空间几何体的表面积和体积定律全套整合

合集下载

立体几何的表面积公式和体积公式

立体几何的表面积公式和体积公式

立体几何的表面积公式和体积公式一、棱柱。

1. 直棱柱。

- 表面积公式:S = 2S_底+S_侧,其中S_底为底面多边形的面积,S_侧=Ch (C为底面多边形的周长,h为直棱柱的高)。

- 体积公式:V = S_底h。

2. 斜棱柱。

- 侧面积公式:S_侧=C'l(C'为直截面(垂直于侧棱的截面)的周长,l为侧棱长)。

- 体积公式:V = S_直截面l。

二、棱锥。

1. 棱锥。

- 表面积公式:S = S_底+S_侧,其中S_侧=∑_i = 1^n(1)/(2)l_ih_i(n为侧面三角形的个数,l_i为第i个侧面三角形的底边长,h_i为第i个侧面三角形的高)。

- 体积公式:V=(1)/(3)S_底h(h为棱锥的高)。

三、棱台。

1. 棱台。

- 表面积公式:S = S_上底+S_下底+S_侧,其中S_侧=∑_i =1^n(1)/(2)(l_i+l_i')h_i(n为侧面梯形的个数,l_i为棱台上底面第i条边的长,l_i'为棱台下底面第i条边的长,h_i为第i个侧面梯形的高)。

- 体积公式:V=(1)/(3)h(S_上底+S_下底+√(S_上底)S_{下底})(h为棱台的高)。

四、圆柱。

1. 圆柱。

- 表面积公式:S = 2π r^2+2π rh(r为底面半径,h为圆柱的高)。

- 体积公式:V=π r^2h。

五、圆锥。

1. 圆锥。

- 表面积公式:S=π r^2+π rl(r为底面半径,l为圆锥的母线长)。

- 体积公式:V=(1)/(3)π r^2h(h为圆锥的高,且l=√(r^2) + h^{2})。

六、圆台。

1. 圆台。

- 表面积公式:S=π r^2+π R^2+π l(r + R)(r为上底面半径,R为下底面半径,l为圆台的母线长)。

- 体积公式:V=(1)/(3)π h(r^2+R^2+rR)(h为圆台的高)。

七、球。

1. 球。

- 表面积公式:S = 4π R^2(R为球的半径)。

几何体的表面积和体积公式大全

几何体的表面积和体积公式大全

几何体的表面积和体积公式大全几何体的表面积,体积计算公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高, 3、正方体a-边长,S=6a²,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)。

空间几何体的表面积及体积公式大全

空间几何体的表面积及体积公式大全

空间几何体的表面积及体积公式大全空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体① 棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧2 1=3、台体① 棱台:h c c S )(21‘下底上底棱台侧+=② 圆台:l c c S )(21下底上底棱台侧+=4、球体① 球:r S 24π=球② 球冠:略③ 球缺:略二、体积 1、① 棱柱② 圆柱 2、① 棱锥② 圆锥 3、① 棱台② 圆台 4、球体① 球:r V 334π=球② 球冠:略③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便就是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高与底面直径都就是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:V 32圆柱侧面积因此:球体体积:V 球球体表面积通过上述分析,+即底面直径与高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之与 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS hS h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S h S V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S)(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:hS S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

空间几何体表面积和体积公式

空间几何体表面积和体积公式

空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。

体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。

还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。

2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。

体积可以表示为:V = c ×d。

3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。

其中n表示正多边形的边数。

4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。

其中π是圆周率,r表示几何体的半径。

这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。

了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、锥体① 棱锥: h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S )(21‘下底上底棱台侧+=② 圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球: r S 24π=球② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ②圆台 4、球体① 球: r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的h '侧面积计算时使用母线计算。

l 三、 拓展提高1、 祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的r 2球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

32分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积: r r V 3334232ππ=⨯=球球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形。

ABCD 延长两侧棱相交于一点。

P 设台体上底面积为,下底面积为S 上S 下高为。

h 易知:∽,设, PDC ∆PAB ∆h PE 1=则h h PF +=1由相似三角形的性质得: PFPEAB CD =即:(相似比等于面积比的算术平方根)hh hSS +=11下上 整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴ hS S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:得: SS h S h 上下上-=1h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++= ∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于层n n 圆柱,时,每一层都可以看作是一个圆柱。

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。

对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。

下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。

一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。

二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。

三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。

四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。

五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。

以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。

同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。

空间几何体的表面积及体积公式大全.doc

空间几何体的表面积及体积公式大全.doc

空间几何体的表面积及体积公式大全.doc
几何体的表面积和体积是初中几何学中一大重要内容,各类几何体都有自己独特的表面积和体积公式,学习这些公式对于便于更快更好地解决几何图形问题是至关重要的。

平面图形的表面积:
1. 三角形的表面积:S=(底×高)/2
3. 圆形的表面积:S=π×半径×半径
4. 平行四边形的表面积:S=(水平边的长度×垂直边的长度)/2
1. 正方体的表面积公式:S=6×边长×边长;体积公式:V=边长×边长×边长
2. 球体的表面积公式:S=4πr2;体积公式:V=4/3πr3
以上是几何体的表面积及体积公式,掌握这些公式能够帮助我们快速准确地解决各式几何图形的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S )(21‘下底上底棱台侧+=② 圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、① 球:rV 334π=球②球冠:略 ③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r hSV r 3222)(ππ=⨯==圆柱圆柱侧面积:r hcS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr ,则: 每个圆柱的体积h S V i i ==nrr i 2π 半球的体积等于这些圆柱的体积之和。

]1[)0()0(222221n r r n r r-=-= ]1[)1()1(222222n r r n r r -=-=]1[)2()2(222223nr r n r r -=-= ……]1[)1()1(22222nn r r n n r r n ---=-=∴半球体积为:)......(22221r r r V V nnnr+++⨯⨯==∑π半球=]}......[1{)1()1()0(2222n n n n r n nr-+++-⨯⨯π =]......[222223)1(210n n r n n -++++-π=]6)12)(1(1[])12()1(61[2323n r n r n n n n n n n ---=---ππ ]6)12)(11(1[3n n r ---=π 当+∞→n 时,01→n∴=V 半球r r r n n 33332)6211(]6)12)(11(1[πππ=⨯-=--- ∴球体积为:r V 334π=球5、 球体表面积公式推导分析:球体可以切割成若干(个n )近似棱锥,当+∞→n 时,这些棱锥的高为球体半径,底面积为球面面积的n1,则每一个棱锥的体积rS V n 球1311⨯=,则所有的小棱锥体积之和为球体体积。

即有:r r S n n 33431π=⨯球 ∴r S 24π=球 6、正六面体(正方体)与正四面体球S n1o(1) 体积关系如图:正方体切下四个三棱锥后, 剩下的部分为正四面体 设正方体棱长为a , 则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:a a a hSV 3261)21(3131=⨯⨯==三棱锥 中间剩下的正四面体的体积为:aa a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个正方体可以分成四个三棱锥与中间一个正四面体 即:aa a 33331461=+⨯ (2) 外接球正方体与其体内最大的正四面体有相同的外接球。

(理由:过不共面的四点确定一个球。

)正方体与其体内最大的正面体有四个公共顶点。

所以它们共球。

回顾:① 两点定线 ② 三点定面 ③ 三点定圆 ④ 四点定球 如图:(a)正方体的体对角线=球直径 (b)正四面体的外接球半径=43高 (c)正四面体的棱长=正方体棱长⨯2 (d)正方体体积:正四面体体积=3:1 (e)正方体外接球半径与正四面体外接球半径相等 ((a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:a ar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为R ,截面高度均为h ,倒圆锥的截面半径为r 1锥,半球截面半径为r1球,则:挖去圆锥后的组合体的截面为:r R S 2121锥ππ-= 半球截面面积为:r S 212球π= ∵倒圆锥的底面半径与高相等,由相似三角形易得:h r =1锥 在半球内,由勾股定理易得:h Rr 221-=球∴h R S 221ππ-=h R S 222ππ-=即:S S 21=,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。

由祖暅原理可得:V V 21=所以半球体积:R R R V Sh Sh Sh 3232323231ππ=⨯⨯==-=⨯半球即,球体体积:RR V 3334322ππ=⨯=球8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d a V 3=正方体 a d r V 333613434)2(πππ===球 :正方体V π:6=V 球 (2) 正方体的外接球正方体的体对角线=a 3球体的直径da d r V 333233434)2(πππ===球:球V 2:3π=V 正方体(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:33 ⑤正四面体内切球与外接球表面积之比为:1:3⑥正方体外接球半径、正方体棱长、内切球半径比为:3:2:1 ⑦正四面体外接球、正四面体、内切球体积比为:ππ:6:33 ⑧正四面体外接球、正四面体、内切球表面积比为:ππ:6:3 9、正四面体与球(1)正四面体的内切球解题关键:利用体积关系思考内切球的球心到各个面的距离相等,球心与各顶点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径r 。

利用体积关系得:h a r a⨯︒⨯=⨯︒⨯⨯)60sin 21(31)60sin 2131422( 所以:h r 41=,其中h 为正四面体的高。

由相关计算得:a a ah 36)]321(32[22=-=⨯⨯ ∴ah r 12641==即:a a r V 33321663434)126(πππ===球 aa a V 321223660sin 2131=⨯︒⨯=正四面体 ∴π3:18=V V 球正四机体:(2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46a a r V 333863434)46(πππ===球 aa a V 321223660sin 2131=⨯︒⨯=正四面体 ∴2:33122:86:33ππ==a aV V 正四面体球 (3)规律:①正四面体的内切球与外接球的球心为同一点; ②正四面体的内切球与外接球的球心在高线上; ③正四面体的内切球与外接球的的半径之和等于高; ④正四面体的内切球与外接球的半径之比等于1:3 ⑤正四面体内切球与外接球体积之比为:1:27 ⑥正四面体内切球与外接球表面积之比为:1:9⑦正四面体外接球半径、正四面体棱长、内切球半径比为:63:12:6⑧正四面体外接球、正四面体、内切球体积比为:ππ3:18:327 ⑨正四面体外接球、正四面体、内切球表面积比为:ππ:26:9 10、 圆柱与球(1)圆柱容球(阿基米德圆柱容球模型)圆柱高=底面直径=球的直径球体体积=32圆柱体积 球面面积=圆柱侧面积(2)球容圆柱球体直径、圆柱的高、圆柱底面直径构成直角三角形。

设球体半径为R ,圆柱高为h ,底面半径为r则有:)2()2(222r h R += 即:2422r hR +=四、 方法总结下面举例说明立体几何的学习方法例:已知正四面体的棱长为a ,求它的内切球和外接球的半径思路:先分析球心的位置。

因为正四面体是特殊的四面体,显然内切球与外接球的球心是重合的。

且是正四面体的高线交点。

再分析球心与一些特殊的点、线、面的位置、数量关系。

在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。

方法1:展平分析:(最重要的方法)连接DO 并延长交平面ABC 于点G 连接D O 1并延长交BC 于点E ,则A 、G 在平面AED 中,由相似知识可得:2111==GA EG DE O O ∴AD G O //1 且311=ADG O ∴△GO O 1∽△DOA ∴31AO O O 1= 即:a a A h O 4636434343AO 1=⨯=⨯== a a A h O 12636414141O 11O =⨯=⨯==a V 338634DO ππ==⨯外接球a OO V 331216634ππ==⨯内切球 方法2:体积分析:(最灵活的方法)如图:设正四面体ABCD 的内切球球心为O ,连接AO 、BO 、CO 、DO ,则正四面体被分成四个完全一样的三棱锥。

相关文档
最新文档