基于神经网络的PID控制

合集下载

神经网络PID控制

神经网络PID控制
一十
NNI


x₁(k)=e(k)x₂(k)=△e(k)=e(k)-e(k-1)x₃(k)=△²e(k)=e(k)-2e (k-1)+e(k-2)e(k)=r(k)-y(k)NNC 的输出为:△u(k)=k₁x₁(k)+k₂x₂(k)+k₃x₃(k)式中,}i=1,2,3 为权系数,△u(k) 为输入信号的加权和。由此可见,NNC 具有增量D 控制的结构
i=1,2,…,Q-1
BP网络的输入层节点的输为
网络的隐含层输入、输为
·神经网络PID控制 20
o(k)=1
(13)
(14)
式中o 为输出层权系数 阈值,
网络的输出层的输入输出为
·神经网络PID控制 21
图二 神经网络PID控制系统结构图
·神经网络PID控制 17
二、方案二
被控对象
u

经典PID控制算式为u(k)=u(k-1)+Kp[e(k)-e(k-1)]+K,e(k)+K,[e(k)-2e(k-1) + e(k-2)1
7.由(20)式,计算修正输出层敝系数。(k);8.由(21)式,计算修正隐含层敝系数。)(k);9.置k=k+1, 返回到“3”,直到性能指标J 满足要求。
·神经网络PID控制 26
系数a(k)是慢时变的,a(k)=1.2(1-0.8e -01k),神经网络结构为4—5—3,输入层的个神经元分别为模型翰入r(k)、 输 出(k)、误 差(k)和常量。学习速率=0.25,动量系数=0.05,加权系数初始值取随[=0.50.5]上的随机数。当输入信号为幅值是的正弦信号(t)sin(2πt)时,取采样时间为.001s,仿真结果如图所示。·神经网络PID控制 27

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID(Proportional-Integral-Derivative)控制器是一种常用的自动控制器,其通过测量系统的输出偏差,根据比例、积分和微分三个因素来控制系统的输出。

然而,传统的PID控制器难以适应复杂、非线性和时变的系统,对于这类系统的控制,神经网络已经被证明是一种有效的方法。

本文将介绍基于BP神经网络的PID控制系统设计。

二、BP神经网络简介BP神经网络(Backpropagation Neural Network)是一种常用的前向反馈型人工神经网络,其通过反向传播算法来训练网络参数,从而实现对输入数据的学习和预测。

BP神经网络拥有多层神经元,每个神经元都与下一层神经元相连,并通过权重和阈值来传递和处理输入信息。

三、PID控制器简介PID控制器由比例(Proportional)、积分(Integral)和微分(Derivative)三个部分组成,其控制输出的公式为:u(t) = Kp * e(t) + Ki * ∑e(t)dt + Kd * de(t)/dt其中,u(t)为控制器的输出,Kp、Ki、Kd为控制器的三个参数,e(t)为系统的输出偏差,∑e(t)dt为偏差的积分项,de(t)/dt为偏差的微分项。

1.数据采集和预处理:首先需要采集系统的输入和输出数据,并对其进行预处理,包括数据归一化和滤波处理等。

2.神经网络设计和训练:根据系统的输入和输出数据,设计BP神经网络的结构,并使用反向传播算法来训练网络参数。

在训练过程中,根据系统的输出偏差来调整比例、积分和微分三个参数。

3.PID控制器实现:根据训练得到的神经网络参数,实现PID控制器的功能。

在每个控制周期内,根据系统的输出偏差来计算PID控制器的输出,将其作为控制信号发送给被控制系统。

4.参数调优和性能评估:根据控制系统的实际情况,对PID控制器的参数进行调优,以提高系统的控制性能。

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计PID控制器是一种常用的控制器,可以通过根据系统的误差、历史误差和误差的变化率来计算控制信号,从而实现对系统的控制。

传统的PID控制器可以通过调节PID参数来实现对系统动态特性的控制,但是参数调节过程往往需要经验和反复试验,而且很难实现对非线性系统的精确控制。

近年来,基于BP神经网络的PID控制器设计方法得到了广泛的关注。

BP神经网络是一种常用的人工神经网络模型,可以通过训练得到输入与输出之间的映射关系。

在PID控制器设计中,可以将误差、历史误差和误差的变化率作为BP神经网络的输入,将控制信号作为输出,通过训练神经网络来实现对控制信号的合理生成。

1.数据预处理:首先需要采集系统的输入输出数据,包括系统的误差、历史误差和误差的变化率以及相应的控制信号。

对这些数据进行归一化处理,以便神经网络能够更好地学习和训练。

2.网络结构设计:根据系统的特性和要求,设计BP神经网络的输入层、隐藏层和输出层的神经元数量。

通常情况下,隐藏层的神经元数量可以根据经验设置为输入层和输出层神经元数量的平均值。

3.训练网络:采用反向传播算法对神经网络进行训练,以获得输入和输出之间的映射关系。

在训练过程中,需要设置学习率和动量系数,并且根据训练误差的变化情况来确定训练的终止条件。

4.参数调整:将训练得到的神经网络与PID控制器相结合,根据神经网络的输出和系统的误差、历史误差和误差的变化率来计算控制信号,并通过对PID参数的调整来实现对系统的控制。

1.适应能力强:BP神经网络能够通过训练来学习系统的动态特性,从而实现对非线性系统的精确控制。

2.自适应性高:BP神经网络能够根据实时的系统状态来实时调整控制信号,从而实现对系统动态特性的自适应控制。

3.参数调节方便:通过BP神经网络的训练过程,可以直接得到系统的输入和输出之间的映射关系,从而减少了传统PID控制器中参数调节的工作量。

4.系统稳定性好:基于BP神经网络的PID控制器能够根据系统状态及时调整控制信号,从而提高了系统的稳定性和鲁棒性。

基于神经网络的模糊PID控制器设计与实现

基于神经网络的模糊PID控制器设计与实现

基于神经网络的模糊PID控制器设计与实现随着科技的不断发展,控制技术在工业自动化中的应用越来越广泛。

PID控制器因其简单易懂、易实现的特点而被广泛使用,但是传统的PID控制器在某些场合下会出现失效的情况。

为了解决这一问题,研究者们开始着手开发基于神经网络的模糊PID控制器。

本文将介绍基于神经网络的模糊PID控制器的设计与实现。

一、控制器介绍基于神经网络的模糊PID控制器是一种新型的控制器,它将模糊控制的优点与神经网络的处理能力相结合,形成了一种高效的自适应控制器。

该控制器利用神经网络的学习算法实现自适应参数的调节,将模糊控制中的模糊规则与神经网络的处理能力相结合,形成一种新的控制方法。

该控制器的核心思想是利用神经网络对系统进行建模,通过学习算法自适应地调节系统参数,从而实现对系统的控制。

其中,模糊控制器用于对输出进行模糊处理,神经网络用于对输入和输出进行处理,从而实现对系统的控制。

二、控制器设计基于神经网络的模糊PID控制器的设计需要以下几个步骤:1.系统建模系统建模是设计基于神经网络的模糊PID控制器的第一步。

系统建模的目的是构建系统的数学模型,以便于后续的设计过程。

在建模过程中,需要考虑系统的类型、运动方程、非线性因素等因素。

2.控制器设计控制器的设计是基于神经网络的模糊PID控制器设计的核心。

控制器的设计包括神经网络的结构设计、神经网络权值的选择、模糊控制的设计等。

3.参数调节参数调节是控制器设计的重要环节。

由于系统的运动方程等因素的影响,不同系统的参数可能不同。

因此,在实际应用中需要根据实际情况对控制器进行参数调节。

三、控制器实现基于神经网络的模糊PID控制器的实现需要以下步骤:1.数据采集数据采集是基于神经网络的模糊PID控制器实现的第一步。

数据采集的目的是获取系统的输入输出,以便为神经网络提供数据。

2.神经网络训练神经网络训练是实现控制器的关键步骤。

在训练过程中,通过对神经网络进行学习,让它逐渐对系统的输入输出进行建模。

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID控制系统是目前工业控制中广泛应用的一种基本控制方法,它通过测量控制系统的偏差来调节系统的输出,以实现对控制对象的稳定控制。

然而,传统的PID控制器需要事先对系统建模,并进行参数调整,工作效果受到控制对象模型的准确性和外部干扰的影响。

而BP神经网络具有非线性映射、自适应性强、鲁棒性好等优点,可以有效地克服传统PID控制器的缺点。

因此,基于BP神经网络的PID控制系统设计成为当前研究的热点之一二、基于BP神经网络的PID控制系统设计理论1.PID控制器设计原理PID控制器是由比例环节(Proportional)、积分环节(Integral)和微分环节(Derivative)组成的控制器,其输出信号可以表示为:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*(de(t)/dt),其中e(t)为控制系统的输入偏差,t为时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。

2.BP神经网络理论BP神经网络是一种前馈型神经网络,通过反向传播算法对输入信号进行学习和训练,从而得到最优的网络结构和参数。

BP神经网络由输入层、隐层和输出层组成,其中每个神经元与上、下相邻层之间的神经元互相连接,并具有非线性的激活函数。

3.基于BP神经网络的PID控制系统设计理论基于BP神经网络的PID控制系统设计的核心思想是将BP神经网络作为PID控制器的自适应调节器,根据控制对象的输入信号和输出信号之间的误差进行训练和学习,通过调整BP神经网络的权重和阈值来实现PID 控制器的参数调节,从而提高控制系统的稳定性和鲁棒性。

三、基于BP神经网络的PID控制系统设计步骤1.系统建模首先,需要对待控制对象进行建模,获取其数学模型。

对于一些复杂的非线性系统,可以采用黑箱建模的方法,利用系统的输入和输出数据进行数据拟合,获取系统的数学模型。

2.BP神经网络训练将系统的数学模型作为BP神经网络的训练集,通过反向传播算法对BP神经网络进行训练,得到最优的网络结构和参数。

(完整word版)基于BP神经网络的自整定PID控制仿真

(完整word版)基于BP神经网络的自整定PID控制仿真

基于BP神经网络的自整定PID控制仿真一、实验目的1.熟悉神经网络的特征、结构及学习算法。

2.通过实验掌握神经网络自整定PID的工作原理。

3.了解神经网络的结构对控制效果的影响。

4. 掌握用Matlab实现神经网络控制系统仿真的方法。

二、实验设备及条件1.计算机系统2.Matlab仿真软件三、实验原理在工业控制中,PID控制是工业控制中最常用的方法。

这是因为PID控制器结构简单,实现简单,控制效果良好,已得到广泛应用。

但是,PID具有一定的局限性:被控制对象参数随时间变化时,控制器的参数难以自动调整以适应外界环境的变化。

为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。

利用神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。

基于BP神经网络的PID控制器结构如图4所示。

控制器由两部分组成:一是常规PID控制器,用以直接对对象进行闭环控制,且3个参数在线整定;二是神经网络NN,根据系统的运行状态,学习调整权系数,从而调整PID参数,达到某种性能指标的最优化。

图4中神经网络采用结构为4-5-3型的BP网络。

BP网络是一种单向传播的多层前向网络。

输入节点对应系统的运行状态量,如系统的偏差与偏差变化率,必要时要进行归一化处理。

输入变量的个数取决于被控系统的复杂程度,输出节点对应的是PID的3个可调参数。

由于输出不能为负,所以输出层活化函数取2()(1)()(1)1(1)a k y k y k u k y k -=+-+-非负的Sigmoid 函数,隐含层取正负对称的Sigmoid 函数。

本系统选取的BP 网络结构如图5所示。

网络的学习过程由正向和反向传播两部分组成。

如果输出层不能得到期望输出,那么转入反向传播过程,通过修改各层神经元的权值,使得误差信号最小。

输出层节点分别对应3个可调参数K p 、K i 、K d 。

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。

下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。

一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。

在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。

二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。

2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。

3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。

4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。

5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。

6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。

7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。

8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。

9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。

10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。

三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。

2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。

3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。

基于BP_神经网络的PID_控制算法参数优化

基于BP_神经网络的PID_控制算法参数优化

- 22 -高 新 技 术从本质上来看,PID 控制算法就是对比例、积分和比例微分间的关系进行控制的一种算法。

PID 控制调节器具有适应性强、鲁棒性良好的特征,因此被广泛应用于工业控制领域。

但是,随着科学技术、控制理论发展,在工业生产中被控对象逐渐向复杂化和抽象化的趋势发展,并呈现滞后性、时变性和非线性的特征,这使传统PID 控制器难以精准调控这种较复杂的控制系统。

为了解决该问题,研究人员将控制理论与其他先进的算法相结合,形成全新的控制理论,包括神经网络控制、遗传算法以及模糊控制等。

对神经网络算法来说,由于其具有较高的鲁棒性和容错性,因此适用于复杂的非线性控制系统中,并且具有广阔的应用前景和较大的发展潜力。

1 BP 神经网络结构及算法BP 神经网络将网络视为一个连续域,在这个网络中,输入层和输出层都是任意时刻、任意数目的样本值,网络输出层值与输入层值间也可以具有任意关系,这个学习过程就称为BP 神经网络学习过程。

作为一种被广泛应用的神经网络模型,BP 神经网络由输入层、输出层和隐含层组成:1) 输入层。

从第i 个输入向量中产生相应的输出值。

2) 输出层。

在输出值的作用下将其转换为输入数据。

3) 隐含层。

在输出值的作用下对数据进行隐含处理,将处理后的结果反馈给输入层,3个输入层构成1个BP 神经网络。

当输入数据在时间域内经过多次的误差传播时,最后被一个误差源作为输出信号,即经过输入单元和输出组的中间信息。

如果该误差源的误差小于输出单元和输出组中各单元间的误差,那么这些单元在计算输出时就会有很大的变化;如果超过了期望值,那么这一单元被认为是输入量存在误差(也就是输入信号存在误差),将不再使用该单元;如果仍然超过期望值,那么输出量又会存在误差[1]。

通过分析输入与输出量间的关系可以得出BP 网络中各个隐藏层上节点数与该输出量间的关系。

BP 神经网络的拓扑结构如图1所示。

为了对BP 神经网络进行运算和优化,该文设定了中间层的加权和结点临界,以便将全部采样的真实输出量与预期的输出量的偏差控制在一个很低的区间,并且通过调节这个区间来保证它的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于神经网络的PID控制课程名称:智能控制任课教师:学生姓名:学号:年月日摘要:本文基于BP神经网络的PID控制方法设计控制器,通过BP神经网络与PID的控制相结合的神经网络控制基本原理和设计来自适应的功能调节PID的的三个参数,并根据被控对象的近似数学模型来输出输入与输出并分析BP神经网络学习速率η,隐层节点数的选择原则及PID参数对控制效果的影响。

计算机的仿真结果表示,基于BP神经网络的PID控制较常规的PID控制具有更好的自适应性,能取得良好的的控制结果。

关键字:BP算法神经网络 PID控制Abstract:In this paper, based on BP neural network PID control method designed controller, through the BP neural network PID control with a combination of neural network control basic principles and design features adaptively adjusting the PID of the three parameters, and based on the controlled object approximate mathematical model to analyze the output and the input and output BP n eural network learning rate η, hidden layer nodes and PID parameter selection principle effect of the control . Computer simulation results indicated that based on BP neural network PID control compared with conventional PID control has better adaptability , can achieve good control results . Keyword:BP algorithms neural networks PID control1引言PID控制是最早发展起来的应用经典控制理论的控制策略之一,由于算法简单,鲁棒性好和可靠性高,被广泛应用于工业过程并取得了良好的控制效果。

随着工业的发展,对象的复杂程度不断加深,尤其对于大滞后、时变的、非线性的复杂系统,常规PID控制显得无能为力。

因此常规PID控制的应用受到很大的限制和挑战。

神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。

此外,神经网络具有逼近任意连续有界非线性函数的能力,对于非线性系统和不确定性系统,无疑是一种解决问题的有效途径。

本文将常规PID控制与神经网络控制相结合,发挥各自的优势,形成所谓的智能PID控制。

采用BP神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应性和更好的鲁棒性。

2 基于BP神经网络的PID控制PID控制要取得较好的控制结果,必须通过调整好比例、积分和微分三种控制作用,形成控制量中既要相互配合又相互制约的关系。

神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现最佳组合的PID控制。

采用BP网络,可以建立参数Kp、Ki、Kd自学习的PID控制器。

基于BP神经网络的PID控制系统结构由常规的PID控制器和神经网络两个部分构成。

2.1常规的PID控制器PID控制器由比例(P)、积分(I)、微分(D)3个部分组成,直接对被控对象进行闭环控制,并且三个参数 Kp、Ki、Kd为在线调整方式。

2.2 神经网络根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出状态对应于PID 控制器的三个可调参数Kp 、Ki 、Kd 通过神经网络的自学习、加权系数调整,使神经网络输出对应于某种最优控制规律下的PID 控制器的参数。

2.3 基于BP 算法的三层前向网络的PID 控制方案本文用来控制对象的神经网络模型采用3层BP 网络,其结构如图2.3所示图2.3.1 控制对象的神经网络模型经典增量式数字PID 的控制算法为()()()()()()()()()p i d u k u k 1k error k error k 1k error k k (error k 2error k 1error k 2)=-+--++--+-式中,k p ,k i ,k d 分别为比例、积分、微分系数。

网络输入层的输入为O j (1)=x(j) j=1,2,...M (1)式中,输入变量的个数M 取决于被控系统的复杂程度。

网络隐含层的输入、输出为net i (2)(k)= 0M j =∑w ij (2) O j (1), (2)O i (2)(k)=f(net i (2)(k)) (i=1,...Q), (3)式中,w ij (2)-隐含层加权系数;上角标(1)、(2)、(3)分别代表输入层、隐含层和输出层。

隐层神经元的活化函数取正负对称的Sigmoid 函数 f(x)=tanh(x)= x xx x e e e e---+ (4) net i (3)(k)= 0Q i =∑w ij (3) O i (2)(k), (5)O l (3)(k)=g(net l 3(k)) (l=1,2,3) (6)O 1(3)(k)=k p (7)O 2(3)(k)=k i (8)O 3(3)(k)=k d (9)输出层输出节点分别对应三个可调参数kp ,ki ,kd 。

由于kp ,ki ,kd 不能为负值,所以输出层神经元的激励函数取非负的Sigmoid 函数: g(x)= 12(1+tanh(x))= x x x e e e -+。

(10) 取性能指标函数为 E(k)=12(rin(k)-yout(k))2 (11) 按照最速下降法修正网络的加权系数,即按E(k)对加权系数的负梯度方向搜索调整,并附加一使搜索快速收敛全局绩效的惯性项 Δw li (3)(k)=-η(3)()liE k w ∂∂+αΔw li (3)(k-1) (12) 式中,η为学习速率;α为惯性系数。

(3)()li E k w ∂∂=(3)(3)(3)(3)(3)()()()()()()()()()()l l l l liO k net k E k y k u k y k u k O k net k w k ∂∂∂∂∂••••∂∂∂∂∂ (13) (3)(3)()()l li net k w k ∂∂=(2)()i O k (14) 由于()()y k u k ∂∂未知,所以近似用符号函数sgn (()()y k u k ∂∂)取代,由此带来计算不精确的影响可以通过调整学习速率η来补偿由上面公式,可求得(3)1()()u k O k ∂∂=e(k)-e(k-1) (15) (3)2()()u k O k ∂∂=e(k) (16) (3)3()()u k O k ∂∂=e(k)-2e(k-1)+e(k-2) (17) 上述分析可得网络输出层权的学习算法为Δw li (3)(k)=αΔw li (3)(k-1)+ηδl (3)O i (2)(k) (18)δl (3)=error(k)sgn(()()y k u k ∂∂)(3)()()l u k O k ∂∂g ’(net l (3)(k)) (l=1,2,3) (19) 同理可得隐含层加权系数的学习算法Δw ij (2)(k)=αΔw ij (2)(k-1)+ηδi (2)O j (1)(k) (20)δl (2)=f ’(net i (2)(k)) 31l =∑δl (3) w li (3)(k) (i=1,2,...Q) (21)g ’(·)=g(x)(1-g(x)),f ’(·)=(1-f 2(x))/2 (22)因此,基于BP 神经网络的PID 控制算法可归纳为:图2.3.2 基于BP 网络的PID 控制器结构(1) 确定BP 网络的结构,给出各层加权系数的初值,选定学习速率η和惯性系数α,此时K=1;采样得到人r(k)和y(k),计算该时刻误差e(k)=r(k)-y(k);(2) 计算神经网络各层神经元的输入、输出,输出为PID 控制器的三个可调参数Kp 、Ki 、Kd ;根据增量式数字PID 控制算法计算PID 控制器的输出u(k);进行神经网络学习,在线调整加权系数w ij (1)和w li (2)(k),实现PID 控制参数的自适应调整;(3) 置k=k+1,返回到(1);3 仿真分析 设被控对象的近似数学模型为:02()(1)(1)()1(1)a k y k u k y k y k -+-=+-,式中 a 0(k)是慢时变的,a 0(k)=1+0.15sin(k π/25)。

学习速率η=0.3和惯性系数α=0.5。

1、输入信号为正弦信号r(k)=sin(2πk/100)时得出仿真图如图3.1.1所示:图3.1.1 输出信号y(k)跟踪输入信号r(k)的响应曲线图3.1.2 控制信号u(k)的变化曲线3.1.3 PID三个参数的变化曲线3.1.4 误差曲线图2、输入信号为方波信号r(k)=sign(sin(2*pi*k/100))时得到仿真曲线如图3.2.1所示:图3.2.1 输出信号跟踪输入信号的响应曲线图图3.2.2 跟踪误差动态曲线图3.2.3 控制信号u(k)的变化曲线图3.2.4 三个参数的变化曲线分析BP神经网络学习速率η、隐层节点数的选择原则及对控制效果的影响从仿真中来观察发现改变学习速率会对控制效果发生改变,PID的三个参数也会随之发生改变,在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性。

学习速率的选取范围在0.01~0.8之间。

从原理上看,隐含层节点数多,则可以有更多的输入点可供输入,即只要有足够多的隐含层和稳节点,就可实现更复杂的映射关系,但是通过改动模型的实现程序来看,怎样根据特定的问题来具体确定网络的结构尚无很好的方法,依旧需要凭经验和试凑。

所以隐含层的节点数可以影响控制效果,但是如何变的更好的控制效果,任然多和准来判定。

PID参数对控制效果的影响神经网络,根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出对应于PID控制器的三个可调参数。

对于控制系统的稳定性而言,在系统稳定的前提下,加大比例参数Kp可以减少稳态误差,但不能消除稳态误差,主要还是影响系统的控制速率;而积分参数Ki 有助于提高系统的控制精度,所以对系统控制的稳态性能更大点;微分控制环节的加入微分参数Kd,可以在误差出现或变化瞬间,按偏差变化的趋势进行控制,起到一个早期的修正作用。

相关文档
最新文档