大学物理上,质点运动学1-3坐标系运用
大 学 物 理 质点运动学

dr
dx
i
dy
j 3i 8tj (m/s)
dt dt dt
(3)由加速度的定义得
a
d
8 j (m/s2 )
dt
x
22
例2: 一质点沿半径为1 m的圆周运动,它通过的弧长 s按s=t+2t2的规律变化。问它在2 s末的速率、法向 加速度和切向加速度各是多少?
解 (1)由速率定义,有 ds 1 4t dt
小球的切向加速度量值 a,法向加速度量值an和轨道
的曲率半径 。
解:由图可知
a
g sin
gy
a g
gt
2 0
g 2t 2
g2t
02 g2t 2
an θ
x= 0
θ
a
y=gt
an
g cos
gx
g
an
g0 02 g2t 2
2
2 x
2 y
(02
g 2t 2 )3 / 2
an
an
g0
21
§1.4 运动学中的两类问题
r
C
B
r
r2
O
位置矢量的增量 ◆位矢增量的模 ◆位矢模的增量
r r2 r1 | r|| r2 r1 | r | r2 | | r1 |
位移在直角坐标系中的表示式
r
xi
yj
zk
9
路程 s t 时间内质点在空间内实际运行的路径距离。
注意
• s与 r的区别
s为标量, r为矢量
s r
d
s
dr
将t =2代入上式,得2 s末的速率为
=1+4×2=9 (m·s-1)
(2)法向加速度的大小 (3)切向加速度的大小
大学物理 第1-3章 经典力学部分归纳总结

运用
分
和
dv dv dx dv a= = ⋅ =v dt dx dt dx
3
知识点回顾
第二章 质点动力学
2、牛顿三定律? 、牛顿三定律?
r ∑Fi = ma
i →
—— 为什么动? 为什么动? 力?
功是能量交换或转换的一种度量
v v 2、变力作功 、 元功: 元功: dW = F ⋅ dr = Fds cosθ b b v v b W = ∫ F cosθ ds = ∫ F ⋅ dr = ∫ (Fxdx + Fy dy + Fz dz)
a( L) a( L) a( L)
3、功率 、
v v dW F ⋅ dr v v P= = = F ⋅ v = Fv cosθ dt dt
隔离木块a在水平方向绳子张力t和木块b施于的摩擦力?根据牛顿第二定律列出木块a的运动方程?同样隔离木块b分析它在水平方向受力情况列出它的运动方程为17一个质量为m的梯形物体块置于水平面上另一质量为m的小物块自斜面顶端由静止开始下滑接触面间的摩擦系数均忽略不计图中hh均为已知试求m与m分离时m相对水平面的速度及此时m相对于m的速度
15
•解:以地面为参考系。隔离木块A,在水平方向 解 以地面为参考系。隔离木块 , 绳子张力T 和木块B施于的摩擦力 绳子张力 和木块 施于的摩擦力
v t2 v v v v v 动量定理: 动量定理: I = ∫ ∑ F dt = ∑ p2 − ∑ p1 = ∑ mv2 − ∑ mv1
t1
v v v v 角动量定理: 角动量定理: M ⋅ dt = dL = d ( r × mv )
大学物理第1章质点运动学的描述

t0
0 2 4
t 2s 4
2
t 2s
x/m
6
-6 -4 -2
例3 如图所示, A、B 两物体由一长为 l 的刚性 细杆相连, A、B 两物体可在光滑轨道上滑行.如物体 A以恒定的速率 v 向左滑行, 当 60 时, 物体B的 速率为多少? 解 建立坐标系如图, 物体A 的速度
1. 5 arctan 56.3 1
(2) 运动方程
x(t ) (1m s )t 2m
y(t ) ( m s )t 2m
1 4 2 2
1
由运动方程消去参数
1 -1 2 y ( m ) x x 3m 4
轨迹图
t 4s
6
t 可得轨迹方程为
y/m
三、位置变化的快慢——速度
速度是描写质点位置变化快慢和方向的物理量,是矢量。
速率是描写质点运动路程随时间变化快慢的物理量,是标量。 1 平均速度 在t 时间内, 质点从点 A 运动到点 B, 其位移为
B
y
r r (t t) r (t)
r (t t)
s r
质点是经过科学抽象而形成的理想化的物理模 型 . 目的是为了突出研究对象的主要性质 , 暂不考 虑一些次要的因素 .
二、位置矢量、运动方程、位移
1 位置矢量
确定质点P某一时刻在 坐标系里的位置的物理量称 . 位置矢量, 简称位矢 r
y
y j
r xi yj zk
j k 式中 i 、 、 分别为x、y、z
xA xB xB x A
yB y A
o
x
经过时间间隔 t 后, 质点位置矢量发生变化, 由 始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的 位移矢量 r . 位移矢量也简称位移.
(完整版)大学物理笔记

1. 参考系:为描述物体的运动而选的标准物2. 坐标系3. 质点:在一定条件下,可用物体上任一点的运动代表整个物体的运动,即可把整个物体当做一个有质量的点,这样的点称为质点(理想模型)4. 位置矢量(位矢):从坐标原点指向质点所在的位置5. 位移:在t ∆时间间隔内位矢的增量6. 速度 速率7. 平均加速度8. 角量和线量的关系9. 运动方程10. 运动的叠加原理位矢:k t z j t y i t x t r r ϖϖϖϖϖ)()()()(++==位移:k z j y i x t r t t r r ϖϖϖϖϖϖ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆ϖ速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t ϖϖϖϖϖϖϖϖϖ•••→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dtr d dt d t a t ϖϖϖϖϖϖϖϖϖϖ••••••→∆++=++===∆∆=222222220lim υυ 圆周运动 角速度:•==θθωdtd 角加速度:••===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a ϖϖϖ+= 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dtd a t == 沿切线方向 线速率:ωυR =弧长:θR s =1.牛顿运动定律:牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到其他物体作用的力迫使它改变这种状态牛顿第二定律:当质点受到外力的作用时,质点动量p的时间变化率大小与合外力成正比,其方向与合外力的方向相同牛顿第三定律:物体间的作用时相互的,一个物体对另一个物体有作用力,则另一个物体对这个物体必有反作用力。
作用力和反作用力分别作用于不同的物体上,它们总是同时存在,大小相等,方向相反,作用在同一条直线上。
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
第一章质点运动学1大学物理教程北京邮电大版

质点运动的方法。
x
1
gt2
2
1.2.1 位置矢量 运动方程
1 位置矢量 确定质点P某一时刻在坐标系里的位置的物理量称位
r 置矢量, 简称位矢 。
r
xi
yj
zk
y
y
r
*P
k j
式中 i、j 、k 分别为x、y、z
方向的单位矢量。
z ox
i
x
例如: r 2i 3 j 5k z
r 位矢 的大小为: r r x2 y2 z2
x
dx dt
r dr r2 h2 dt
按题意
0
dr dt
由此得船速
x 0
r r2 h2
0
x2 h2 x
v = vxi = -v0
x2 h2 i x
上式中的负号表示船的速度v沿X轴的负方向。
加速度:
ax
dvx dt
0
h2 x2 h2
dx dt
v02h2 x3
a
v02h 2 x3
i
负号表示加速度a的方向与X轴的正方向相反。 由于a与v同向,所以小船是加速靠岸的。
在直角坐标系中分解:
r xi yj zk
在直角坐标系中分 解:
rA xAi yA j zAk rB xBi yB j zB k
则在直角坐标系 Oxyz 中其位移为
r (xB xA)i ( yB yA) j (zB zA)k
xi yj zk
y
yB A r
r y A A
z = z(t)
该r运动2方ti程矢(8量式t:2 )
j
方程组消去t就得到质点的轨迹方程。 例运动学方程为x=2t, y=8-t2,轨迹方程为
大学物理之质点运动学

矢量性:注意矢量和标量的区别。 相对性:对不同参照系有不同的描述。
3.运动学方程是运动学的核心,包含了运动的全部信息。
运动学的两类问题 运动方程是运动学问题的核心 1、已知运动方程,求质点任意时刻的位置、速度 以及加速度
r r t
dr v dt
2 dv d r a 2 dt dt
第一章 质点运动学 §1-1 质点、参考系 、坐标系
一、质点
1. 引入 质点的概念是考虑主要因素而忽略次要因素引入的一个理想 化的力学模型,使研究的问题得到简化。 2. 概念
质点是一个理想化的力学模型,当物体的大小和形状忽略不 计时,可以把物体当做只有质量没有形状和大小的点。 3.说明 一个物体能否当做质点,并不取决于它的实际大小,而是 取决于研究问题的性质。
大小:
方向:
2)相对性: 例如:坐在运动汽车中的人,选车厢为参考系,人位 移为零,但如选择地面为参考系位移不为零。 3)单位:米(m) 2.位移与路程的区别 位移是矢量:是指位置矢量的变化; 路程是标量:是指运动轨迹的长度。
思考:位移的大小什么时候与路程相等?
3. 区分:
三、速度(描述质点位置随时间变化的快慢和方向的物理量 )
速度大小的变化率,其方向指向曲线的切线方向
切向加速度:
dv d s a e 2 e h dt dt
2
讨论
de dt
O
Δ
e t t
e e (t t ) - e (t )
当: t 0 , 0 有
e e
s
求:1、任意时刻 t 速度
2、切向加速度的大小
1-2-6 圆周运动及其角量描述
平面极坐标系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切向单位矢量的时间变化率:
dˆ lim ˆ d nˆ
dt t0 t dt
τˆ τˆ(t t) τˆ(t)
当 t 0 时
第1章 质点运动学
P τ(t)
•
Q
L n(t ) θ • τ(t t)
O •n(t t)
τˆ(t )
θ
τˆ(t t)
1.3 坐标系的运用
第1章 质点运动学
1.3 坐标系的运用
1
1.3 坐标系的运用
第1章 质点运动学
一、自然坐标系
S为弧坐标。
在已知运动轨道上任取一参照点 O,由质点 与参考点之间轨迹的长度 s 来表示质点的位置。
速度方向为切向坐标方向;指向曲率中心的 方向为法向坐标方向(与速度的方向垂直)。
ˆ ——切向单位矢量
2)如果只有切向加速度,没有法向加速度, 则质点作变速率直线运动;
3)如果只有法向加速度,没有切向加速度, 则质点作匀速率曲线运动。
8
1.3 坐标系的运用
第1章 aˆ annˆ
d ˆ
dt
2
nˆ
切向加速度:a
d ˆ
dt
法向加速度:an
1)用直角坐标、位矢表示;2)用自然坐标表示。
解: 以圆心O 为原点。建立直角
y
坐标系Oxy ,O 点为初始位置,
设 t 时刻质点位于 P(x , y), 质点的运动学方程为:
1) x r cos t, y r sin t
y
•
r •
ωt
P
•
(x, y)
sx
O x O'
用r=位x矢i表+ 示y j为=:r cos ωt
1.3 坐标系的运用
第1章 质点运动学
二 圆周运动 (Circular Motion) 的角量描述
1、 角坐标与角位移
角坐标: θ
运动方程: θ θ(t)
(约定:逆时针为正)
角位移: Δθ
2、 角速度 (Angular Velocity )
y
B
r A
o
x
角速度 ω lim Δθ dθ Δt0 Δt dt
1.3 坐标系的运用
第1章 质点运动学
例:已r 知5质ti点 (在15水t 平5面t 2内) j 运,(m动) ,求运:动t方=程1s为时:的
切向加速度、法向加速度和轨道曲率半径。
解:r
d5rti5(i15(t15
5t 2
10
)j
t) j
dt
t = 1s 时
i + r sinωt
j
s 2) 用自然坐标表示为: rt 3
1.3 坐标系的运用
速度:υ = ds τˆ = υτˆ dt
一般曲线运动的加速度
a d d ˆ dˆ
dt dt
dt
加速度由两项组成,分别反映 了速度大小变化和方向变化。
第一项,叫切向加速度,
写成:
aτ
d
dt
ˆ
大小: a
d
dt
d 2s dt 2
第1章 质点运动学
A 曲率圆 •
• B
P (t)
•
Q
L
• (t t)
方向: τˆ (沿切向) 4
1.3 坐标系的运用
a
d
d
ˆ
dˆ
dt dt
dt
第二项,叫法向加速度,
写成:
an
dˆ
dt
求:汽车在 t = 1 s 时的速度和加速度大小。
解: 在自然坐标系中, ds 20 0.4t
dt
d
aτ dt 0.4,
an
2
R
(20 0.4t)2 R
a
aτ2 an2
0.42
(20
0.4t R
)2
2
t = 1 s 时: (1) 19.6 m/s, a(1) 1.44 m/s 2 10
12
1.3 坐标系的运用
角量与线量的关系:
Δs rΔθ
v lim s r lim r d
t0 t
t0 t
dt
第1章 质点运动学
y
Bs
r A
τˆ
dτˆ // nˆ,
dτˆ τˆ dθ dθ
dτˆ dθ nˆ 5
1.3 坐标系的运用
第1章 质点运动学
法向加速度:
an
dˆ
dt
d
dt
nˆ
d ds nˆ 2 nˆ ds dt
大小:
an
2
P (t)
•
Q
L
θ • (t t)
a
P
an•
aτ
a
说明:
1)一般曲线运动的法向加速度指向瞬时曲率中心;
2)在曲线运动中,加速度的方向总是指向曲线 凹的一侧。
7
1.3 坐标系的运用
第1章 质点运动学
讨论
a
aˆ
a
nnˆ
d ˆ 2 dt
nˆ
1)质点运动时,如果同时有切向加速度和 法向加速度,这就是一般的曲线运动;
a
a
d5
2(m / s2
10 j(m /
)
s
2
)
25 (15 10t)2
dt
5 1 (3 2t)2
an a2 at2
5 2(m / s2)
a
d
dt
10(3 2t) 1 (3 2t)2
v2 1(m)
an
11
2
nˆ
大小: a
d
dt
大小: a 2 n
方向:沿轨道切线方向。 方向:沿半径指向圆心。
总加速度的大小: a an2 a 2
方向: tan 1 an
a
9
1.3 坐标系的运用
第1章 质点运动学
例:一汽车在半径 R = 200 m 的圆弧形公路上行 驶,其运动学方程为 s = 20 t - 0.2 t 2 (SI)。
nˆ ——法向单位矢量
运动方程:s = s (t)
速率: ds
dt
速度: ds ˆ ˆ
dt
.s P ˆ
O
nˆ
轨迹上各点处,自然 坐标轴的方位不断变化。
2
1.3 坐标系的运用
第1章 质点运动学
例:一质点作匀速率圆周运动,半径为 r ,角速度
为 。求:质点的运动学方程。
O•
ρ 为曲率半径。
ds d
方向: nˆ (沿法向)
总加速度: a aˆ annˆ
d ˆ 2 dt
nˆ
6
1.3 坐标系的运用
第1章 质点运动学
加速度:
a aˆ annˆ
d ˆ 2 dt
nˆ
大小: a a2 an2
方向: tan 1 an