1实数专题训练

合集下载

实数练习1

实数练习1

第六章实数(9班专用)一、选择题(每小题3分,共30分) 1.下列各式中无意义的是( ) A. 61-B. 21-)(C.12+aD.222-+-x x 2.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③ 94的平方根是32; ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个2.下列说法中正确的是( )A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0 4. 641的立方根是( ) A.21±B.41± C.41 D.215.现有四个无理数5,6,7,8,其中在实数2+1 与 3+1 之间的有( )A.1个B.2个C.3个D.4个7.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( ) A.24.72 B.53.25 C.11.47 D.114.79.已知x 是169的平方根,且232x y x =+,则y 的值是( ) A.11 B .±11 C. ±15 D.65或314310.大于52-且小于23的整数有( ) A.9个 B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)11. 3-绝对值是 ,3- 的相反数是 .12. 81的平方根是 ,364 的平方根是 ,-343的立方根是 ,256的平方根是 .13. 比较大小: (1)10π;(2) 33 2;(3)101101;(4)2 2.15.已知212+++b a =0,则ab= . 16.最大的负整数是 ,最小的正整数是 ,绝对值最小的实数是 ,不超过380-的最大整数是 .17.已知 ,3,312==b a 且0 ab ,则 b a +的值为 。

18.已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .19.设a 是大于1的实数,若 312,32,++a a a 在数轴上对应的点分别记作A 、B 、C ,则A 、B 、C 三点在数轴上从左至右的顺序是 .20.若无理数m 满足14 m ,请写出两个符合条件的无理数 .21.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.22.估计60的大小约等于 或 .(误差小于1) 23.若()03212=-+-+-z y x ,则x +y +z = .24.我们知道53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +(2001个3,2001个4)= .25.比较下列实数的大小(填上>、<或=). ①-3 -2;②215- 21;26.若实数a 、b 满意足0=+b b a a ,则abab= . 27.实a 、b 在数轴上的位置如图所示,则化简()2a b b a -++= .三、;解答题28(8分)计算: (1) )(25.08-⨯-; (2)4002254-+ ;(3)32333111)()(-+-+- ; (4)33332734312512581---+-- ;(5). 327102--- (6). 381125-(7). 322769----)( (8). 33216.00121.0125.0--+ 5. 33271893111864256----6. 22(2)2(6)x x ---(26x <<)29.(12分)求下列各式中的x 的值:(1) ()9-242=x ; (2)()25122=-x ;ba 0(3)()375433-=-x ; (4)()08123=+-x ;(5). 2361(1)16x -+= (6). 324x -= (7). 31252(1)4x -=- 30、(6分)已知实数a 、b 、c 在数轴上的对应点如图所示,化简:c b a c b a a -+-+--cb a(7分)若a 、b 、c 是有理数,且满足等式332232+-=++c b a ,试计算 ()20112010b c a +- 的值。

1实数中考复习题1

1实数中考复习题1

实数中考复习题一、填空:1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-3,14,0,32,364,0.31,227,2π,2.161 161 161…,(-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5. (2009福建泉州)计算:=-0)5(_______.6.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)7. 2.40万精确到__________位,有效数字有__________个.8.(2009年孝感)若m n n m -=-,且4m =,3n =,则2()m n += . 9、(2009年吉林省)若a 5,2,0,b ab a b ==->+=且则 .10、(2009年滨州)大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|5|a +在数轴上的意义是 . 11. 31-x 2y 的系数是 ,次数是 . 12.(08遵义)计算:2(2)a a -÷= .13.(2009年上海市)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示). 14. (2009烟台市)若523m xy +与3n x y 的和是单项式,则m n = .15.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 二、选择:1. (2009年烟台市)|3|-的相反数是( )A .3B .3-C .13D .13-2、(2009年济宁市)已知a 为实数,那么2a -等于( )A. aB. a -C. - 1D. 03.(2009年潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ) A .1a +B .21a +C .21a +D .1a +4、(2009,台州)如图所示,数轴上表示25,的对应点分别为C 、B ,点C 是 AB 的中点,则点A 表示的数是( )A CB 2 5A .5-B .25-C .45-D .52-5.(08梅州)下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C .-2和|-2| D .2和216.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.167.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断8.若x 的相反数是3,│y│=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或29.(2009年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简2|1|a a -+的结果为( )A .1B .1-C .12a -D .21a -10、(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .511. (2009年日照)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A.-10℃ B.-6℃ C.6℃ D.10℃ 12. 计算23-的结果是( )A. -9B. 9C.-6D.6 13.(08巴中)下列各式正确的是( )A .33--=B .326-=- C .(3)3--=D .0(π2)0-=14.若“!”是一种数学运算符号,并且1!=1,2!=2³1=2,3!=3³2³1=6,4!=4³3³2³1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!15、(2009年凉山州)比1小2的数是( )A .1-B .2-C .3-D .1 16. (2009泰安)下列各式,运算结果为负数的是( ) (A ))3()2(---- (B ))3()2(-⨯- (C )2)2(-- (D )3)3(-- 17. (08宁夏)下列各式运算正确的是( )A .2-1=-21B .23=6C .22²23=26D .(23)2=26 18. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18o b a 1- 10 a19.(2009,天津)若x y ,为实数,且220x y ++-=,则2009x y ⎛⎫⎪⎝⎭的值为( )BA .1B .1-C .2D .2-20、(2009年牡丹江)若01x <<则x ,1x,2x 的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<<三、解答1. 计算:⑴(08南宁)4245tan 21)1(10+-︒+--;⑵(2009年广东省)计算12-+9-sin ()30π3++0°2、先化简,再求值:(1) (08江西)x (x +2)-(x +1)(x -1),其中x =-21;(2) (2009年北京市)已知2514x x -=,求()()()212111x x x ---++的值3、(2009年甘肃定西)若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.实数中考复习题2一、选择:1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42. (2009年安徽)下列运算正确的是【 】A .234a a a =B .44()a a -=C .235a a a +=D .235()a a =3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 4. (2009年重庆市江津区) 下列计算错误的是 ( )A .2m + 3n=5mnB .426a a a =÷ C .632)(x x = D .32a a a =⋅ 5. (2009年日照)计算()4323b a --的结果是( )A.12881b aB.7612b aC.7612b a -D.12881b a -6. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b +7、(2009年四川省内江市) 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=-C .))((22b a b a b a -+=- D .222))(2(b ab a b a b a -+=-+8、(2009陕西省太原市)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( ) A .51x -- B .51x + C .131x -- D .131x + 9、(2009年台州市)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③10.(08安徽) 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 211.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(12.代数式21,,,13x x a x x x π+中,分式的个数是( )aa bba bb图甲A .1B .2C .3D .413.(08无锡)计算22()ab ab 的结果为( )A .bB .aC .1D .1b14.如果x y =3,则x y y +=( ) A .43 B .xy C .4 D .xy15.(08苏州)若220x x --=,则22223()13x x x x -+--+的值等于( )A .233B .33C .3D .3或3316、(2009烟台市)学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的二、填空:1.简便计算:=2271.229.7-.2.(2009年株洲市)分解因式:3+2x x= . 3.分解因式:=+-442x x ____________________. 4.(08凉山)分解因式2232ab a b a -+= . 5.(08泰安)将3214x x x +-分解因式的结果是 . 6. (08中山)分解因式am an bm bn +++=_____ _____; 7、(2009年四川省内江市)分解因式:_____________223=---x x x 8、(2009年黄冈市)分解因式:3654a a -=________; 9、 (08宁波) 221218x x -+= .10、若 , ),4)(3(2==-+=++b a x x b ax x 则.11.化简分式:22544______,202ab x x a b x -+=-=________.12.计算:x -1x -2 +12-x = .13.分式223111,,342x y xy x-的最简公分母是_______. 14、(2009年枣庄市)15.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).15、(2009年清远)当x = 时,分式12x -无意义. 16、(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 .17、 已知 31=-x x ,则221xx + = . 18、(08芜湖)已知113x y -=,则代数式21422x xy y x xy y----的值为 .三、 先化简,再求值:1、(08资阳)(212x x --2144x x -+)÷222x x-,其中x =1.2、(2009年哈尔滨)先化简.再求代数式的值.22()2111a aa a a ++÷+-- 其中a = tan60°-2sin30°.3、(2009成都)先化简,再求值:22(3)(2)1x x x x x -+-+,其中3x =。

实数1

实数1

实数1、如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

2、一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

3、正数a 的平方根记做“±a ”。

4、正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

a (a ≥0)0≥a==a a 2a 的双重非负性:-a (a <0) a ≥01、25的算术平方根是 ( )A .5 C .-5 D .±52、如果a 是实数,则下列各式中一定有意义的是 ( )A3、36的平方根是 ;16的算术平方根是 。

4、若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 。

5、算术平方根比原数大的是 ( ) A.正实数 B.负实数C.大于0而小于1的数 D.不存在6、则a 是一个 ( )A.正实数 B.负实数 C.非正实数 D.非负实数7、如果a 的平方是正数,那么a 是 ( ) A.正数 B.负数 C.不等于零 D.非负数8、36的算术平方根是 , 0的平方根是 , 11的平方根是 , 的平方根是23±, 2)3.4(-的算术平方根是 , 410是 的平方。

9、下列说法中不正确的是 ( ) A.42的算术平方根是4 B. 24的算术平方根是C.332的算术平方根是D. 981的算术平方根是10、121的平方根是±11的数学表达式是 ( ) A. 11121= B.11121±= C. ±11121= D.±11121±=11、如果,162=x 则x= ( ) A.16 B.16 C.±16 D.±1612、下列平方根中, 已经简化的是 ( ) A.31B. 20C. 22D. 12113、已知2a-1的平方根是±3, 3a+b-1的算术平方根是4,求a+2b 的平方根?14、某数的两个不同平方根为2a -1与-a+2,则这个数为15、在实数范围内,下列各式一定不成立的有 ( )12a -=0.A.1个B.2个C.3个D.4个16、大于_______.17、如果a b a b -=____.1、如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

2022年中考数学分类复习强化练 -第一讲 实数(含答案)

2022年中考数学分类复习强化练 -第一讲  实数(含答案)

第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

实数计算题专题训练(含答案)

实数计算题专题训练(含答案)

考点: 实数的运算;绝对值;算术平方根;立方根。 专题: 计算题。
801377
分析: 根据绝对值、立方根、二次根式化简等运算法则进行计算,然后根据实数的运算法则求得计算结果. 解答: 解:原式 =5×1.2+10×0.3﹣3﹣3+2﹣ =5﹣ . 点评: 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根 式、立方根、绝对值等考点的运算. 10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2) ; 考点: 有理数的混合运算。 专题: 计算题。 分析: (1)根据理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算. (2)可以先把 2.75 变成分数,再用乘法分配律展开计算. 解答: 解: (1) (﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2) =﹣8+(﹣3)×18+ =﹣62+
深于专业 ● 信于人 ( 2) =1﹣0.5+2 =2.5. 点评: 保证一个数的绝对值是非负数,任何不等于 0 的数的 0 次幂是 1,注意区分是求二次方根还是三次方根. 8. (精确到 0.01) .
考点: 实数的运算。 专题: 计算题。
801377
分析: (1)先去括号,再合并同类二次根式; (2)先去绝对值号,再合并同类二次根式. 解答: 解: (1)原式=2 = ; (2)原式= = ≈1.732+1.414 ≈3.15. 点评: 此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.注意精确到 0.01. 9.计算题: .
801377
开方得,x=± x1= ,x2=﹣
③∵ ∴x+2=0,y﹣3=0, ∴x=﹣2,y=3; 则 xy=(﹣2)3=﹣8; ④∵ < , ∴﹣ >﹣ ,

【一轮复习】2023年中考数真题分点透练-1 实数(含二次根式)

【一轮复习】2023年中考数真题分点透练-1 实数(含二次根式)

第一讲实数(含二次根式)【命题1 实数的分类级正负数意义】1.(2022•巴中)下列各数是负数的是()A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.2.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元3.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是()A.1个B.2个C.3个D.4个4.(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.25.(2022•益阳)四个实数﹣,1,2,中,比0小的数是()A.﹣B.1C.2D.【命题点2 相反数、倒数、绝对值】6.(2022•黔西南州)﹣3的绝对值是()A.±3B.3C.﹣3D.7.(2022•盘锦)﹣6的倒数是()A.B.﹣0.6C.D.68.(2022•聊城)实数a的绝对值是,a的值是()A.B.﹣C.±D.±9.(2022•福建)﹣11的相反数是()A.﹣11B.C.D.11【命题点3 数轴】10.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.11.(2021•怀化)数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣12.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()13.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6 14.(2022•台湾)如图数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d| 15.(2021•安顺)如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【命题点4 科学计数法】16.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×106 17.(2022•贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m 18.(2021•荆门)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.012×108元资金.数据1.012×108可表示为()A.10.12亿B.1.012亿C.101.2亿D.1012亿19.(2021•潍坊)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)表示为()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【命题点5 实数的大小比较】20.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.21.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定22.(2022•临沂)比较大小:(填“>”,“<”或“=”).【命题点6 平方根、算术平方根、立方根】23.(2022•攀枝花)2的平方根是()A.2B.±2C.D.24.(2021•济南)9的算术平方根是()25.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2 26.(2022•常州)化简:=.27.(2021•南充)如果x2=4,则x=.28.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【命题点7 二次根式及其运算】【类型一二次根式的有关概念及性质】29.(2022•湘西州)要使二次根式有意义,则x的取值范围是()A.x>2B.x<2C.x≤2D.x≥2 30.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1 31.(2022•雅安)使有意义的x的取值范围在数轴上表示为()A.B.C.D.32.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.33.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【类型二二次根式的运算】34.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2 35.(2022•南岸区自主招生)计算+结果正确的是()A.B.3C.3D.536.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3 37.(2022•瓯海区校级自主招生)已知点P(x,y)在函数y=的图象上,那么点P应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限38.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a 39.(2022•衢州)计算()2=.40.(2022•山西)计算:×的结果为.41.(2022•南充)若为整数,x为正整数,则x的值是.42.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.43.(2022•天津)计算(+1)(﹣1)的结果等于.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.45.(2022•内蒙古)已知x,y是实数,且满足y=++,则的值是.【类型三二次根式的估值】46.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间47.(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间48.(2022•北碚区自主招生)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【命题点8 实数的运算】【类型一有理数的运算】49.(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).50.(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【类型二实数的运算】51.(2022•甘肃)计算:×﹣.52.(2022•河池)计算:|﹣2|﹣3﹣1﹣×+(π﹣5)0.53.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.答案与解析【命题1 实数的分类级正负数意义】1.(2022•巴中)下列各数是负数的是()A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.【答案】D【解答】解:(﹣1)2=1,是正数,故A选项不符合题意;|﹣3|=3,是正数,故B选项不符合题意;﹣(﹣5)=5,是正数,故C选项不符合题意;,是负数,故D选项符合题意.故选:D.2.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.3.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是()A.1个B.2个C.3个D.4个【答案】B【解答】解:在实数,x0(x≠0)=1,cos30°=,=2中,有理数是,x0(x≠0),所以,有理数的个数是2,故选:B.4.(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.2【答案】C【解答】解:﹣2,,2是有理数,是无理数,故选:C.5.(2022•益阳)四个实数﹣,1,2,中,比0小的数是()A.﹣B.1C.2D.【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.【命题点2 相反数、倒数、绝对值】6.(2022•黔西南州)﹣3的绝对值是()A.±3B.3C.﹣3D.【答案】B【解答】解:﹣3的绝对值:|﹣3|=3,故选:B.7.(2022•盘锦)﹣6的倒数是()A.B.﹣0.6C.D.6【答案】A【解答】解:﹣6的倒数是1÷(﹣6)=.故选:A.8.(2022•聊城)实数a的绝对值是,a的值是()A.B.﹣C.±D.±【答案】D【解答】解:∵|a|=,∴a=±.故选:D.9.(2022•福建)﹣11的相反数是()A.﹣11B.C.D.11【答案】D【解答】解:﹣(﹣11)=11.故选:D【命题点3 数轴】10.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.【答案】D【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.11.(2021•怀化)数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣【答案】B【解答】解:数轴上表示数5的点和原点的距离是5;故选:B.12.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.13.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【答案】A【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A14.(2022•台湾)如图数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d|【答案】A【解答】解:∵a表示的点A到原点的距离最近,∴|a|最小,故选:A.15.(2021•安顺)如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【答案】C【解答】解:由图可知,a<0,b>0,∴|a|=﹣a,|b|=b,∴|b|﹣|a|=b+a,故选:C.【命题点4 科学计数法】16.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×106【答案】B【解答】解:11000000=1.1×107.故选:B.17.(2022•贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m【答案】C【解答】解:因为1nm=10﹣9m,所以28nm=28×10﹣9m=2.8×10﹣8m.故选:C.18.(2021•荆门)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.012×108元资金.数据1.012×108可表示为()A.10.12亿B.1.012亿C.101.2亿D.1012亿【答案】B【解答】解:数据1.012×108可表示为:1.012×108=101200000=1.012亿,故选:B.19.(2021•潍坊)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)表示为()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【答案】C【解答】解:101 527 000=1.01527×108≈1.015×108.故选:C.【命题点5 实数的大小比较】20.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.【答案】C【解答】解:∵﹣1<0<<2,∴最大的数是2;故选:C.21.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定【答案】B【解答】解:∵b>0,a<0,∴a<b,故选:B.22.(2022•临沂)比较大小:(填“>”,“<”或“=”).【答案】<【解答】解:∵()2=,()2=,<,∴<,故答案为:<.【命题点6 平方根、算术平方根、立方根】23.(2022•攀枝花)2的平方根是()A.2B.±2C.D.【答案】D【解答】解:因为(±)2=2,所以2的平方根是,故选:D.24.(2021•济南)9的算术平方根是()A.3B.﹣3C.±3D.【答案】A【解答】解:∵32=9,∴9的算术平方根是3.故选:A.25.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2【答案】C【解答】解:=4,±=±2,故选:C.26.(2022•常州)化简:=.【答案】2【解答】解:∵23=8∴=2.故填2.27.(2021•南充)如果x2=4,则x=.【答案】±2【解答】解:x2=4,开平方得x=±2;故答案为:±2.28.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【答案】2【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2【命题点7 二次根式及其运算】【类型一二次根式的有关概念及性质】29.(2022•湘西州)要使二次根式有意义,则x的取值范围是()A.x>2B.x<2C.x≤2D.x≥2【答案】D【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.30.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【答案】B【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.31.(2022•雅安)使有意义的x的取值范围在数轴上表示为()A.B.C.D.【答案】B【解答】解:∵有意义,∴x﹣2≥0,∴x≥2,故选:B.32.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.【答案】D【解答】解:A.,不是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,是最简二次根式.故选:D.33.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【答案】D【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.【类型二二次根式的运算】34.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2【答案】D【解答】解:==2,故选:D.35.(2022•南岸区自主招生)计算+结果正确的是()A.B.3C.3D.5【答案】C【解答】解:+=.故选:C.36.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3【答案】B【解答】解:(﹣)×=﹣=﹣=3﹣2=1,故选:B37.(2022•瓯海区校级自主招生)已知点P(x,y)在函数y=的图象上,那么点P应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵,∴x<0;又∵x<0,∴,即y>0∴P应在平面直角坐标系中的第二象限.故选:B.38.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a【答案】B【解答】解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.39.(2022•衢州)计算()2=.【答案】2【解答】解:原式=2.故答案是2.40.(2022•山西)计算:×的结果为.【答案】3【解答】解:原式==3.故答案为:3.41.(2022•南充)若为整数,x为正整数,则x的值是.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【答案】4或7或842.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.【答案】2【解答】解:∵1<<2,∴1<3﹣<2,∵若3﹣的整数部分为a,小数部分为b,∴a=1,b=3﹣﹣1=2﹣,∴(2+a)•b=(2+)(2﹣)=2,故答案为:2.43.(2022•天津)计算(+1)(﹣1)的结果等于.【答案】18【解答】解:原式=()2﹣12=19﹣1=18,故答案为:18.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.【答案】2【解答】解:由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|﹣+=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.45.(2022•内蒙古)已知x,y是实数,且满足y=++,则的值是.【答案】【解答】解:∵y=++,∴x﹣2≥0,2﹣x≥0,∴x=2,y=,则原式=×==,故答案为:【类型三二次根式的估值】46.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】B【解答】解:∵4<6<9,∴2<<3.故选:B47.(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.48.(2022•北碚区自主招生)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解答】解:×﹣1=﹣1,∵5<<6,∴4<﹣1<5,∴×﹣1的值应在4和5之间.故选:C.【命题点8 实数的运算】【类型一有理数的运算】49.(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.50.(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【解答】解:(1)(﹣6)×(﹣)﹣23=(﹣6)×﹣8=﹣1﹣8=﹣9;(2)设被污染的数字为x,根据题意得:(﹣6)×(﹣x)﹣23=6,解得:x=3,答:被污染的数字是3.【类型二实数的运算】51.(2022•甘肃)计算:×﹣.【解答】解:原式=﹣2=﹣.52.(2022•河池)计算:|﹣2|﹣3﹣1﹣×+(π﹣5)0.【解答】解:原式=2﹣﹣2+1=.53.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.【解答】解:∵a=2+,b=2﹣,∴a2b+ab2=ab(a+b)=(2+)(2﹣)(2++2﹣)=(4﹣5)×4=﹣1×4=﹣4.。

中考数学专题复习一实数及其运算

中考数学专题复习一实数及其运算

专题01有理数考点一:有理数之正数和负数◎基础巩固1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。

0既不是正数也不是负数。

2.正数和负数的意义:表示具有相反意义的两个量。

3.正负号的化简:同号为正,异号为负。

◎同步练习1.下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣52.下列各数为负数的是()A .﹣2B .0C .3D .53.四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .314.在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .35.若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃6.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元7.在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2km B .﹣1km C .1km D .+2km8.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃9.(如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.10.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.考点二:有理数之相反数◎基础巩固1.相反数的定义:只有符号不同的两个数互为相反数。

我们说其中一个数是另一个数的相反数。

0的相反数还是0。

2.相反数的性质:互为相反数的两个数和为0。

即a 与b 互为相反数⇔0=+b a ⇔()a b b a -=-=◎同步练习11.实数9的相反数等于()A .﹣9B .+9C .91D .﹣9112.下列各数中,﹣1的相反数是()A .﹣1B .0C .1D .213.﹣2022的相反数是.14.如图,数轴上点A 表示的数的相反数是()A .﹣2B .﹣21C .2D .3考点三:有理数之绝对值◎基础巩固1.绝对值的定义:数轴上表示数a 的点到原点的距离用数a 的绝对值来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实数专题训练
姓名_____________
一、填空题:(每题3 分,共36 分)
1、-2 的倒数是____。

2、4 的平方根是____。

3、-27 的立方根是____。

4、3-2 的绝对值是____。

5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。

6、比较大小:-1
2
____-
1
3。

7、近似数0.020精确到____位,它有____个有效数字。

8、若n 为自然数,那么(-1)2n+(-1)2n+1=____。

9、若实数a、b 满足|a-2|+( b+1
2
)2=0,则ab=____。

10、在数轴上表示a 的点到原点的距离为3,则a-3=____。

11、已知一个矩形的长为3cm,宽为2cm,试估算它的对角线长为____。

(结果保留两个有效数字)
12、罗马数字共有7 个:I(表示1),V(表示5),X(表示10),L(表示50),C(表示100),D(表示500),M(表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:
如IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL=___,XI=___。

二、选择题:(每题4 分,共24 分)
1、下列各数中是负数的是()
A、-(-3)
B、-(-3)2
C、-(-2)3
D、|-2|
2、在π,-1
7
,(-3)2,3.14,2,sin30°,0 各数中,无理数有()
A、2 个
B、3 个
C、4 个
D、5 个
3、绝对值大于1 小于4 的整数的和是()
A、0
B、5
C、-5
D、10
4、下列命题中正确的个数有()
①实数不是有理数就是无理数②a<a+a③121的平方根是±11
④在实数范围内,非负数一定是正数⑤两个无理数之和一定是无理数
A、1 个
B、2 个
C、3 个
D、4 个
5、天安门广场的面积约为44 万平方米,请你估计一下,它的百万之一大约相
当于()
A、教室地面的面积
B、黑板面的面积
C、课桌面的面积
D、铅笔盒面的面积
6、已知| x |=3,| |=7,且x<0,则x+的值等于()
A、10
B、4
C、±10
D、±4
三、计算:(每题 6 分,共24 分)
1、-21
2
÷(-5)×
1
5
2、(1
3
4

7
8

7
12
)÷(-1
3
4
)
3、(-11
2
)3×3-2+2°4、π+3-
2
3
(精确到0.01)
四、解答题:(每题8 分,共40 分)1、把下列各数填入相应的大括号里。

π,2,-1
2
,|-2|, 2.3 ,30%,4,3-8
(1)整数集:{…} (2)有理数集:{…} (3)无理数集:{…} 2、在数轴上表示下列各数:
2 的相反数,绝对值是1
2
的数,-1
1
4
的倒数。

3、已知:x 是|-3|的相反数,y 是-2的绝对值,求2x2-y2的值。

y y y
4、某人骑摩托车从家里出发,若规定向东行驶为正,向西行驶为负,一天行驶记录如下:(单位:km)
-7,+4,+8,-3,+10,-3,-6,
问最后一次行驶结束离家里有多远?若每千米耗油0.28 升,则一天共耗油多少升?
5、已知实数a、b
试化简:(a-b)2-|a+b|
五、(8分)若(2x+3)2和y+2互为相反数,求x-y 的值。

六、(8分)一次水灾中,大约有20万人的生活受到影响,灾情持续一个月,请推断:大约需要组织多少帐篷?多少千克粮食?
七、(10分)若正数a 的倒数等于其本身,负数b 的绝对值等于3,且c<a,c2=36,求代数式2 (a-2b2)-5c 的值。

答案:
(一)
一、1、-1
2
2、±2
3、-3
4、2-3
5、3.27534×103
6、<
7、千
分两
8、09、-110、0或-311、3.6cm12、4011
二、1、B2、A3、A4、B5、C6、D
三、1、=-5
2
×(-
1
5
)×1
5

1
10
2、=(
7
4

7
8

7
12
)×(-7
4
)=-1+1
2

1
6

-1
6
3、=-
27
8
×
1
9
+1=-
3
8
+1=
5
8
4、=4.21
四、1、(1)2,4,3-8;(2)2,-
1
2
,30%,4,3-8;(3)π,|-2|
3、∵x=-3,y=2∴2x2-y2=2 (-3)2-22=2×9-4=18-4=14
4、-7+4+8-3+10-3-6=3离家在正东 3 千米处7+4+8+3+10
+3+6
=4141×0.28=11.48升5、a-b+(a+b)=2a
五、∵=-3
2
=-2∴x-y=-
3
2
+2=
1
2
六、解:设 4 个人合一帐篷, 大约要 5 万个帐篷, 每人每天用粮0.5千克, 则20×0.5×30=300万千克
七、∵a=1,b=-3,c=-6∴2 (a-2b2)-5c=2[1-2×(-3)2]-5×(-6)
=2[1-18]+30=-34+30=-4
2. 3。

相关文档
最新文档