x '<-,则()()cos 0g x f x x ''=-<,()g x 是减函数,因此0x ≥时,()gx 是增函数,π2ππ2π2π()cos cos sin sin 33333f t f t t f t t t ⎛⎫⎛⎫⎛⎫⎫≤--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎭π3sin 32f t t t ⎛⎫=-+ ⎪⎝⎭, 所以()π1ππsin sin sin 3233f t t f t t t f t t ⎛⎫⎛⎫⎛⎫-≤-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即π()3g t g t ⎛⎫≤- ⎪⎝⎭,()π3g t g t ⎛⎫≤- ⎪⎝⎭,所以π3t t ≤-,22π3t t ⎛⎫≤- ⎪⎝⎭,π6t ≤.故答案为:π6∞⎛⎤- ⎥⎝⎦,.31.已知函数()2ln f x a x x=-. (1)若1a =,求()f x 的图象在1x =处的切线方程; (2)若对于任意的()12,1,3x x ∈,当12x x >时,都有()()12212f x f x a x x ->-,求实数a 的取值范围.【解析】(1)因为1a =,所以()()2212ln ,f x x f x x x x '=-=+,所以()()12,13f f =-'=,所以()f x 的图象在1x =处的切线方程为()()231y x --=-,即35y x =-;(2)因为12x x >,所以()()12212f x f x a x x ->-等价于()()()21212f x f x a x x ->-,即()()221122f x a x f x a x ->-,令函数()22ln g x a x a x x=--,由题可知()g x 在()1,3上单调递增,所以()()()22222221220ax ax a a x ax g x a x x x x -+--=+-=-=-'在()1,3上恒成立, 若0a =,则()220g x x ='>恒成立,显然()g x 在()1,3上单调递增,符合题意; 若0a >,则210ax x+-<,则20ax -在()1,3上恒成立,即320a -,解得203a <; 若0a <,则220ax x-->,则10ax +在()1,3上恒成立,即310a +,解得103a -<. 综上,实数a 的取值范围为12,33⎡⎤-⎢⎥⎣⎦.32.已知曲线()()()ln f x x a x a =+∈R 在点()()1,1f 处的切线平行于直线230x y -+=. (1)求a 的值;(2)若对[)1,x ∀∈+∞,都有()()21f x m x ≤-恒成立,求实数m 的取值范围.【解析】(1)由题意得:()ln x af x x x+'=+,所以()112f a '+==,即1a = (2)由()()21ln 1x x m x +≤-恒成立,可得()ln 10x m x --≤在[)1,x ∀∈+∞上恒成立设()()ln 1h x x m x =--,()11mx h x m x x'-=-= ①当m 1≥时,()0h x '<恒成立,即()h x 在[)1,x ∞∈+上为单调减函数 所以()()10h x h ≤=符合题意; ②当1m <时,由()0h x '>得11x m<< 由()0h x '<得1x m>即()h x 在11,x m ⎡⎫∈⎪⎢⎣⎭上为单调增函数,在1,x m ⎛⎫∈+∞ ⎪⎝⎭上为单调减函数又()10h =,所以存在011,x m ⎛⎫∈ ⎪⎝⎭,使得()00h x >,不符合题意综上:m 1≥33.设函数()ln ()af x x a R x =+∈.(1)求函数()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,求a 的取值范围,并证明:121x x +<.。
合理构造函数解导数问题

合理构造函数解导数问题从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。
在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。
例1:已知函数()()ax x x ax x f --++=231ln . (1) 若32为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()xbx x f =---311有实根,求实数b 的取值范围。
解:(1)因为32=x 是函数的一个极值点,所以0)32(='f ,进而解得:0=a ,经检验是符合的,所以.0=a(2)显然(),2312a x x ax ax f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。
同时a x x --232此函数是31<x 时递减,31>x 时递增, 故此我们只需要保证()02311≥--++='a a af ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数解:由于0>x ,所以:()2ln x x x x b -+=32ln x x x x -+=()2321ln x x x x g -++=' ()xx x x x x g 1266212---=-+='' 当6710+<<x 时,(),0>''x g 所以()x g '在6710+<<x 上递增; 当671+>x 时,(),0<''x g 所以()x g '在671+>x 上递减; 又(),01='g ().6710,000+<<='∴x x g当00x x <<时,(),0<'x g 所以()x g 在00x x <<上递减; 当10<<x x 时,(),0>'x g 所以10<<x x 上递增; 当1>x 时,(),0<'x g 所以()x g 在1>x 上递减; 又当+∞→x 时,(),-∞→x g()()⎪⎭⎫ ⎝⎛+≤-+=-+=41ln ln ln 232x x x x x x x x x x x g当0→x 时,,041ln <+x 则(),0<x g 且()01=g ∴b 的取值范围为(].0,∞-()xx x x x x g 1266212---=-+='',()2321ln x x x x g -++=',()32ln x x x x x g -+=方法二、构造:()2ln x x x x G -+=()()()xx x x x x x x x x x x G 112121221122-+-=---=++-=-+=' 0>x 10<<∴x ()0>'x G 从而()x G 在()1,0上为增函数;(),0,1<'>x G x 从而()x G 在()+∞,1上为减函数()()01=≤∴G x G 而0>x ()0≤⋅=∴x G x b 0≤∴b分析点评:第(3)问的两种解法难易繁杂一目了然,关键在合理构造函数上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合理构造函数解导数问题从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。
在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。
例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=231ln .(1) 若32为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()xbx x f =---311有实根,求实数b 的取值范围。
解:(1)因为32=x 是函数的一个极值点,所以0)32(='f ,进而解得:0=a ,经检验是符合的,所以.0=a(2)显然(),2312a x x ax ax f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。
同时a x x --232此函数是31<x 时递减,31>x 时递增,故此我们只需要保证()02311≥--++='a a af ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:()2ln xx x x b -+=32ln x xx x -+=()2321ln x x x x g -++=' ()xx x x x x g 1266212---=-+=''当6710+<<x 时,(),0>''x g 所以()x g '在6710+<<x 上递增; 当671+>x 时,(),0<''x g 所以()x g '在671+>x 上递减; 又(),01='g ().6710,000+<<='∴x x g当00x x <<时,(),0<'x g 所以()x g 在00x x <<上递减; 当10<<x x 时,(),0>'x g 所以10<<x x 上递增; 当1>x 时,(),0<'x g 所以()x g 在1>x 上递减; 又当+∞→x 时,(),-∞→x g()()⎪⎭⎫ ⎝⎛+≤-+=-+=41ln ln ln 232x x x x x x x x x x x g当0→x 时,,041ln <+x 则(),0<x g 且()01=g ∴b 的取值范围为(].0,∞-()xx x x x x g 1266212---=-+='',()2321ln x x x x g -++=',()32ln x x x x x g -+=方法二、构造:()2ln x x x x G -+=()()()xx x x x x x x x x x x G 112121221122-+-=---=++-=-+=' 0>x 10<<∴x ()0>'x G 从而()x G 在()1,0上为增函数;(),0,1<'>x G x 从而()x G 在()+∞,1上为减函数()()01=≤∴G x G 而0>x ()0≤⋅=∴x G x b 0≤∴b分析点评:第(3)问的两种解法难易繁杂一目了然,关键在合理构造函数上。
(08、山东、理)已知函数f (x)=nx )1(1-+aln(x -1),其中n 是正整数,a 是常数,若a =1时,求证:当x ≥2时,f (x)≤x -1. 证法一:当a =1时,f (x)=nx )1(1-+ln(x -1),构造函数F(x)= (x -1)-f (x),下证:当x ≥2时,F(x)=(x -1)-nx )1(1--ln(x -1)≥0恒成立. F ´(x)=1-11)1(1---+x x n n =12--x x -1)1(+-n x n ( x ≥2).①若n 为偶数,∵x ≥2,∴12--x x ≥0,1-x <-1<0,1)1+n x -(<0,-1)1(+-n x n>0, 所以:当x ≥2时,F ´(x)>0.∴F(x)min =F(2)=(2-1)-n)-(211-ln(2-1)=0,所以:当x ≥2,且n 为偶数时,F(x)=(x -1)-nx )1(1--ln(x -1)≥0恒成立. ②若n 为奇数,要证n x )1(1-+ln(x -1)≤x -1,∵x ≥2,∴nx )1(1-<0,所以只需证: ln(x -1)≤x -1(下略).小结2:含有正整数“n ”的表达式的符号、数值判断,“对n 分奇、偶讨论”是一种重要的方法.在数列中运用很多. 证法二:∵当x ≥2时,nx )1(1-≤1,∴只需要证明1+ln(x -1)≤x -1.构造函数F(x)= (x -1)-[1+ln(x -1)],即F(x)= x -2-ln(x -1),则F ´(x)=12--x x (下略). 小结3:证法一是直接作“差函数”(直接构造新函数),然后分奇、偶讨论;证法二是先适当放缩,然后构造新函数.解题时,要有敏锐的观察力. 2.变形与整理直接构造新函数F(x)=f (x)-g (x),来证明函数不等式f (x)≥g (x)时,目标是:F(a)min ≥0,从而F(x)≥0,所以:f (x)≥g (x).但常常会出现下列几种异常情况:①F ´(x)的符号无法判断,【F ´(x)的符号→F(x)的单调性→F(x)的极值】从而F(x)的极值无法求出;②虽然F(x)的极值能够求出,但极值是关于参数a 的表达式F(a),无法判断极值F(a)是大于0,还是小于0;③直接构造的新函数F(x)=f (x)-g (x),其导函数F ´(x)非常复杂或根本无法求出.出现这种异常情况,表明所构造的新函数F(x),不适当.这时,需要对“函数不等式”重新整理后,再构造新函数F(x),如题2.注意下面的题目的求解方法.那么怎样合理构造函数呢?(1)抓住问题的实质,化简函数1、已知()x f 是二次函数,不等式()0<x f 的解集是()5,0,且()x f 在区间[]4,1-上的最大值12.(1)求()x f 的解析式;x)(2)是否存在自然数m ,使得方程()037=+xx f 在区间()1,+m m 内有且只有两个不等的实数根?若存在,求出所有m 的值;若不存在,请说明理由。
解:(1) ()R x x x y ∈-=1022(2)假设满足要求的实数m 存在,则()037=+x x f ,即有:0371022=+-xx x03710223=+-xx x ,即有:03710223=+-x x 构造函数()3710223+-=x x x h画图分析:()310(62062-=-='x x x x x h进而检验,知0)4(,0)310(,0)3(><>h h h ,所以存在实数3=m 使得()037=+x x f 在区间()4,3内有且只有两个不等的实数根。
点评:本题关键是构造了函数()3721032+-=x x x h ,舍弃了原函数中分母,x 问题得到了简化。
变式练习:设函数()R x x x x f ∈+-=,563,求已知当()+∞∈,1x 时,()()1-≥x k x f 恒成立,求实数k 的取值范围。
24.已知函数).(ln 21)(2R ∈-=a x a x x f (Ⅰ)求函数)(x f 的单调区间;x()x(Ⅱ)求证:3232ln 21,1x x x x <+>时. 解:(Ⅰ)依题意,函数的定义域为x >0.'(),af x x x=-∴当a ≤0时,()f x 的单调递增区间为(0,)+∞. 当a >0时,'((),a x x f x x x x=-=令'()f x >0,有x >所以函数()f x 的单调递增区间为);+∞令'()f x <0,有0x <<所以函数()f x 的单调递减区间为 (Ⅱ)设32'2211()ln ,()2.32g x x x x g x x x x=--∴=-- 2'(1)(21)1()0,x x x x g x x-++>=>当时,∴1()()(1)0.6g x g x g ∞∴>=>在(1,+)上是增函数,∴当1>x 时,3232ln 21x x x <+。
34.已知函数x ax x f ln 21)(2+=. (Ⅰ)当1=a 时,求函数)(x f 在[]e ,1上的最大、最小值; (Ⅱ)求)(x f 的单调增区间;(Ⅲ)求证:1=a 时,在区间[1,+∞)上,函数)(x f 的图象总在函数332)(x x g =的图象的下方.解:(I )当1=a 时,xx x f 1)(+=',[]e x ,1∈ 时,0)(>'x f ,故f(x)在[1,e]上是增函数.∴ f (x )max = f (e ) =21e 2 + 1;f (x )min = f (1 ) =21.(II )()∞+,的定义域为函数0)(x f ,由,0)(>'x f 012>+xax ,∴时0≥a ,增区间为),(∞+0;a<0时,增区间为)1,0(a-。
(III )设F (x ) =21x 2 + lnx -32x 3,则F '(x ) = x +x1-2x 2=x x x x )21)(1(2++-. ∵x >1,∴ F '(x )<0,故F (x )在[1,+∞]上是减函数, 又F (1) =-61<0,∴ 在[1,+∞]上,有F (x )<0,即21x 2 + lnx <32x 3, 故函数f (x )的图象在函数)(x g =32x 3的图象的下方.(2)抓住常规基本函数,利用函数草图分析问题:例: 已知函数()x n x f ln +=的图像在点()),(m f m P 处的切线方程为,x y = 设().ln 2x xnmx x g --= (1) 求证:当1≥x 时,()0≥x g 恒成立; (2) 试讨论关于x 的方程()tx ex x x g xnmx +-=--232根的个数。