函数、极限和连续试题及答案
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列四组函数中f(x)与g(x)表示同一函数的是( )A.f(x)=tanx,g(x)=B.f(x)=lnx3,g(x)=3lnxC.f(x)=,g(x)=D.f(x)=ln(x2一1),g(x)=ln(x一1)+ln(x+1)正确答案:B解析:A、D选项中,两函数的定义域不同,C选项中,当x<0时,f(x)≠g(x),B选项中,f(x)=lnx3=3lnx=g(x),定义域均为x>0,故选B.知识模块:函数、极限与连续2.函数f(x)=是( )A.奇函数B.偶函数C.非奇非偶函数D.不能确定奇偶性正确答案:B解析:由于一1<x<1,从而定义域关于原点对称,又f(一x)==f(x),所以函数f(x)为偶函数.知识模块:函数、极限与连续3.= ( )A.B.1C.D.3正确答案:C解析:.知识模块:函数、极限与连续4.极限等于( )A.0B.1C.2D.+∞正确答案:D解析:因该极限属“”型不定式,用洛必达法则求极限.原式=(ex+e-x)=+∞.知识模块:函数、极限与连续5.当x→0时,无穷小x+sinx是比x ( )A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:=2,故选C.知识模块:函数、极限与连续6.=6,则a的值为( )A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1,所以=6.知识模块:函数、极限与连续7.下列四种趋向中,函数y=不是无穷小的为( ) A.x→0B.x→1C.x→一1D.x→+∞正确答案:B解析:知识模块:函数、极限与连续8.设f(x)== ( )A.4B.7C.5D.不存在正确答案:A解析:知识模块:函数、极限与连续填空题9.函数y=ln(lnx)的定义域是_________.正确答案:(1,+∞)解析:y=ln(lnx),所以解得x>1,故函数的定义域为(1,+∞).知识模块:函数、极限与连续10.已知f(x)=2x2+1,则f(2x+1)= _________.正确答案:8x2+8x+3解析:用代入法得f(2x+1)=2(2x+1)2+1=8x2+8x+3.知识模块:函数、极限与连续11.=________.正确答案:解析:令.也可直接利用无穷小量代换.知识模块:函数、极限与连续12.=________.正确答案:e2解析:=e2.知识模块:函数、极限与连续13.设函数f(x)=在x=0处连续,则a=________.正确答案:3解析:因为函数f(x)在x=0处连续,则=a=f(0)=3.知识模块:函数、极限与连续14.设f(x)=在x=0处连续,则常数a与b满足的关系是________.正确答案:a=b解析:函数f(x)在x=0处连续,则有=b,即a=b.知识模块:函数、极限与连续解答题15.已知函数f(x)的定义域是[0,1],求函数f(x+4)的定义域.正确答案:因为f(x)的定义域是[0,1],所以在函数f(x+4)中,0≤x+4≤1,即一4≤x≤一3,所以f(x+4)的定义域为[一4,一3].涉及知识点:函数、极限与连续16.计算.正确答案:函数-x复合而成,利用有理化求得.故.涉及知识点:函数、极限与连续17.求.正确答案:0.∞型,先变形为,再求极限.=1.涉及知识点:函数、极限与连续18.求极限.正确答案:=1.涉及知识点:函数、极限与连续19.求极限.正确答案:原式==一15π2.涉及知识点:函数、极限与连续20.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续21.求.正确答案:涉及知识点:函数、极限与连续22.求极限.正确答案:1一,则有原式=.涉及知识点:函数、极限与连续23.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续24.设f(x)=问a为何值时,f(x)在x=0连续;a 为何值时,x=0是f(x)的可去间断点.正确答案:f(0)=6,(1)若f(x)在x=0处连续,应有2a2+4=一6a=6,故a=一1;(2)若x=0是f(x)的可去间断点,则应有≠f(0),即2a2+4=一6a≠6,故a≠一1,所以a=一2时,x=0是可去间断点.涉及知识点:函数、极限与连续25.证明方程x3+x2+3x=一1至少有一个大于一1的负根.正确答案:令f(x)=x3+x2+3x+1,f(一1)=一2<0,f(0)一1>0,f(x)在(一1,0)上连续,由零点定理知,在(一1,0)内至少存在一点ξ,使得f(ξ)=0,所以方程在(一1,0)内至少有一根,即方程至少有一个大于一1的负根.涉及知识点:函数、极限与连续。
考研数学二(函数、极限、连续)模拟试卷23(题后含答案及解析)

考研数学二(函数、极限、连续)模拟试卷23(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.当x→0时,x-sinx是x2的( ).A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶但非等价的无穷小正确答案:B解析:因为所以x-sinx为x2的高阶无穷小,应选(B).知识模块:函数、极限、连续2.设y=f(x)由cos(xy)+lny-x=1确定,则=( ).A.2B.1C.-1D.-2正确答案:A解析:将x=0代人得y=1,cos(xy)+lny-x=1两边对x求导得将x=0,y=1代入得=1,即f’(0)=1,于是=2f’(0)=2,应选(A).知识模块:函数、极限、连续填空题3.=__________正确答案:1解析:知识模块:函数、极限、连续4.设f(x)=ax(a>0,a≠1),则=_______正确答案:解析:f(1)f(2)…f(n)=a1+2+…+n= 知识模块:函数、极限、连续5.若a>0,,则a=________正确答案:36解析:知识模块:函数、极限、连续6.=________正确答案:解析:知识模块:函数、极限、连续7.=________正确答案:2ln2-1.解析:知识模块:函数、极限、连续8.=________正确答案:解析:知识模块:函数、极限、连续9.设f(x)=,则f(x)的间断点为x=________正确答案:0解析:当x≠0时,f(x)=当x=0时,f(0)-0,即f(x)=因为,所以x=0为f(x)的间断点,且为第二类间断点.知识模块:函数、极限、连续10.设f(x)在x=0处连续,则A=________正确答案:解析:由知识模块:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
11.求极限正确答案:由涉及知识点:函数、极限、连续12.求极限正确答案:涉及知识点:函数、极限、连续13.求极限正确答案:涉及知识点:函数、极限、连续14.求极限正确答案:涉及知识点:函数、极限、连续15.求极限正确答案:由涉及知识点:函数、极限、连续16.设f(x)连续,且f(0)=0,f’(0)=2,求正确答案:涉及知识点:函数、极限、连续17.设F(x)=正确答案:方法一涉及知识点:函数、极限、连续18.设f’(x)连续,f(0)=0,f’(0)≠0,求正确答案:由涉及知识点:函数、极限、连续19.求极限正确答案:涉及知识点:函数、极限、连续20.求极限正确答案:涉及知识点:函数、极限、连续21.求极限正确答案:涉及知识点:函数、极限、连续22.设正确答案:涉及知识点:函数、极限、连续23.设f(x)在x=0的某邻域内有连续导数,且,求f(0)及f’(0).正确答案:涉及知识点:函数、极限、连续24.设f(x)在x=0处连续可导,且,求f’’(0).正确答案:由涉及知识点:函数、极限、连续25.正确答案:由涉及知识点:函数、极限、连续26.设f(x)在x=x0处可导,且f(x0)≠0,证明:正确答案:涉及知识点:函数、极限、连续27.设f(x)=,求f(x).正确答案:f(x)=,则f’(x)=(1+2x)e2x.涉及知识点:函数、极限、连续28.设f(x)=存在,求a.正确答案:f(0-0)=f(0+0)=因为存在,所以f(0-0)=f(0+0),故a= 涉及知识点:函数、极限、连续29.设f(x)=正确答案:f(0-0)==-1因为f(0-0)≠f(0+0),所以不存在.涉及知识点:函数、极限、连续30.设f(x)=,求f(x)的连续区间及间断点.正确答案:f(x)=f(x)的连续区间为(-∞,1)∪(1,+∞).因为=+∞,所以x=1为f(x)的第二类间断点.涉及知识点:函数、极限、连续31.求函数y=的间断点,并进行分类.正确答案:x=0,x=1及x=2为函数的间断点.由得x=0为函数的跳跃间断点;由=0得x=1为函数的可去间断点;由=∞得x=2为函数的第二类间断点.涉及知识点:函数、极限、连续32.设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.正确答案:对任意的c∈(0,1),当x<c时,由exf(x)≤ecf(c)及e-f(x)≤e-f(c)得f(c)≤f(x)≤ec-xf(c),令x→c-得f(c-0)=f(c);当x>c时,由exf(x)≥ecf(c)及e-f(c)≥e-f(c)得f(c)≥f(x)≥ec-xf(x),令x→c+得f(c+0)=f(c),因为f(c-0)=f(c+0)=f(c),所以f(x)在x=c处连续,由c的任意性得f(x)在(0,1)内连续.涉及知识点:函数、极限、连续33.设f(x)=,若F(x)=f(x)+g(x)在R上连续,求a,b.正确答案:F(-1)=f(-1)+g(-1)=1-1=0,F(-1-0)=f(-1-0)+g(-1-0)=a-1,F(-1+0)=f(-1+0)+g(-1+0)=1-1=0,由F(x)在x=-1处连续,所以a=1;F(1)=f(1)+g(1)=-1+b,F(1-0)=f(1-0)+g(1-0)=-1+1=0,F(1+0)=f(1+0)+g(1+0)=-1+b,由F(x)在x=1处连续得b=1,故a=1,b=1.涉及知识点:函数、极限、连续。
微积分复习题集带参考答案(二)

微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
函数极限与连续习题加答案(供参考)

第一章 函数、极限与连续第一讲:函数一、是非题1.2x y =与x y =相同;( ) 2.)1ln()22(2x x y x x +++=-是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. )0(2>=x x y 是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( )6.实数域上的周期函数的周期有无穷多个; ( )7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( )8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。
( ) 二、填空题1.函数)(x f y =与其反函数)(x y ϕ=的图形关于 对称;2.若)(x f 的定义域是]1,0[,则)1(2+x f 的定义域是 ;3.122+=x xy 的反函数是 ;4.1)(+=x x f ,211)(xx +=ϕ,则]1)([+x f ϕ= , ]1)([+x f ϕ= ;5.)2(sin log 2+=x y 是由简单函数 和 复合而成;6.1)(2+=x x f ,x x 2sin )(=ϕ,则)0(f = ,___________)1(=af ,___________)]([=x f ϕ。
三、选择题1.下列函数中既是奇函数又是单调增加的函数是( )A 、x 3sinB 、13+xC 、x x +3D 、x x -32.设54)(2++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为( )A 、1B 、-1C 、2D 、-2 3.)sin()(2x x x f -=是( )A 、有界函数B 、周期函数C 、奇函数D 、偶函数 四、计算下列各题1.求定义域523arcsin3xx y -+-=2.求下列函数的定义域 (1)342+-=x x y (2)1142++-=x x y(3)1)2lg(++=x y (4)x y sin lg =3.设2)(x x f =,xe x g =)(,求)]([)],([)],([)],([x g g xf f x fg x g f ;4.判断下列函数的奇偶性(1)3)(-=x x f (2)xx f )54()(=(3) xxx f -+=11lg)( (4)x x x f sin )(=5.写出下列函数的复合过程(1))58(sin 3+=x y (2))5tan(32+=x y (3)212x y -= (4))3lg(x y -=6.设⎩⎨⎧≥<=.1,0,1,)(x x x x ϕ求)51(ϕ,)21(-ϕ,)2(-ϕ,并作出函数)(x y ϕ=的图形。
高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。
因此,f(x)在区间[1, 5]上连续。
b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。
在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。
c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。
在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。
题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。
b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。
c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。
专升本高等数学(二)-极限和连续

专升本高等数学(二)-极限和连续(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:19,分数:20.00)1.下列各组函数中,两个函数相同的是______A. B.f(x)=x,C.f(x)=ln|x|,g(x)=lnx D.f(x)=1nx3,g(x)=3lnx(分数:2.00)A.B.C.D. √解析:[解析] 选项A中,D(f)=(-∞,-1)∪(-1,+∞),D(g)=(-∞,+∞),定义域不相同;选项B中,f(x)=x,g(x)=[*]=|x|,对应规律不相同;选项C中,D(f)=(-∞,0)∪(0,+∞),D(g)=(0,+∞),定义域不相同;选项D中,D(f)=(0,+∞),D(g)=(0,+∞),且lnx3=3lnx,即两个函数的定义域相同且对应规律相同,为相同函数.2.______∙ A.(0,5]∙ B.(1,5]∙ C.(1,5)∙ D.(1,+∞)(分数:1.00)A.B. √C.D.解析:[解析] 使函数解析式有意义,自变量x应满足 [*]解得1<x≤5,即D(f)=(1,5].3.下列函数为奇函数的是______A.y=x4+x-2 B.y=tax+C. D(分数:1.00)A.B.C.D. √解析:[解析] 根据函数的奇偶性的定义,应选D.4.已知f(x)是(-∞,+∞)上的单调增加函数,则F(x)=e-f(x)是______∙ A.单调增加∙ B.单调减少∙ C.不单调但有界∙ D.不单调但无界(分数:1.00)A.B. √C.D.解析:[解析] 因为f(x)在(-∞,+∞)上单调增加,f(x)在(-∞,+∞)上一定单调减少,则F(x)=e-f(x)在(-∞,+∞)上一定单调减少.5.函数的反函数是______A.y=3log2x+1 B.y=3log2(x+1)C.y=log23x+1 D.y=log+1(分数:1.00)A.B.C. √D.解析:[解析] 由[*],得x=log23y+1,即y=log23x+1.6.函数y=cos3(5x+2)的复合过程是______∙ A.y=cos3u,u=5x+2∙ B.y=u3,u=cos(5x+2)∙ C.y=u3,u=cosv,v=5x+2∙ D.y=cosu3,u=5x+2(分数:1.00)A.B.C. √D.解析:[解析] y=u3,u=cosv,v=5x+2.7.当x→0时,sin(2x+x)与x比较是______∙ A.较高价的无穷小量∙ B.较低价的无穷小量∙ C.等价的无穷小量∙ D.同阶无穷小量(分数:1.00)A.B.C.D. √解析:[解析] 因为[*]所以当x→0时,sin(2x+x2)与x比较是同阶无穷小量.8.等于______ A.0 B.1 D.5(分数:1.00)A.B.C.D. √解析:[解析] 根据重要极限[*].9.等于______ A.0 B.1 D.2(分数:1.00)A. √B.C.D.解析:[解析] 注意到当x→∞时,[*]不存在,但|sin2x|≤1,即sin2x是一个有界变量,而当x→∞时,[*],根据无穷小量的性质:“有界变量乘无穷小量仍为无穷小量”,则有 [*].10.下列极限中,正确的是______ A. B. C. D(分数:1.00)A.B.C. √D.解析:[解析] 选项A,[*];选项B,[*];选项C,[*];选项D,[*](有界变量与无穷小量的乘积仍为无穷小量).11.等于______ A.0 B. C.1(分数:1.00)A.B. √C.D.解析:[解析] 将分母分解因式后,再运用极限的四则运算法则及重要极限Ⅰ,求极限. [*] 另解:(等价无穷小量代换)当x→2时,sin(x-2)~x-2,则 [*].______∙ A.e2∙ B.e∙ C.e-1∙ D.e-2(分数:1.00)A.B.C.D. √解析:[解析] 根据重要极限Ⅱ:有[*]13.下列各式中,正确的是______ A. B. C. D(分数:1.00)A.B. √C.D.解析:[解析] 根据重要极限Ⅱ:[*].14.∙ A.-1∙ B.0∙ C.1∙ D.不存在(分数:1.00)A.B.C.D. √解析:[解析] [*] 因为f(0-0)≠f(0+0),所以[*]不存在.15.在x=0处连续,则a=______∙ A.-1∙ B.1∙ C.2∙ D.3(分数:1.00)A.B.C.D. √解析:[解析] [*],因为[*]f(x)=f(0),所以a=3.16.下列函数中在点x=0处不连续的是______ A. B. C. D (分数:1.00)A. √B.C.D.解析:[解析] 选项A中,f(0)=0,[*]f(x)在点x=0处不连续;选项B中,f(0)=0,[*],f(x)在点x=0处连续;选项C中,f(0)=1.[*],f(x)在点x=0处连续;选项D中,f(0)=1.[*],f(x)在点x=0处连续.17.______∙ A.1∙ B.0∙ C.3∙ D.2(分数:1.00)A.B.C.D. √解析:[解析] f(x)的间断点为x=-1,x=1.18.函数f(x)=ln(4-x2)的连续区间是______∙ A.(-∞,-2)∙ B.(-2,2)∙ C.(2,+∞)∙ D.[-2,2](分数:1.00)A.B. √C.D.解析:[解析] 由4-x2>0,解得-2<x<2,函数f(x)=ln(4-x2)的连续区间是(-2,2).19.x=1处______∙ A.有定义∙ B.无定义且无极限∙ C.有极限但不连续∙ D.连续(分数:1.00)A.B.C. √D.解析:[解析] 函数f(x)点x=1处无定义. [*] 所以函数f(x)点x=1处有极限但不连续.二、{{B}}填空题{{/B}}(总题数:18,分数:20.00)20.设f(x)=3x+5,则f[f(x)-2]= 1.(分数:2.00)填空项1:__________________ (正确答案:9x+14)解析:f[f(x)-2]=3[f(x)-2]+5=3[3x+5-2]+5=9x+14.21.设,则(分数:1.00)填空项1:__________________ (正确答案:[*])解析:由[*],得[*] 所以[*]22.设f(x+1)=x2-3x+4,则f(x)=______.(分数:1.00)填空项1:__________________ (正确答案:x2-5x+8)解析:令x+1=t,则x=t-1,得f(t)=(t-1)2-3(t-1)+4=t2-5t+8.即f(x)=x2-5x+8.23.f(0)= 1.(分数:1.00)填空项1:__________________ (正确答案:1)解析:当x≤0时,f(x)=cosx,则f(0)=cos0=1.24.当x∈(-∞,+∞)时,f[f(x)]=______.(分数:1.00)填空项1:__________________ (正确答案:1)解析:当|x|≤1时,f(x)=1,则f[f(x)]=f(1)=1;当|x|>1时,f(x)=0,则f[f(x)]=f(0)=1. 综上所述,当x∈(-∞,+∞)时,f[f(x)]=1.25.y=______.(分数:1.00)填空项1:__________________ (正确答案:y=ln(x2+1)(x≥0))解析:由[*],解得x=ln(y2+1)(y≥0),所以[*]的反函数为y=ln(x2+1)(x≥0).26.设f(x)=e x,g(x)=cosx,则f[g(x)]= 1.(分数:1.00)填空项1:__________________ (正确答案:f[g(x)]=e cosx.)解析:27.设y=lnu,u=cosv,v=x2+x+1,则复合函数y=f(x)= 1.(分数:1.00)填空项1:__________________ (正确答案:y=ln cosv=ln cos(x2+x+1).)解析:(分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:2)解析:[*](分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:e-2)解析:[*]33.设,(分数:1.00)填空项1:__________________ (正确答案:1)解析:[*] 因为f(0-0)=f(0+0)=1,所以[*]34.x=1处连续,则常数a=______.(分数:1.00)填空项1:__________________ (正确答案:3)解析:f(1)=a,f(1-0)=[*] 因为函数f(x)在x=1处连续,所以f(1-0)=f(1+0)=f(0),因此a=3.35.x=0处连续,则常数k=______.(分数:1.00)填空项1:__________________ (正确答案:2)解析:f(0)=2,f(0-0)=[*] f(0+0)=[*] 因为函数f(x)在x=0处连续,则有f(0-0)=f(0+0)=f(0),所以k=2.36.x=______.(分数:1.00)填空项1:__________________ (正确答案:3)解析:已知函数为分式函数,当x=3时,函数无定义.所以函数[*]的间断点为x=3.37.x=0处______.(分数:2.00)填空项1:__________________ (正确答案:连续)解析:f(0)e0-1=0,f(0-0)=[*]f(0+0)=[*],因为f(0-0)=f(0+0)=f(0)=0,所以函数[*]在点x=0处连续.三、{{B}}解答题{{/B}}(总题数:5,分数:60.00)求下列极限.(分数:9.00)(1). 3.00)正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:(先对数列用拆项法求前n项之和,再求极限. [*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:(本题为∞-∞型未定式的极限,要用有理化的方法进行恒等变形后再求极限. [*])解析:求下列极限.(分数:9.00)(1). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:求下列极限.(分数:12.00)3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(4). 3.00)正确答案:(解法Ⅰ[*] 解法Ⅱ[*])解析:(1). 3.00)__________________________________________________________________________________________ 正确答案:([*] 因为f(0-0)≠f(0+0),所以[*]不存在.)解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*] 因为f(0-0)=f(0+0)=2,所以[*])解析:求解下列极限的反问题.(分数:24.00)(1).k的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*](x2-2x+k)=32-2×2+k=0,解得k=-3.)解析:(2).a的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*](x2+ax+6)=1+a+6=0,解得a=-7)解析:(3).a,b的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(令x2+ax+b=(x-2)(x+m)=x2+(m-2)x-2m,得a=m-2,b=-2m,又[*]解得m=6,于是有a=4,b=-12.)解析:(4).a的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(此极限为∞-∞型未定式应转化为[*]型未定式,再求解.[*][*](-x2-x+a)=-1-1+a=0,解得a=2.)解析:(5).b的值,使f(x)在点x=1处连续.(分数:3.00)__________________________________________________________________________________________ 正确答案:(由于f(1)=2,且有[*] 依题意f(x)在点x=1处连续,则必有[*] 于是1+b=2,解得b=1.即当b=1时,f(x)在点x=1处连续.)解析:(6).k的值,使f(x)在其定义域上连续.(分数:3.00)__________________________________________________________________________________________ 正确答案:(函数f(x)的定义域为(-∞,+∞).因为当x<0时,[*]连续,当x>0时,f(x)=x2-2x+3k连续,为使f(x)在其定义域上连续,则必使f(x)在点x=0处连续.[*]因为f(0-0)=f(0+0)=f(0),于是3k=2,得[*]即当[*]时,f(x)在其定义域上连续.)解析:(7).证明方程x5+5x-1=0至少有一个正根.(分数:3.00)__________________________________________________________________________________________ 正确答案:(证明:令f(x)=x5+5x-1,则f(x)=x5+5x-1在区间[0,1]上连续,f(0)=-1<0,f(1)=15+5-1=5>0.根据闭区间上连续函数的零点定理可知,至少存在一点ζ∈(0,1),使得f(ζ)=ζ5+5ζ-1=0.即方程x5+5x-1=0在区间(0,1)内至少有一个实根.亦即方程x5+5x-1=0至少有一个正根.)解析:(8).证明方程1+x+sinx=0 3.00)__________________________________________________________________________________________ 正确答案:(证明:令f(x)=1+x+sinx,则f(x)=1+x+sinx;在区间[*]上连续, [*] 根据闭区间上连续函数的零点定理可知,至少存在一点ζ∈[*],使得 f(ζ)=1+ζ+sinζ=0.即方程1+x+sinx=0在区间[*]内至少有一个根.)解析:。
高等数学大一试题库

〔一〕函数、极限、连续一、选择题:1、 在区间(-1,0),由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -=(C)34+-=x y (D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )〔A 〕无穷大量 〔B 〕无穷小量 〔C 〕无界函数〔D 〕有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,那么f (x )是)(x ϕ的( ) 〔A 〕高阶无穷小 〔B 〕低阶无穷小 〔C 〕同阶无穷小 〔D 〕等阶无穷小 4、 x =0是函数1()arctanf x x=的( ) 〔A 〕可去连续点〔B 〕跳跃连续点; 〔C 〕振荡连续点〔D 〕无穷连续点 5、 以下的正确结论是〔 〕〔A 〕)(lim x f xx →假设存在,那么f (x )有界;〔B 〕假设在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,那么),(lim 0x f x x →也存在;〔C 〕假设f(x)在闭区间[a ,b ]上连续,且f (a ),f (b )<0那么方程f (x )=0,在(a ,b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 假设),1(3-=x f y Z且x Zy ==1那么f (x )的表达式为 ;2、 数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 那么a =,b = ; 4、 设,)(ax ax x f --=那么x =a 是f (x )的第类连续点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,那么n = ; 三、 计算题:1、计算以下各式极限:〔1〕xx x x sin 2cos 1lim0-→; 〔2〕x xx x -+→11ln 1lim 0;〔3〕)11(lim 220--+→x x x 〔4〕xx x x cos 11sinlim30-→ 〔5〕x x x 2cos 3sin lim 0→ 〔6〕xx xx sin cos ln lim0→2、确定常数a ,b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a ,b ]上连续,且a <f (x )<b , 证明在(a ,b )内至少有一点ξ,使()f ξξ=.〔二〕导数与微分一、填空题:1、 设0()f x '存在,那么tt x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 那么(1)f '= ; 3、 设xey 2sin =, 那么dy = ;4、 设),0(sin >=x x x y x 那么=dxdy ; 5、 y =f (x )为方程x sin y +y e 0=x确定的隐函数, 那么(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 那么(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x ey -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A)2x -y -2=0 (B)2x +y +1=0 (C)2x +y -3=0 (D)2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax处处可导,那么( )(A)a =b =1 (B)a =-2,b =-1 (C)a =0,b =1 (D)a =2,b =14、 假设f (x )在点x 可微,那么xdyy x ∆-∆→∆0lim的值为( )(A)1 (B)0 (C)-1 (D) 不确定5、设y =f (sin x ),f (x )为可导函数,那么dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx '(C)(sin )cos f x x '(D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、假设g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、设()ln f x x x =, 求()()n fx . 7、计算.〔三〕中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 假设01lim sin 22ax x e b x →-=那么a = ,b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==那么)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f ’(x)=0在(a,b)〔 〕〔A 〕仅有一个根; 〔B 〕至少有一个根; 〔C 〕没有根; 〔D 〕以上结论都不对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限和连续试题(A 卷)
1.选择题(正确答案可能不止一个)。
(1)下列数列收敛的是()。
A.n n x n
n 1
)
1( B.n
x n
n
1)
1(C.
2
sin
n x n
D.n
n
x 2
(2)下列极限存在的有()。
A.x x sin lim
B.x
x x
sin 1
lim C.
1
2
1lim 0
x
x D.1
21
lim 2n n
(3)下列极限不正确的是()。
A.
2
)
1(lim 1
x x
B.
1
1
1lim 0
x x C.2
1
2
4
lim x x
D.
x
x
e
20
lim (4)下列变量在给定的变化过程中,是无穷小量的有()。
A.)
0(12
x x
B.
)
0(sin x x
x
C.)
(x e
x
D.
)
0()1sin 2(1
2
x x
x x
(5)如果函数
.
0;0;0,1sin ,,sin 1
)
(x
x x b x
x a x x x f 在0x 处连续,则b a 、的值为(
)。
A.0,0b a
B.1,1b a
C.0
,1b
a
D.
1
,0b
a 2.求下列极限:(1))13(lim 2
3
1
x x
x
;(2)
)523(lim 2
2
x
x
x
;
(3))3
11
(lim 0
x
x
;
(4)x
x
x x
2
2
3lim
;
(5)38lim
2
3
x
x
x
;
(6)416lim
2
4
x x
x
;
(7)1
21lim
2
2
1
x x
x
x
;
(8)2
2lim
2
x
x x
;
(9)x
x x
1
1lim
;
(10)x x x
cos lim
;
(11)x
x x
x
x
3
3
313lim
;
(12)x
x x x
x
4
4
51
3lim
;
(13)x
x x x
x
4
3
1
33lim
;
(14)1
1
39lim
2
3
x x x
x
;
(15)x
x
x
33sin
lim
. 3.设2
3
2
()21
013(1)1x x f x x
x
x x
,
,,,求)(lim 1
x f x
,)(lim 0
x f x
,)(lim 2
1x f x
,)(lim 3
x f x 。
4.证明:
)0(~sin x
x x x 。
5.求下列函数的连续区间:(1)
2
9)
3ln(x x y ;
(2)
.
1;1,1,122
x
x x
x y
6.证明2
2lim
2
x
x x
不存在.
7.设
.
0;0,
1sin ,
1
sin )
(x
x x
x x x f 求)(x f 在0x 时的左极限,并说明它在0x 时
右极限是否存在?
8.证明)1
2
1
1
1(
lim 2
2
2
n
n
n
n
n
存在并求极限值。
9.若0)
1
1
(
lim 2
b ax x x
x
,求b a 、的值。
答案
1.(1)B ;(2)BD ;
(3)C ;
(4)ACD ;(5)B.
2.(1)-1;(2)3;(3)3
2
;(4)
6
1
;(5);(6)8;
(7)
3
2;(8)
2
21;(9)
2
1;(10)0;(11)
3
1;(12)
5
1;
(13)0;(14)
;(15)9
1
.
3.3)
(lim
1
x f x
, )
(lim 0
x f x 不存在,
23
)
(lim 2
1x f x
, 11)(lim 3
x f x .
5.(1))3,3[;(2)),1()1,(
.
7.)(x f 在
0x 时的左极限为0,在0x 时右极限不存在。
8.极限值为 1. 9.11a
b
,.。