《捷联惯导系统》
捷联惯性导航系统的解算方法

捷联惯性导航系统的解算方法捷联惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪和加速度计等惯性测量单元测量物体的加速度和角速度,然后通过对这些测量值的积分计算出物体的速度和位置的导航系统。
INS广泛应用于航空航天、无人驾驶车辆和船舶等领域,具有高精度和自主性等特点。
INS的解算方法一般分为初始对准、运动状态估计和航位推算三个主要过程。
初始对准是指在启动导航系统时,通过利用外部辅助传感器(如GPS)或静态校准等方法将惯性传感器的输出与真实姿态和位置进行初次校准。
在初始对准过程中,需要获取传感器的初始偏差和初始姿态,一般采用标定或矩阵运算等方法进行。
运动状态估计是指根据惯性传感器的测量值,使用滤波算法对物体的加速度和角速度进行实时估计。
常用的滤波算法包括卡尔曼滤波、扩展卡尔曼滤波和粒子滤波等。
其中,卡尔曼滤波是一种最优估计算法,通过对观测值和状态进行线性组合,得到对真实状态的最佳估计。
扩展卡尔曼滤波则是基于卡尔曼滤波的非线性扩展,可以应用于非线性INS系统。
粒子滤波是一种利用蒙特卡洛采样技术进行状态估计的方法,适用于非高斯分布的状态估计问题。
航位推算是指根据运动状态估计的结果,对物体的速度和位置进行推算。
INS最基本的航位推算方法是利用加速度值对速度进行积分,然后再对速度进行积分得到位置。
但是,在实际应用中,由于传感器本身存在噪声和漂移等误差,导致航位推算过程会出现积分漂移现象。
为了解决这个问题,通常采用辅助传感器(如GPS)和地图等数据对INS的输出进行校正和修正。
当前,还有一些先进的INS解算方法被提出,如基于深度学习的INS 解算方法。
这些方法利用神经网络等深度学习模型,结合原始传感器数据进行端到端的学习和预测,以实现更高精度的位置和姿态估计。
综上所述,捷联惯性导航系统的解算方法主要包括初始对准、运动状态估计和航位推算三个过程。
其中,运动状态估计过程利用滤波算法对传感器的测量值进行处理,得到物体的加速度和角速度的估计。
§3.9捷联式惯导系统介绍

G G dωie G dr 对上式求导,假定地球旋转角速度是常矢量, = 0且 = ve ,可得 dt dt e G K dv e G G d 2r K K G = + ωie × ve + ωie × [ωie × r ] 2 dt i dt i
而
K G G d 2r = f +G dt 2 i
G G G G G dv e K K G = f − ωie × ve − ωie × [ωie × r ] + G dt i
b 标系 Oe X iYi Z i 的角速度 ωib ,上角标 b 表示该角速度在 b 坐标系上的投 b 进行姿态矩阵 Cbi 计算。由于姿态矩阵 Cbi 中的元素是 影。利用 ωib
OX bYb Z b 相对 OX iYi Z i 的航向角、横滚角、俯仰角的三角函数构成,
所以当求得了姿态矩阵 Cbi 的即时值,便可进行加速度计信息的坐标 变换和提取姿态角的大小。 这三项功能实际上就代替了平台式惯性导 航系统中的稳定平台的功能, 这样计算机中的这三项功能也就是所谓
哥氏校正
fb
比力测量值 的分解
fi
∑
∑
速度v e和 位置的估 计值
i
导航计算
Cbi
固连于载体 的陀螺
ω
b ib
速度和位置的初始估计值 姿态计算
姿态的初始估值
图 捷联式惯导系统——惯性坐标系机械编排
3、当地地理坐标系的机械编排
在这种机械编排中,地理坐标系表示的地速是 vet ,它相对于地理 坐标系的变化率可通过其在惯性坐标系下的变化率表示 G G dv e dv e G G G = − [ wie + wet ] × ve dt t dt i G G G G G G dv e dve 用 ,得 = f − ωie × ve + g1 替代 dt t dt i G G dv e G G G K = f − [2 wie + wet ] × ve + g1 dt t 表示在选定的导航坐标系(地理坐标系)中,有
捷联惯导系统算法.ppt

cos
b Ebz
注意事项:当 θ= 90 度时,方程出现奇点
姿态计算 矩阵方程精确解1
二、方向余弦矩阵微分方程及其解 C C
其中
C bE
CbE
b Eb
0
b Eb
z
z
0
y
x
y x
0
由于陀螺仪直接测得的是载体 相对惯性空间的角速度,所以:
CbE
b ib
E iE
C
E b
或四元数微分方程:
q(t)
(
b ib
b iE
)q(t)
注意事项: 1、上述两个方程中的角速度表达式不一样 2、方程第二项较小,计算时速度可以低一些
增量算法 矩阵方程精确解
一、角增量算法
角增量:陀螺仪数字脉冲输出,每个脉冲代表一个角增量
一个采样周期内,陀螺输出脉冲数对应的角增量为:
C
0
0
c os
0 0 0 sin
sin
sin
c os
cos cos
求解欧拉角速率得
1 0
0
cos
0 sin
惯性器件的误差补偿
姿态计算 欧拉角微分方程1
姿态矩阵的计算 假设数学坐标系模拟地理坐标系 飞行器姿态的描述:
航向角ψ、俯仰角θ、滚动角γ 一、欧拉微分方程
从地理坐标系到载体坐标系 的旋转顺序:
Ψ →θ →γ
激光捷联惯性导航系统

HT-LG-H激光捷联惯性导航系统使用说明书1 概述HT-LG-H激光捷联惯性导航系统(以下简称惯导系统)是陕西航天长城测控有限公司研制的高精度自主寻北、惯性组合导航系统。
该惯导系统由高精度激光陀螺、石英挠性加计、加计采集板、导航计算机、二次电源等部件组成,能够满足航空、陆用等设备的高精度定向/定位等功能的需求。
系统采用集成化,数字化、先进的对准导航算法等设计技术,具有高可靠性和环境适应性,可在阵风、发动机工作等严酷环境条件下完成高精度寻北;具备纯惯性导航功能,同时系统自带GPS/GLONASS卫星接收机,具有INS/GNSS组合导航功能;对外通信方式为RS-422总线。
2 主要功能与性能2.1 主要功能2.1.1 自检功能具备上电自检功能,可输出自检结果,可将故障分离到部件级。
2.1.2 初始标定功能接受外部输入的初始标定信息并完成初始标定。
2.1.3 寻北功能接受寻北指令,完成寻北并输出寻北结果。
2.1.4 导航功能完成寻北后自动转入导航状态;具有INS纯惯性导航功能和INS/GNSS组合导航功能。
2.2 主要性能惯导系统的主要性能指标如表1所示。
表1 惯导系统主要性能指标3 接口3.1 机械接口惯导系统采用4个M8-7H螺钉连接到专用过渡板上,过渡板采用4个M8-7H 螺钉安装到用户载体上,载体安装平面其平面度要求优于0.02mm;其详细要求2陕西航天长城测控有限公司见图1惯导系统机械接口图与图2过渡板接口图。
图1 惯导系统机械接口图图2 专用过渡板机械接口图 TAL:029- FAX:029-3图3 惯导系统等轴侧视图图4 惯导系统正视图3.2 电气接口3.2.1 电源接口电源接口用连接器选用的是中航光电(158厂)生产的JY27468T17B08PN圆形插座。
其接口定义如表2所示。
序号管脚号定义名称备注1 C +24V 24V电源2 E +24V 24V电源3 D 24V_GND 电源地4 F 24V_GND 电源地3.2.2 通讯接口通讯接口连接器选用的是中航光电(158厂)生产的JY27468T17B12PN圆形插座。
捷联惯导系统原理框图

t t
t t
θ t dt Φ t ( )dt
表征旋转的另一种形式: Φ u
q cos Φ Φ sin Φ 2Φ 2
Φ&
b nb
(t
)
1 2
Φ
ωbnb
(t
)
1 12
Φ
(Φ
ωbnb
(t
))
捷联惯导系统
泰勒级数展开、曲线拟合的方法(几个采样角就为几子样算法)
0 h
常数拟合:ωnbb (tk ) a
考系则 、 和 即为一组欧拉角。
& sin cos
&
sin
& cos cos
cos
0
sin
0 1
1
nnbbbbyx
sin cos cos
0 0
cos cos sin
nnbbbbxy
0 nbbz
sin tan
1
cos
tan
nbbz
当 90o时,方程退化,故不能全姿态工作。
q q q q n b(m)
n(m) n(m1)
n b(m1)
b(m) b(m1)
毕卡求解法(角增量) 1)定时采样增量法:采样时间间隔相同; 2)定量采样增量法:角增量达到一固定值时才更新;
Θ
Q(tk1) (I 2 )Q(tk )
捷联惯导系统 2.3.3 四元数初值的确定与归一化
q1
q2
T13 T23 T33
真值表判断
sin1(T32 )
主
tan 1 (
T31 T33
)
主
tan 1 ( T12 T22
)
捷联惯导系统
捷联惯性导航系统初始对准原理

第二章捷联惯导系统的初试对准2.1引言惯导系统是一种自主式导航系统。
它不需要任何人为的外部信息,只要给定导航的初始条件(例如初始速度、位置等),便可根据系统中的惯性敏感元件测量的比力和角速率通过计算机实时地计算出各种导航参数。
由于“平台”是测量比力的基准,因此“平台”的初始对准就非常重要。
对于平台惯导系统,初试对准的任务就是要将平台调整在给定的导航坐标系的方向上。
若采用游动方位系统,则需要将平台调水平---称为水平对准,并将平台的方位角调至某个方位角处---称为方位对准。
对于捷联惯导系统,由于捷联矩阵T起到了平台的作用,因此导航工作一开始就需要获得捷联矩阵T的初始值,以便完成导航的任务。
显然捷联惯导系统的初始对准就是确定捷联矩阵的初始值。
在静基座条件下,捷联惯导系统的加ω。
因此b g及速度计的输入量为---b g,陀螺的输入量为地球自转角速率bie bω就成为初始对准的基准。
将陀螺及加速度计的输入引出计算机,通过计ie算机就可以计算出捷联矩阵T的初始值。
由以上的分析可以看出,陀螺及加速度计的误差会导致对准误差;对准飞行器的干扰运动也是产生对准误差的重要因素。
因此滤波技术对捷联系统尤其重要。
由于初始对准的误差将会对捷联惯导系统的工作造成难以消除的影响,因此研究初始对准的误差传播方程也是非常必要的。
2.2 捷联惯导系统的基本工作原理捷联式惯性导航系统,陀螺仪和加速度计直接及载体固联,加速度计测量是载体坐标系轴向比力,只要把这个比力转换到导航坐标系上,则其它计算就及平台式惯性导航系统一样,而比力转换的关键就是要实时地进C,姿态矩阵也称行姿态基准计算来提供数学平台,即实时更新姿态矩阵nbC也可表为捷联矩阵。
一般选择地理坐标系为导航坐标系,那么捷联矩阵nb C,其导航原理图如图2.1所示。
示为tb由惯导系统的工作原理可以看出,捷联式惯性导航系统有以下几个主要优点: 1.惯性敏感器便于安装、维修和更换。
2.惯性敏感器可以直接给出舰船坐标系轴向的线加速度、线速度,供给舰船稳定控制系统和武备控制系统。
车载捷联惯导系统基本原理

车载捷联惯导系统基本原理一、捷联惯导系统基本原理捷联惯导系统基本原理如图2-1所示:图中陀螺和加速度计直接与载体系b固联,用来测量载体的角运动信息和线运动信息。
导航解算的本质是根据初值进行积分的过程,通过求解姿态微分方程完成对姿态和航向角的积分,通过求解比力微分方程完成对速度的积分,通过求解位置微分方程实现对位置的积分。
捷联惯导的姿态矩阵C n 相当于“数学平台”,取代了平台惯导中的实体平台,而ωˆ相当于对数学平台“施矩”的指令角速率。
二、捷联惯导微分方程(一)姿态微分方程在捷联惯导系统中,导航坐标系n 和载体坐标系b 之间的角位置关系通常用姿态矩阵、四元数和欧拉角表示,相应也存在姿态矩阵微分方程、四元数微分方程和欧拉角微分方程三种形式。
姿态矩阵微分方程的表达式为:在欧拉角微分方程式(2.2-7)中,当俯仰角θ趋于90º时,cosθ趋于0,tanθ趋于无穷,方程存在奇异性,所以这种方法不能在全姿态范围内正常工作;姿态矩阵微分方程式(2.2-1)可全姿态工作,但姿态矩阵更新相当于求解包含9个未知量的线性微分方程组,计算量大;四元数微分方程式(2.2-6)同样可以全姿态工作,且更新算法只需求解4个未知量的线性微分方程组,计算量小,算法简单,是较实用的工程算法。
(二)速度微分方程速度微分方程即比力方程,是惯性导航解算的基本关系式:三、捷联惯性导航算法捷联惯导解算的目的是根据惯性器件输出求解载体姿态、速度和位置等导航信息,实际上就是求解三个微分方程的过程,相应存在姿态更新算法、速度更新算法和位置更新算法。
(一)姿态更新算法求解微分方程式(2.2-6)可得四元数姿态更新算法为:在车辆行驶过程中,一般不存在高频大机动环境,并且车载导航系统往往不工作在纯惯性导航方式,而是利用里程仪或零速条件进行组合导航,所以算法误差的影响有限,常用的5ms采样周期和二子样优化算法即可满足要求。
四、捷联惯导误差模型传感器误差、初值误差和算法误差是SINS的主要误差源,其中器件误差和初值误差又是影响导航结果的主要因素。
捷联惯导系统

作业思考题
1、简要说明捷联惯导系统的基本组成和原理。 2、什么是数学平台?它有什么作用?
惯性导航系统
第四十四讲 捷联惯导系统 力学编排方程(一)
捷联式惯导系统(SINS)
加速度计
fb
数学平台
姿态矩阵 Cbp
f p 导航 速度、位置
计算机 姿态、航向
姿态矩阵计算
陀螺
ibb
pbb
b ip
姿态航向
-
C11 C21 C31
Cep 1 Cep T
C12 C13 1 C11 C21
C22
C23
C12
C22
C32 C33 C13 C23
C11 C22C33 C23C32 C21 C13C32 C12C33 C31 C12C23 C22C13
C31
C32
C33
位置矩阵微分方程组
Cep 0 f 0,0,0
1
p p epx epy
g g egx egy
R VeggxVeggy
VeppxVeppy
三、位置速率方程
11
p p epx epy
g g egx egy
RN RE
捷联惯导的发展
1、1950年起,德雷珀实验室捷联系统得到成熟的探索; 2、1969年,在“阿波罗-13”宇宙飞船,备份捷联惯导系统; 3、20世纪80~90年代,波音757/767、A310民机以及F-20战 斗机上使用激光陀螺惯导系统,精度达到1.85km/h的量级; 4、20世纪90年代,美国军用捷联式惯导系统已占有90% 。光 纤陀螺的捷联航姿系统已用于战斗机的机载武器系统中及波 音777飞机上。 5、国内由90年代挠性捷联惯导到现在激光捷联惯导、光纤陀 螺捷联航姿系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 90
时,方程退化,故不能全姿态工作。
实用文档
捷联惯导系统
2.2 方向余弦法(九参数法) C bn Cbnωnbbk
矢量的方向余弦表示姿态矩阵的方法; 可全姿态工作,但需要解含有九个未知量的线性方程组,计算量大, 工程上不实用。
实用文档
捷联惯导系统
2.3 四元数法(四参数法)
2.3.1 四元数基本概念 四元数是由一个实数单位1和一个虚数单位i、j、k组成的含有四个
直线拟合:ω b nb (tk)a2b
Φ (h)θ1θ22 3θ1θ2
抛物线拟合: ω n b b(tk)a 2 b 3 c2
3 3
5 7
Φ ( h ) θ 1 θ 2 θ 3 8 0 θ 1 θ 3 8 0 θ 2 (θ 3 θ 1 )
三次抛物线ω :n b b (tk)Байду номын сангаасa 2 b 3 c2 4 d3
qbn
1 2
qbn
ωnbb
q q q q n
n (m )
b (m ) n (m 1 )
n b (m 1 )
b (m ) b (m 1 )
毕卡求解法(角增量) 1)定时采样增量法:采样时间间隔相同; 2)定量采样增量法:角增量达到一固定值时才更新;
Q(tk1)(I2Θ)Q(tk)
实用文档
捷联惯导系统
q
0
1 2
1 T 11 T 22 T 33
- Q c o s u s i n c o s ( ) u s i n ( ) c o s 2 u s i n 2
22 2 2 2 2
表征旋转的四元数应该是规范四元数; Q 1 计算误差,失去规范性,需归一化处理;
qi
qˆi qˆ02 qˆ12 qˆ22 qˆ32
实用文档
捷联惯导系统
2.3.4 从姿态矩阵中提取姿态角 θ∈﹙-90,90﹚度 γ∈﹙-180,180﹚度 Ψ∈﹙-180,180﹚度 或 Ψ∈﹙0,360﹚度
c o sc o s s in s in s in s in c o s s in c o s c o ss in s in C b n c o ss in s in s ic n o s c o s s in c o s s in c o s s in s in c o s c c o o s s c o s s in
Φu
qcos Φ Φsin Φ 2Φ 2
表Φ 征 旋转n b b ( 的t)另 1 2 一Φ 种 形ω 式b n b ( :t) 1 1 2 Φ (Φ ω b n b (t))
实用文档
捷联惯导系统
泰勒级数展开、曲线拟合的方法(几个采样角就为几子样算法)
0h
常数拟合:ωnbb(tk )a
Φ(h) θ
2.3.3 四元数初值的确定与归一化
q1
q 2
q
3
1
2 1
2 1
2
1 T 11 T 22 T 33 1 T 11 T 22 T 33 1 T 11 T 22 T 33
4 4
q1 q 0 q2q0
T32 T13
T23 T31
4q3 q0 T21 T12
sig(qn1)sig(qn0)[sig(Tn32T23)] sig(qn2)sig(qn0)[sig(Tn13T31)] sig(qn3)sig(qn0)[sig(Tn21T12)]
捷联惯导系统
框图
捷联惯导系统原理
实用文档
捷联惯导系统
• 姿态更新算法 • 速度更新算法 • 位置更新算法 • 系统误差方程
实用文档
捷联惯导系统
2. 姿态更新算法(核心)
基本思想:刚体的定点转动 nb( b ibb-ibn)
C
n b
2.1 欧拉角法(三参数法)
一个动坐标系相对参考坐标系的方位,可以完全由动坐标系一次绕
元的数。(超复数) Q q 0 ,q 1 ,q 2 ,q 3 q 0 q 1 i q 2 j q 3 k
四元数的大小——范数 Qq0 2q1 2q2 2q3 2
四元数表达方式
三角式
Qcosusin
2
2
基本运算
实用文档
捷联惯导系统
动坐标系相对于参考坐标系的转动,等效于动坐标系绕某一个等效转 轴转动一个角度(θ,u)
2(q1q2q0q3) q0 2q1 2q2 2q3 2
2 2((q q1 2q q3 3 q q0 0q q2 1))
2(q1q3q0q2) 2(q2q3q0q1) q0 2q1 2q2 2q3 2
捷联惯导中的姿态更新实质上是如何计算四元数。
实用文档
捷联惯导系统
2.3.2 四元数微分方程
差,称为转动不可交换性误差。
为了消除不可交换性误差,必须对角速度矢量积分修正,修正的方法是 采用
等效旋转矢量算法把角速度矢量积分等效为等效旋转矢量,利用等效旋转矢量的
概念 将θ 四 元t 数 t微d 分t方 程转Φ 化 为等t 效 t( 旋转 矢) 量d t微分方程(即Bortz方程):
t
t
Φ (h)θ1θ2θ3θ47 93 46 5(θ1θ2θ3θ4) 3 93 44 5(θ1θ3θ2θ4)5 92 46 5θ1θ49 64 55 4θ2θ3
三个不同的轴的三个角度来确定。把载坐标系作动坐标系,导航系为 参考系则 、 和 即为一组欧拉角。
sincos sin coscos
cos
0
sin
101 nnbbbbyx
sin cos cos
0 nbbz sin tan
0 0
cos cos sin
nnbbbbxy
1 cos tannbbz
四元数描述转动: Qcosusin
2
2
四元数是刚体转动的一种描述形式。
结论:
• 四元数可以描述刚体的定点转动,Q包含了等
效旋转的全部信息;
• 四元数与姿态矩阵的关系;
• 描述刚体转动的四元数是规范化四元数;
C b R q0 2 2( q1 q q 1 2 2 q q 2 2 0q 3q )3 2
T11 T21 T31
C
n b
T12
T22
T3
2
T13 T23 T33
真值表判断
sin 1(T 32 )
主
ta n 1(
T 31 ) T 33
主
ta n 1( T12 ) T 22
实用文档
捷联惯导系统
2.4 等效旋转矢量法
四元数法求解中用到了角速度矢量的积分。
当不是定轴转动时,即角速度矢量的方向在空间变化时,将使计算产生 误