神经网络pid本科学位论文
本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。
可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。
要对温度进行控制,有很多方案可选。
PID 控制简单且容易实现,在大多数情况下能满足性能要求。
模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。
研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。
本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。
仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。
由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。
参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。
因此本论文最终确定采用参数模糊自整定PID 控制方案。
本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。
关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。
神经网络PID控制器的设计与仿真

*******大学毕业设计(论文) 题目神经网络PID控制器的设计与仿真院系专业班级学生姓名指导教师二○○八年六月神经网络PID控制器的设计与仿真摘要PID控制技术是一种应用很普遍的控制技术,目前在很多方面都有广泛的应用. 在工业控制中,PID控制是工业控制中最常用的方法。
这是因为PID控制器结构简单、实现简单,控制效果良好,已得到广泛应用。
据统计,在目前的控制系统中,PID控制占了绝大多数。
但是,他具有一定的局限性:当控制对象不同时,控制器的参数难以自动调整以适应外界环境的变化。
为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。
利用人工神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。
本论文讨论了基于神经网络的PID 控制,利用神经网络的自学习能力进行在线参数整定,并利用Matlab软件进行仿真。
通过仿真实现可以看出它具有自学习、自适应性等特点,网络的收敛速度快,能够对非线性对象有很好的控制,系统的跟踪性能很好.其参数设定无需知道被控对象的具体参数及其数学模型,对不同的对象具有适应性.关键词:PID控制神经网络Matlab 仿真The design and simulation of the neural networkPID controllerABSTRACTPID control technology is a very common control technology in many aspects of a wide range of applications. In industrial control, PID control is the most commonly used in industrial control methods. This is because the PID controller simple structure, to achieve a simple, effective control, has been widely used. According to statistics, PID control is the vast majority in the present control system. However, he has certain limitations: When the control object is not at the same time, the controller parameters to automatically adjust to the changes in the external environment. In order to make the controller has good adaptability, and Controller Parameters of automatic adjustments can be used neural network control method. Using artificial neural network learning oneself, combined with the traditional PID control theory Structure of neural networks PID controller, and implementate the automatic adjustment of controller parameters. The thesis discussed according to the neural network PID controller,and control,make use of the neural network from the study ability to proceed its function to on-line parameter amend,and make use ofthe Matlab software proceeds to imitatereally.By the simulation can see that it is to achieve self-learning, adaptability, and other characteristics ,network convergence speed, can have a good control on non-linear object ,and tracking of system performance very good. Its parameters need to know the object of the specific parameters and its mathematical model,and adapt different objects.KEY WORDS:PID control Neural network Matlab Simulation目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 前言 (1)1.2 神经元网络PID的发展历程 (1)1.3 神经网络的特点 (2)1.4 神经网络的主要研究方向 (2)1.5 神经网络PID的发展现状和前景展望 (3)1.6 课题研究方法和内容 (3)2 神经网络控制理论 (4)2.1 神经网络的简介 (4)2.2 神经网络的基本概念 (4)2.3 神经网络控制的基本原理 (4)2.4 神经网络结构的分类 (5)2.5 神经网络的学习 (6)2.5.1 学习方式 (6)2.5.2 网络模型及其学习算法 (6)2.6 神经网络的训练 (7)3 应用MATLAB设计神经网络PID控制系统 (8)3.1 MATLAB、SIMULINK、神经网络工具箱简介 (8)3.2 神经网络工具箱与人工神经元网络设计 (9)3.3 PID控制器 (10)3.3.1 PID控制器简介 (10)3.3.2 PID控制的局限 (12)3.4 神经网络 PID 控制器的设计 (12)4 神经网络PID控制器的设计 (14)4.1 单神经元自适应PID控制器及其学习算法 (14)4.1.1 采用有监督Hebb学习算法的单神经元自适应PID控制器 (14)4.1.2 单神经元自适应PID控制器学习算法可调参数的选取规律 (16)4.1.3 单神经元自适应PID仿真 (16)4.2 基于BP神经网络PID控制器的设计 (18)4.3 小结 (21)5 结束语 (22)参考文献 (23)致谢 (24)1 绪论1.1 前言计算机技术的迅速发展,为计算机控制的发展和应用奠定了坚实的基础,过程计算机控制以自动控制理论和计算机技术为基础,实现了现代化生产过程的综合自动化,可使生产过程保持最佳运行状态,从而提高安全性、经济性和运行水平。
基于遗传算法的PID参数优化毕业设计(论文)

本科生毕业设计(论文)论文题目:基于遗传算法的PID参数优化毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
神经网络优化PID参数论文

辽宁科技大学本科生毕业设计(论文)第Ⅰ页单神经元自适应PID控制器设计摘要在控制理论和技术飞跃发展的今天,PID控制由于其结构简单、稳定性能好可靠性高等优点而被广泛应用。
然而在实际的工业过程中,许多被控过程机理复杂,具有高度非线性。
这就要求在PID控制中,不仅PID参数的整定不依赖于对象数学模型,并且PID参数能在线调整,以满足实时控制的要求。
单神经元自适应PID控制将是解决这一问题的有效途径。
利用神经网络具有自学习、自组织、联想记忆和并行处理等功能和对于复杂系统控制可以达到满意效果的优势,提出了具有自学习和自适应能力的单神经元来构成单神经元自适应PID控制器的策略。
这种神经元构成的控制器不仅结构简单,且能适应环境变化,有较强的鲁棒性。
使自适应PID控制达到最优。
其仿真结果表明:该控制器与典型的PID控制器相比,系统输出能够很好地跟踪参考模型的输出显著提高了系统的动态响应性能。
关键词:自适应;PID控制;神经元Single Neuron Adaptive PID Controller DesignAbstractIn the rapid development of control theory and technology nowaday, PID control has been widely used because of its simple structure, stable performance and high reliability. However, in actual industrial processes, many complex mechanism controlled process has highly nonlinear.This requires the PID control, PID parameter setting not only do not rely on mathematical models, and the PID parameters can be adjusted on line to meet the requirements of real-time control. Single neuron adaptive PID control will be an effective way to solve this problem. Using neural network self-learning, self-organization, associative memory and parallel processing features and control of complex systems can achieve satisfactory results, this paper proposed a self-learning and adaptive capacity of single neurons to form the single neuron adaptive PID control strategy. These neurons constitute the controller not only simple in structure, and can adapt to environmental changes, have stronger robustness. Adaptive PID control to optimal. The simulation results show that the controller, compared with the typical PID controller, the system output can track the reference model very well, the output of the system significantly improved dynamic response.Keywords: adaptive, PID control, neurons目录摘要 (I)ABSTRACT ...................................................................................................................................... I I 1绪论 . (1)1.1自适应控制介绍 (1)1.2自适应控制系统的分类 (2)1.3自适应控制的理论 (4)2 PID控制 (7)2.1PID控制器 (7)2.2PID控制器的参数整定 (8)2.3自适应PID控制 (9)3 神经网络控制的发展与应用 (10)3.1传统控制理论的局限性 (10)3.2神经网络控制的发展与现状 (11)3.3人工神经网络与自动控制 (13)3.4单神经元模型 (13)3.5人工神经元的数学模型 (15)3.6激活函数 (16)3.7神经网络学习规则 (17)4单神经元自适应PID控制器的设计 (19)4.1单神经元自适应PID控制器 (19)4.2改进的单神经元自适应PID控制器 (20)4.3转换器的实现 (20)4.4常规PID控制器与单神经元自适应PID控制器仿真比较 (21)4.5单神经元自适应PID控制器学习规则可调参数的选取 (23)结论 (24)致谢 (25)参考文献 (26)附录A (27)附录B (28)1绪论1.1 自适应控制介绍70年代以来,由于空间技术和过程控制发展的需要,特别是在微电子和计算机技术的推动下,自适应发展很快[1]。
基于神经网络的模糊PID控制器设计与实现

基于神经网络的模糊PID控制器设计与实现随着科技的不断发展,控制技术在工业自动化中的应用越来越广泛。
PID控制器因其简单易懂、易实现的特点而被广泛使用,但是传统的PID控制器在某些场合下会出现失效的情况。
为了解决这一问题,研究者们开始着手开发基于神经网络的模糊PID控制器。
本文将介绍基于神经网络的模糊PID控制器的设计与实现。
一、控制器介绍基于神经网络的模糊PID控制器是一种新型的控制器,它将模糊控制的优点与神经网络的处理能力相结合,形成了一种高效的自适应控制器。
该控制器利用神经网络的学习算法实现自适应参数的调节,将模糊控制中的模糊规则与神经网络的处理能力相结合,形成一种新的控制方法。
该控制器的核心思想是利用神经网络对系统进行建模,通过学习算法自适应地调节系统参数,从而实现对系统的控制。
其中,模糊控制器用于对输出进行模糊处理,神经网络用于对输入和输出进行处理,从而实现对系统的控制。
二、控制器设计基于神经网络的模糊PID控制器的设计需要以下几个步骤:1.系统建模系统建模是设计基于神经网络的模糊PID控制器的第一步。
系统建模的目的是构建系统的数学模型,以便于后续的设计过程。
在建模过程中,需要考虑系统的类型、运动方程、非线性因素等因素。
2.控制器设计控制器的设计是基于神经网络的模糊PID控制器设计的核心。
控制器的设计包括神经网络的结构设计、神经网络权值的选择、模糊控制的设计等。
3.参数调节参数调节是控制器设计的重要环节。
由于系统的运动方程等因素的影响,不同系统的参数可能不同。
因此,在实际应用中需要根据实际情况对控制器进行参数调节。
三、控制器实现基于神经网络的模糊PID控制器的实现需要以下步骤:1.数据采集数据采集是基于神经网络的模糊PID控制器实现的第一步。
数据采集的目的是获取系统的输入输出,以便为神经网络提供数据。
2.神经网络训练神经网络训练是实现控制器的关键步骤。
在训练过程中,通过对神经网络进行学习,让它逐渐对系统的输入输出进行建模。
神经网络PID控制器的设计与仿真

*******大学毕业设计(论文) 题目神经网络PID控制器的设计与仿真院系专业班级学生指导教师二○○八年六月神经网络PID控制器的设计与仿真摘要PID控制技术是一种应用很普遍的控制技术,目前在很多方面都有广泛的应用. 在工业控制中,PID控制是工业控制中最常用的方法。
这是因为PID控制器结构简单、实现简单,控制效果良好,已得到广泛应用。
据统计,在目前的控制系统中,PID控制占了绝大多数。
但是,他具有一定的局限性:当控制对象不同时,控制器的参数难以自动调整以适应外界环境的变化。
为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。
利用人工神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。
本论文讨论了基于神经网络的PID控制,利用神经网络的自学习能力进行在线参数整定,并利用Matlab软件进行仿真。
通过仿真实现可以看出它具有自学习、自适应性等特点,网络的收敛速度快,能够对非线性对象有很好的控制,系统的跟踪性能很好.其参数设定无需知道被控对象的具体参数及其数学模型,对不同的对象具有适应性.关键词:PID控制神经网络Matlab 仿真The design and simulation of the neural network PID controllerABSTRACTPID control technology is a very common control technology in many aspects of a wide range of applications. In industrial control, PID control is the most commonly used in industrial control methods. This is because the PID controller simple structure, to achieve a simple, effective control, has been widely used. According to statistics, PID control is the vast majority in the present control system. However, he has certain limitations: When the control object is not at the same time, the controller parameters to automatically adjust to the changes in the external environment. In order to make the controller has good adaptability, and Controller Parameters of automatic adjustments can be used neural network control method. Using artificial neural network learning oneself, combined with the traditional PID control theory Structure of neural networks PID controller, and implementate the automatic adjustment of controller parameters. The thesis discussed according to the neural network PID controller,and control,make use of the neural network from the study ability to proceed its function to on-line parameter amend,and make use ofthe Matlab software proceeds to imitatereally.By the simulation can see that it is to achieve self-learning, adaptability, and other characteristics ,network convergence speed, can have a good control on non-linear object ,and tracking of system performance very good. Its parameters need to know the object of the specific parameters and itsmathematical model,and adapt different objects.KEY WORDS:PID control Neural network Matlab Simulation目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 前言 (1)1.2 神经元网络PID的发展历程 (1)1.3 神经网络的特点 (2)1.4 神经网络的主要研究方向 (2)1.5 神经网络PID的发展现状和前景展望 (3)1.6 课题研究方法和容 (3)2 神经网络控制理论 (4)2.1 神经网络的简介 (4)2.2 神经网络的基本概念 (4)2.3 神经网络控制的基本原理 (4)2.4 神经网络结构的分类 (5)2.5 神经网络的学习 (6)2.5.1 学习方式 (6)2.5.2 网络模型及其学习算法 (6)2.6 神经网络的训练 (7)3 应用MATLAB设计神经网络PID控制系统 (8)3.1 MATLAB、SIMULINK、神经网络工具箱简介 (8)3.2 神经网络工具箱与人工神经元网络设计 (9)3.3 PID控制器 (10)3.3.1 PID控制器简介 (10)3.3.2 PID控制的局限 (12)3.4 神经网络PID 控制器的设计 (12)4 神经网络PID控制器的设计 (14)4.1 单神经元自适应PID控制器及其学习算法 (14)4.1.1 采用有监督Hebb学习算法的单神经元自适应PID控制器 (15)4.1.2 单神经元自适应PID控制器学习算法可调参数的选取规律 (16)4.1.3 单神经元自适应PID仿真 (17)4.2 基于BP神经网络PID控制器的设计 (19)4.3 小结 (23)5 结束语 (23)参考文献 (24)致谢 (25)1 绪论1.1 前言计算机技术的迅速发展,为计算机控制的发展和应用奠定了坚实的基础,过程计算机控制以自动控制理论和计算机技术为基础,实现了现代化生产过程的综合自动化,可使生产过程保持最佳运行状态,从而提高安全性、经济性和运行水平。
基于BP神经网络的PID控制器的研究与实现

第十六届电工理论学术研讨会论文集基于BP神经网络的PID控制器的研究与实现张建国.(漳州职业技术学院电于工程系福建漳州363000)摘要:本文介绍基于BP神经网络的PID控制器的实现方法,可以在一定程度上解决传统PID调节器不易在线实时整定参数、难于对一些复杂过程和参数幔时变系统进行有效控制等问题。
一r一关键词:PID控制;神经网络;研究O引言PID控制要取得好的控制效果,必须寻找比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,要在变化无穷的非线性组合中找出最佳的关系并非易事。
为此,本文试图利用神经网络所具有的:①能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某种被控对象的模型或控制器模型;②能够学习和适应不确定性系统的动态特性;⑨所有定量或定性的信息都分布储存于网络内的各神经单元,从而具有很强的容错性和鲁棒性;④采用信息的分布式并行处理,可以进行快速大量运算等特点,把神经网络引入传统的PID控制,可以在一定程度上解决传统PID调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制等问题。
1基于BP神经网络的PID控制器BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。
通过神经网络自身的学习,可以找到某一最优控制律下的P、I、D参数。
基于BP神经网络的PID控制系统结构如图1所示。
控制器由两个部分组成:①经典的PID控制器:直接对被控对象过程闭环控制,并且三个参数KP、KI、KD为在线整定式;②神经网络NN:根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化。
即使输出层神经元的输出状态对应于PID控制器的三个可调参数KP、KI、KD,通过神经网络的自身学习,加权系数调接,从而使其稳定状态对应于最优控制律下的PID控制器参数。
经典增量式数字PID的控制算式为u(k)=-u(k-1)+KP[e(k)-e(k-1)】+kIc(k)+kDEe(k)-2e(k-1.)+e(k.2)】(1)式中KP、KI、Kd一比例、积分、微分系数。
基于RBF神经网络整定的PID控制器设计及仿真_毕业设计(论文)

华北电力大学毕业设计(论文)题目基于RBF神经网络整定的PID控制器设计及仿真基于RBF神经网络整定的PID控制器设计及仿真摘要目前,因为PID控制具有简单的控制结构,可通过调节比例积分和微分取得基本满意的控制性能,在实际应用中又较易于整定,所以广泛应用于过程控制和运动控制中,尤其在可建立精确模型的确定性控制系统中应用比较多。
然而随着现代工业过程的日益复杂,对控制要求的逐步增高(如稳定性、准确性、快速性等),经典控制理论面临着严重的挑战。
对工业控制领域中非线性系统,采用传统PID 控制不能获得满意的控制效果。
采用基于梯度下降算法优化RBF神经网络,它将神经网络和PID控制技术融为一体,既具有常规PID控制器结构简单、物理意义明确的优点,同时又具有神经网络自学习、自适应的功能。
因此,本文通过对RBF神经网络的结构和计算方法的学习,设计一个基于RBF神经网络整定的PID控制器,构建其模型,进而编写M语言程序。
运用MATLAB软件对所设计的RBF神经网络整定的PID控制算法进行仿真研究。
然后再进一步通过仿真实验数据,研究本控制系统的稳定性,鲁棒性,抗干扰能力等。
关键词:PID;RBF神经网络;参数整定SETTING OF THE PID CONTROLLER BASED ON RBF NEURAL NETWORK DESIGN AND SIMULATIONAbstractAt present, because the PID control has a simple control structure, through adjusting the proportional integral and differential gain basic satisfactory control performance, and is relatively easy to setting in practical application, so widely used in process control and motion control, especially in the accurate model can be built more deterministic control system application. With the increasingly complex of the modern industrial process, however, increased step by step to control requirements (e.g., stability, accuracy and quickness, etc.), classical control theory is faced with severe challenges. Non-linear systems in industrial control field, using the traditional PID control can not obtain satisfactory control effect. Optimized RBF neural network based on gradient descent algorithm, it will be integrated neural network and PID control technology, with a conventional PID controller has simple structure, physical meaning is clear advantages, at the same time with neural network self-learning, adaptive function. Therefore, this article through to the RBF neural network structure and the calculation method of learning, to design a setting of the PID controller based on RBF neural network, constructs its model, and then write M language program. Using the MATLAB software to design the RBF neural network setting of PID control algorithm simulation research. Data and then further through simulation experiment, the control system stability, robustness, anti-interference ability, etc.Keywords: PID; RBF neural network; Parameter setting目录摘要 (Ⅰ)Abstract (Ⅱ)1 绪论 (1)1.1 课题研究背景及意义 (1)1.2神经网络的发展历史 (3)2 神经网络 (6)2.1神经网络的基本概念和特点 (6)2.2人工神经网络构成的基本原理 (7)2.3神经网络的结构 (8)2.3.1前馈网络 (8)2.3.2 反馈网络 (8)2.4神经网络的学习方式 (9)2.4.1监督学习(有教师学习) (9)2.4.2非监督学习(无教师学习) (9)2.4.3再励学习(强化学习) (9)2.5 RBF神经网络 (10)2.5.1 RBF神经网络的发展简史 (10)2.5.2 RBF的数学模型 (10)2.5.3被控对象Jacobian信息的辨识算法 (11)2.5.4 RBF神经网络的学习算法 (12)2.6 本章小结 (14)3 PID控制器 (14)3.1 PID控制器简介 (14)3.2 经典PID控制原理 (14)3.3 现有PID控制器参数整定方法 (16)3.4 PID控制的局限 (17)3.5本章小结 (17)4 基于RBF神经网络整定的PID控制器设计 (17)4.1 RBF神经网络的PID整定原理 (17)4.2 神经网络PID控制器的设计 (18)4.3 本章小结 (19)5 仿真分析 (19)5.1 系统的稳定性分析 (19)5.2 系统抗干扰能力分析 (21)5.3 系统鲁棒性分析 (22)5.4 本章小结 (24)结论 (25)参考文献 (26)致谢 (27)附录仿真程序 (28)1 绪论1.1 课题研究背景及意义PID控制器(按比例、积分和微分进行控制的调节器)是最早发展起来的应用经典控制理论的控制策略之一,是工业过程控制中应用最广泛,历史最悠久,生命力最强的控制方式,在目前的工业生产中,90%以上的控制器为PID控制器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABSTRACT
At present, because PID has a simple structureand can be adjusted proportional integral and differential to satisfactory control performance,,it iswidely used in power plants of various control process.The system ofPower plant main steam temperature is anlarge inertia、bigtime-delayedand nonlinear dynamic system.Conventional steam temperature control system adopted cascade PID control or thedifferential control of lead before,when the unit is stable, general will allow the steam temperature control in the range,but when operating conditions changed greatly,itisdifficult to ensurethequality of control.This articlestudiesPID controlbased BP neural ing such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters online auto-tuning.Itcan make full use of the advantages of PID and neural network.Here,weuse amultilayer feedforwardneural networkusing back propagation algorithmandbased on control requirements.This net canreal-time output Kp, Ki, KdasthePID controller parameters,insteadingof the traditional PID parameters determined by experience.So it can obtain good control performance.For such a system,we can simulatein MATLAB simulation platform.The simulation results show that thePID control basedBP neural network has good adaptive ability and self-learning ability.For the system of large delay and free-model can obtain good control effect.
KEY WORDS:main steam temperature,PID,BP neural network,MATLABsimulation
第一章绪论பைடு நூலகம்
1.1
在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。经典控制理论和现代控制理论的基础是建立数学模型,以此进行控制系统设计,然而面对工程实际问题和工程应用对控制要求的不断提高,基于数学模型的控制理论和方法的局限性日益明显。无模型控制能有效提高控制系统的适应性和鲁棒性,因此,走向无模型控制是自动控制发展的另一个重要方向。
在1943年,麦卡洛克和皮茨首次提出了脑模型,其最初动机在于模仿生物的神经系统。随着超大规模集成电路(VLSl)、光电子学和计算机技术的发展,人工神经网络(ANN)己引起更为广泛的注意。近年来,基于神经元控制的理论和机理已获得进一步的开发和应用。尽管基于神经元的控制能力还比较有限,但由于神经网络控制器具有学习能力和记忆能力、概括能力、并行处理能力、容错能力等重要特性,仍然有许多基于ANN的控制器被设计出来,这类控制器具有并行处理、执行速度快、鲁棒性好、自适应性强和适于应用等优点,广泛的应用在控制领域[1]。
神经网络控制是一种基本上不依赖于模型的控制方法,它比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习功能,它是智能控制的一个重要分支。对于自动控制来说,神经网络有具有自适应功能,泛化功能,非线性映射功,高度并行处理功能等几方面优势〔2〕,这使得神经网络成为当今一个非常热门的交叉学科, 广泛应用在电力,化工,机械等各行各业,并取得了比较好的控制效果。
摘要
目前,由于PID具有结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。电厂主汽温的被控对象是一个大惯性大迟延非线性且对象变化的系统。常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的范围内。但当运行工况发生较大变化时,却很难保证控制品质。因此本文研究BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。本处用一个多层前向神经网络,采用反向传播算法依据控制要求实时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。对这样一个系统在MATLAB平台上进行仿真研究,,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。