基于神经网络PID控制器的设计
基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计PID控制器是一种常用的控制器,可以通过根据系统的误差、历史误差和误差的变化率来计算控制信号,从而实现对系统的控制。
传统的PID控制器可以通过调节PID参数来实现对系统动态特性的控制,但是参数调节过程往往需要经验和反复试验,而且很难实现对非线性系统的精确控制。
近年来,基于BP神经网络的PID控制器设计方法得到了广泛的关注。
BP神经网络是一种常用的人工神经网络模型,可以通过训练得到输入与输出之间的映射关系。
在PID控制器设计中,可以将误差、历史误差和误差的变化率作为BP神经网络的输入,将控制信号作为输出,通过训练神经网络来实现对控制信号的合理生成。
1.数据预处理:首先需要采集系统的输入输出数据,包括系统的误差、历史误差和误差的变化率以及相应的控制信号。
对这些数据进行归一化处理,以便神经网络能够更好地学习和训练。
2.网络结构设计:根据系统的特性和要求,设计BP神经网络的输入层、隐藏层和输出层的神经元数量。
通常情况下,隐藏层的神经元数量可以根据经验设置为输入层和输出层神经元数量的平均值。
3.训练网络:采用反向传播算法对神经网络进行训练,以获得输入和输出之间的映射关系。
在训练过程中,需要设置学习率和动量系数,并且根据训练误差的变化情况来确定训练的终止条件。
4.参数调整:将训练得到的神经网络与PID控制器相结合,根据神经网络的输出和系统的误差、历史误差和误差的变化率来计算控制信号,并通过对PID参数的调整来实现对系统的控制。
1.适应能力强:BP神经网络能够通过训练来学习系统的动态特性,从而实现对非线性系统的精确控制。
2.自适应性高:BP神经网络能够根据实时的系统状态来实时调整控制信号,从而实现对系统动态特性的自适应控制。
3.参数调节方便:通过BP神经网络的训练过程,可以直接得到系统的输入和输出之间的映射关系,从而减少了传统PID控制器中参数调节的工作量。
4.系统稳定性好:基于BP神经网络的PID控制器能够根据系统状态及时调整控制信号,从而提高了系统的稳定性和鲁棒性。
基于神经网络的PID控制器在PCS7上的设计与应用

基于神经网络的PID控制器在PCS7上的设计与应用摘要:针对具有时变性、大时滞和参数变化范围广等特点的非线性被控对象,本文提出了一种基于BP 算法的PID控制器,并通过西门子过程控制系统(PCS7)系统软件中的SCL语言编写实现了神经网络参数优化模块。
通过对锅炉过热蒸汽压力的控制实验,验证了基于神经网络的PID控制器的效果。
结果表明,基于神经网络的PID 控制器的控制效果良好,能够满足锅炉变工况运行的需求。
关键词:神经网络、优化、PID控制器、BP、变工况、锅炉、PCS7 PID控制器具有结构简单、调整方便、工作可靠等优点,自提出以来得到了广泛的应用和长足的发展。
但是,随着工程系统的日益复杂化,在实际的工业生产中,非线性对象和系统越来越多,采用单一参数的常规PID控制器对其进行控制,往往表现出适应性差,鲁棒性弱等缺点,难以达到理想的控制效果。
由于神经网络可以表示任意非线性函数,并具有较强的适应性、并行处理的能力和鲁棒性等特点,因此,基于神经网络算法建立的控制器在解决具有时变性、大时滞、参数工作范围广等特点的非线性系统的控制问题上,具有广阔的应用前景。
1 基于神经网络的PID控制器的设计神经网络由于其所具有的特性,已被成功地应用到各种复杂非线性系统的控制中。
已有文献[1-2]提出的神经网络自适应控制器,通过参数寻优的方式实现对系统的在线学习和控制。
但自适应控制方法的本质是基于对模型参数的在线辨识,需要知道对象的结构模型,这增加了问题的复杂程度[3]。
本文提出的基于神经网络的PID控制器,不需要对系统模型进行辨识,通过在传统PID控制器上并联神经网络优化模块,两者共同作用,以达到控制的目的。
该方法易于实现,同时降低了问题的复杂度。
基于神经网络的PID控制器的控制分为离线学习和在线计算两个过程。
离线学习:对实验测得的系统输入和期望进行离线学习,训练结束后,得到网络成熟后的权值和阈值。
在线计算:将离线学习得到的权值和阈值赋给神经网络优化模块进行前向计算,得到PID控制器所需的比例、积分和微分三个参数。
基于忆阻神经网络pid控制器设计

基于忆阻神经网络pid控制器设计
忆阻神经网络(FRNN)是一种基于深度学习的智能控制方法。
它
采用神经网络的形式来完成PID控制任务,可用于控制复杂的设备和
过程。
FRNN PID 控制器是将忆阻神经网络结合PID控制方法的有效方法,具有较强的智能化能力和灵活性。
FRNN-PID 控制器以反馈控制的形式运行,可以采用两种控制方法:模糊控制和神经网络控制。
忆阻神经网络具有反馈阻尼环节,可
以结合PID参数调整,控制更加精确。
此外,FRNN-PID 控制器在控制
反馈循环中引入了模糊函数,可减少误差,增加控制精度,提高系统
响应时间。
FRNN-PID 控制器相对于传统的控制器具有很多优点,例如快速
响应和满足自适应调节的要求。
它的反馈机制可以长期跟踪系统响应,系统控制精度更高,调节器可以自适应调节。
FRNN-PID 控制器可以避
免起伏明显的不稳态运行状态,有效的解决噪声干扰的问题。
FRNN-PID 控制器是一种很好的选择,可以有效地提高系统控制
精度。
它综合了适当的参数设置和模糊算法,既可以获得更好的控制
性能,又能更好地应对复杂的外在条件。
由于其优越的性能,FRNN-
PID 控制器已经广泛应用于智能控制的各个领域。
神经网络PID毕业设计完整

KEY WORDS:main steam temperature,PID,BP neural network,MATLABsimulation
第一章绪论
1.1
在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。经典控制理论和现代控制理论的基础是建立数学模型,以此进行控制系统设计,然而面对工程实际问题和工程应用对控制要求的不断提高,基于数学模型的控制理论和方法的局限性日益明显。无模型控制能有效提高控制系统的适应性和鲁棒性,因此,走向无模型控制是自动控制发展的另一个重要方向。
图1-5 神经预测控制结构图
这种算法的基本特征是建立预测模型方便,采用滚动优化策略和采用模型误差反馈校正,预测模型根据系统的历史信息和选定的未来输入,预测系统未来的输出。 根据预测模型的输出,控制系统采用基于优化的控制策略对被控对象进行控制。
(6) 、其他先进的神经控制
模糊神经网络控制:模糊系统是以模糊集合论、模糊语言变量及模糊逻辑推理的知识为基础,力图在一个较高的层次上对人脑思维的模糊方式进行工程化的模拟。而神经网络则是建立在对人脑结构和功能的模拟与简化的基础上。由于人脑思维的容错能力源于思维方法上的模糊性以及大脑本身的结构特点,因此将两者综合运用便成为自动控制领域的一种自然趋势。模糊系统与神经网络主要采用以下综合方式,既将人工神经网络作为模糊系统中的隶属函数、模糊规则的描述形式[10]。
基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID控制系统是目前工业控制中广泛应用的一种基本控制方法,它通过测量控制系统的偏差来调节系统的输出,以实现对控制对象的稳定控制。
然而,传统的PID控制器需要事先对系统建模,并进行参数调整,工作效果受到控制对象模型的准确性和外部干扰的影响。
而BP神经网络具有非线性映射、自适应性强、鲁棒性好等优点,可以有效地克服传统PID控制器的缺点。
因此,基于BP神经网络的PID控制系统设计成为当前研究的热点之一二、基于BP神经网络的PID控制系统设计理论1.PID控制器设计原理PID控制器是由比例环节(Proportional)、积分环节(Integral)和微分环节(Derivative)组成的控制器,其输出信号可以表示为:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*(de(t)/dt),其中e(t)为控制系统的输入偏差,t为时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。
2.BP神经网络理论BP神经网络是一种前馈型神经网络,通过反向传播算法对输入信号进行学习和训练,从而得到最优的网络结构和参数。
BP神经网络由输入层、隐层和输出层组成,其中每个神经元与上、下相邻层之间的神经元互相连接,并具有非线性的激活函数。
3.基于BP神经网络的PID控制系统设计理论基于BP神经网络的PID控制系统设计的核心思想是将BP神经网络作为PID控制器的自适应调节器,根据控制对象的输入信号和输出信号之间的误差进行训练和学习,通过调整BP神经网络的权重和阈值来实现PID 控制器的参数调节,从而提高控制系统的稳定性和鲁棒性。
三、基于BP神经网络的PID控制系统设计步骤1.系统建模首先,需要对待控制对象进行建模,获取其数学模型。
对于一些复杂的非线性系统,可以采用黑箱建模的方法,利用系统的输入和输出数据进行数据拟合,获取系统的数学模型。
2.BP神经网络训练将系统的数学模型作为BP神经网络的训练集,通过反向传播算法对BP神经网络进行训练,得到最优的网络结构和参数。
基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。
下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。
一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。
在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。
二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。
2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。
3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。
4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。
5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。
6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。
7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。
8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。
9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。
10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。
三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。
2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。
3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。
基于BP_神经网络的PID_控制算法参数优化

- 22 -高 新 技 术从本质上来看,PID 控制算法就是对比例、积分和比例微分间的关系进行控制的一种算法。
PID 控制调节器具有适应性强、鲁棒性良好的特征,因此被广泛应用于工业控制领域。
但是,随着科学技术、控制理论发展,在工业生产中被控对象逐渐向复杂化和抽象化的趋势发展,并呈现滞后性、时变性和非线性的特征,这使传统PID 控制器难以精准调控这种较复杂的控制系统。
为了解决该问题,研究人员将控制理论与其他先进的算法相结合,形成全新的控制理论,包括神经网络控制、遗传算法以及模糊控制等。
对神经网络算法来说,由于其具有较高的鲁棒性和容错性,因此适用于复杂的非线性控制系统中,并且具有广阔的应用前景和较大的发展潜力。
1 BP 神经网络结构及算法BP 神经网络将网络视为一个连续域,在这个网络中,输入层和输出层都是任意时刻、任意数目的样本值,网络输出层值与输入层值间也可以具有任意关系,这个学习过程就称为BP 神经网络学习过程。
作为一种被广泛应用的神经网络模型,BP 神经网络由输入层、输出层和隐含层组成:1) 输入层。
从第i 个输入向量中产生相应的输出值。
2) 输出层。
在输出值的作用下将其转换为输入数据。
3) 隐含层。
在输出值的作用下对数据进行隐含处理,将处理后的结果反馈给输入层,3个输入层构成1个BP 神经网络。
当输入数据在时间域内经过多次的误差传播时,最后被一个误差源作为输出信号,即经过输入单元和输出组的中间信息。
如果该误差源的误差小于输出单元和输出组中各单元间的误差,那么这些单元在计算输出时就会有很大的变化;如果超过了期望值,那么这一单元被认为是输入量存在误差(也就是输入信号存在误差),将不再使用该单元;如果仍然超过期望值,那么输出量又会存在误差[1]。
通过分析输入与输出量间的关系可以得出BP 网络中各个隐藏层上节点数与该输出量间的关系。
BP 神经网络的拓扑结构如图1所示。
为了对BP 神经网络进行运算和优化,该文设定了中间层的加权和结点临界,以便将全部采样的真实输出量与预期的输出量的偏差控制在一个很低的区间,并且通过调节这个区间来保证它的稳定性。
基于RBF神经网络整定的PID控制器设计及仿真_毕业设计(论文)

华北电力大学毕业设计(论文)题目基于RBF神经网络整定的PID控制器设计及仿真基于RBF神经网络整定的PID控制器设计及仿真摘要目前,因为PID控制具有简单的控制结构,可通过调节比例积分和微分取得基本满意的控制性能,在实际应用中又较易于整定,所以广泛应用于过程控制和运动控制中,尤其在可建立精确模型的确定性控制系统中应用比较多。
然而随着现代工业过程的日益复杂,对控制要求的逐步增高(如稳定性、准确性、快速性等),经典控制理论面临着严重的挑战。
对工业控制领域中非线性系统,采用传统PID 控制不能获得满意的控制效果。
采用基于梯度下降算法优化RBF神经网络,它将神经网络和PID控制技术融为一体,既具有常规PID控制器结构简单、物理意义明确的优点,同时又具有神经网络自学习、自适应的功能。
因此,本文通过对RBF神经网络的结构和计算方法的学习,设计一个基于RBF神经网络整定的PID控制器,构建其模型,进而编写M语言程序。
运用MATLAB软件对所设计的RBF神经网络整定的PID控制算法进行仿真研究。
然后再进一步通过仿真实验数据,研究本控制系统的稳定性,鲁棒性,抗干扰能力等。
关键词:PID;RBF神经网络;参数整定SETTING OF THE PID CONTROLLER BASED ON RBF NEURAL NETWORK DESIGN AND SIMULATIONAbstractAt present, because the PID control has a simple control structure, through adjusting the proportional integral and differential gain basic satisfactory control performance, and is relatively easy to setting in practical application, so widely used in process control and motion control, especially in the accurate model can be built more deterministic control system application. With the increasingly complex of the modern industrial process, however, increased step by step to control requirements (e.g., stability, accuracy and quickness, etc.), classical control theory is faced with severe challenges. Non-linear systems in industrial control field, using the traditional PID control can not obtain satisfactory control effect. Optimized RBF neural network based on gradient descent algorithm, it will be integrated neural network and PID control technology, with a conventional PID controller has simple structure, physical meaning is clear advantages, at the same time with neural network self-learning, adaptive function. Therefore, this article through to the RBF neural network structure and the calculation method of learning, to design a setting of the PID controller based on RBF neural network, constructs its model, and then write M language program. Using the MATLAB software to design the RBF neural network setting of PID control algorithm simulation research. Data and then further through simulation experiment, the control system stability, robustness, anti-interference ability, etc.Keywords: PID; RBF neural network; Parameter setting目录摘要 (Ⅰ)Abstract (Ⅱ)1 绪论 (1)1.1 课题研究背景及意义 (1)1.2神经网络的发展历史 (3)2 神经网络 (6)2.1神经网络的基本概念和特点 (6)2.2人工神经网络构成的基本原理 (7)2.3神经网络的结构 (8)2.3.1前馈网络 (8)2.3.2 反馈网络 (8)2.4神经网络的学习方式 (9)2.4.1监督学习(有教师学习) (9)2.4.2非监督学习(无教师学习) (9)2.4.3再励学习(强化学习) (9)2.5 RBF神经网络 (10)2.5.1 RBF神经网络的发展简史 (10)2.5.2 RBF的数学模型 (10)2.5.3被控对象Jacobian信息的辨识算法 (11)2.5.4 RBF神经网络的学习算法 (12)2.6 本章小结 (14)3 PID控制器 (14)3.1 PID控制器简介 (14)3.2 经典PID控制原理 (14)3.3 现有PID控制器参数整定方法 (16)3.4 PID控制的局限 (17)3.5本章小结 (17)4 基于RBF神经网络整定的PID控制器设计 (17)4.1 RBF神经网络的PID整定原理 (17)4.2 神经网络PID控制器的设计 (18)4.3 本章小结 (19)5 仿真分析 (19)5.1 系统的稳定性分析 (19)5.2 系统抗干扰能力分析 (21)5.3 系统鲁棒性分析 (22)5.4 本章小结 (24)结论 (25)参考文献 (26)致谢 (27)附录仿真程序 (28)1 绪论1.1 课题研究背景及意义PID控制器(按比例、积分和微分进行控制的调节器)是最早发展起来的应用经典控制理论的控制策略之一,是工业过程控制中应用最广泛,历史最悠久,生命力最强的控制方式,在目前的工业生产中,90%以上的控制器为PID控制器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于神经网络的PID控制器设计摘要本文以提高控制器的控制效果为目标,将神经网络与PID控制相结合,分别对单变量系统和多变量系统的神经网络结构的PID控制进行了深入研究和探索。
对单变量系统,将预测控制的思想和神经网络PID控制的思想结合起来,用多步预测性能指标函数去训练神经网络把纬d器的权值,就构成了多步预测性能指标函数下的神经网络PID控制系统:本文对此系统进行了改进,引入了新的多步预测性能指标函数,同时对神经网络辨识器部分,采用了更适合于实时控制的动态递归神经网络来代替原方案中的多层前向网络对其辨识。
仿真结果表明此改进方法比原方法及带辨识器的神经网络PID控制方法具有更好的响应性能。
对多变量系统,首先研究了基于多步预测性能指标函数下多变量系统的神经网络PID控制,并给出仿真实例及结论;接着研究了PID神经元网络多变量控制器的结构和计算方法:它是由并列的多个子网络组成,当控制系统有n个被控变量,子网络就有n个。
每个子网络的输入层接受系统的给定信号和对象的输出信号;隐含层由比例元、积分元、微分元组成,实现PID运算;输出层实现规律的综合:为加快权值调整速度对输出层权值采用最小二乘法进行调整,代替原方案中的梯度法,仿真结果表明此系统具有良好的自学习和自适应解祸性能。
关键词: 神经元网络 PID控制多步预测性能指标函数动态递归神经网络单变量系统多变量系统The PID Controller Was Based On Neural NetworkDesignABSTRACTIn order to enhance the performance of the controller, this paper combined the neural network and PID control, and deeply studied the neural network Pm controller based on single-variable and mufti-variable system.For single-variable system, the neural network PID controller based mufti-step predictive performance target function combined the predictive control idea and the neural network PID control idea. It uses multi-step predictive performance target function to train the weights of neural network PID controller, This paper improved the system: It uses new mufti-step predictive performance target function to train the weights, and it uses the dynamic recursion neural network instead of multiplayer feed forward neural network that is furthermore fit for real-time control to identify the part of neural network identification. The simulating results shows that this method has better response performance than the neural network PID control method with identificationFor mufti-variable systems, at first, This paper studied the neural networks PID controller based mufti-variable systems using mufti-step predictive performance target function, After studying the system's simulating instances, I got the results; Then this paper studied the structure and arithmetic of the PID neural network multivariable controller. It is made up of paratactic mufti-sub-network, if there are n controlled variables in controlling system, the sub-networks then will have n too. The input layer of each sub-network accepted the present signal of the system and the output signal of controlled object; The hidden layer that is made up of proportion, integral and differential three parts realizes PID operation; The output layer realizes the integration of the rules; and its output layer's weights were adjusted using the least mean squares in stead of grads arithmetic in order to quicken the regulative speed of the weights, the results show that the system has much higher performance of self-studying and self-adapting.Keywords: Neural network PID Control Multi-step predictive performance target function Dynamic recursion neural network Single-variable system Multivariable system目录第一章引言 (1)1.1 课题背景及研究意义 (1)1.2 课题当今的研究现状 (1)1.3 本文的结构组成 (2)第二章 PID控制器的基本原理 (3)2.1 PID控制器 (3)2.1.1 PID原理 (3)2.1.2 PID各参数的作用 (4)2.2 数字PID控制 (4)2.2.1 控制器的组成 (5)2.2.2 典型的PID控制器 (5)2.3 PID参数整定 (5)2.4 小结 (6)第三章神经网络的基本原理 (6)3.1 神经网络的模型结构 (7)3.2 几种典型的学习规则 (8)3.2.1 无监督的Hebb学习规则 (9)3.2.2 有监督的Delta学习规则 (9)3.3 几种典型的神经网络 (9)3.3.1 BP神经网络 (9)3.3.2 RBF 神经网络 (12)3.3.3 CMAC 神经网络 (14)3.4 小结 (16)第四章神经网络PID控制基本原理以及应用 (16)4.1 基于BP神经网络的PID控制 (17)4.1.1 BP神经网络整定原理 (17)4.1.2 MATLAB的背景和发展 (21)4.1.3 MATLAB的工作环境 (22)4.1.4 常规PID控制系统 (23)4.1.5 基于BP神经网络的PID控制系统 (24)4.2 RBF神经网络和CMAC神经网络PID控制 (30)4.2.1 RBF神经网络PID控制 (30)4.2.2 CMAC神经网络PID控制 (31)4.3小结 (31)第五章绪论 (32)参考文献 (33)致谢 (34)第一章引言1.1 课题背景及研究意义目前工业自动化水平已经成为了各行各业现代化水平的一个重要标志,而自动化的核心理论是控制理论。
因此如何得到一种更为优越的控制方法称为了工业过程控制一个重要的问题。
PID控制器是一种经典的控制方法,其结构简单,抗干扰能力强,自适应能力强,成为了控制领域一个重要的控制手段。
它是工业过程控制最常见的控制器,从标准的单回路控制到包含数千个PID控制器组成的离散控制系统,PID技术的应用领域非常之广泛。
根据某项资料显示,目前全世界范围内有几乎超过90%的控制系统都在使用PID。
随着工业过程控制的发展,PID技术非但没有过时,反而越来越多的应用于控制领域。
参数整定是PID控制的核心内容,该过程相对来说比较复杂,随着计算机技术的发展,越来越多的参数整定方法被提出来。
PID参数整定方法主要有两种:理论方法和工程整定方法。
前者主要是利用系统的数学模型,经过理论计算确定控制器的各个参数。
后者主要依赖于工程经验,通过大量的实验总结得到控制器的控制规律。
主要包括临界比例法,继电反馈法以及z-N经验法。
智能控制是一类无需人的干预就能够独立运行的驱动智能机器实现其目标的自动控制。
目前的智能控制技术包括:神经网络技术、模糊控制技术、遗传算法技术、专家整定控制技术、基于规则的仿人智能控制技术,该控制技术已进入工程化和实用化的时代,并已有商品出售。
将智能控制技术和常规PID控制相结合,形成智能PID控制,它不依赖于系统的数学模型,可以实现PID参数的在线自整定。
因次越来越多的应用于PID控制系统的设计中。
当今,工程师在设计和建立控制系统的时一候,他们总希望使用比较少的设备来实现更多的功能。
他们需要的控制算法不仅仅能够处理数字1/0和运动,而月还要集成用于自动化监控和测试的视觉功能和模块化仪器,同时还能实时的控制算法和处理任务,对于这些复杂的应用,单靠PC或者PLC是很难全面的解决问题的,必须希望拥有PC的功能和PLC的可靠性二者结合的功能,这就是新型的可编程自动控制器PAC(Programmable Automation Controller)。
它结合了PC和PLC的优势,提供了一个通用的开发平台和一些高级功能,被越来越多的应用于工业控制中。