高考数学教案必胜秘诀立体几何

合集下载

高考数学必胜秘诀

高考数学必胜秘诀

高考数学必胜秘诀立体几何几何法处理线面平行垂直方法1、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行; ②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。

(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。

在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。

2、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。

②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。

(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。

②如果两条直线都垂直于同一个平面,那么这两条直线平行。

3、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。

(2)范围:[0,90]o o;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。

4、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。

(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

5、二面角:(1)平面角的三要素:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直。

(2)作平面角的主要方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角;(3)二面角的范围:[0,]π;(4)二面角的求法:①转化为求平面角;②面积射影法:利用面积射影公式cos S S θ⋅射原=,其中θ为平面角的大小。

高二数学立体几何大题的13个技巧

高二数学立体几何大题的13个技巧

高二数学立体几何大题的13个技巧立体几何大题是大题里想对简洁的题目,这部分的分数我们要当心翼翼地拿下,务必不能失分。

那么,有什么技巧呢?我整理了相关资料,盼望能关心到您。

1、平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合查找证题思路。

(2)利用题设条件的性质适当添加帮助线(或面)是解题的常用(方法)之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2、空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3、空间距离的计算方法与技巧(1)求点到直线的距离:常常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的状况下,可转化为线面距离求解(这种状况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论诸如:正四周体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

高考立体几何解题技巧

高考立体几何解题技巧

高考立体几何解题技巧
在高考立体几何解题过程中,我们需要掌握一些技巧,帮助我们更好地解决问题。

以下是一些常用的技巧:
1. 空间想象能力:立体几何题目通常涉及三维空间的关系,因此我们需要具备较强的空间想象能力。

可以通过画图、模型等方式辅助思考和理解题目。

2. 几何关系的转换:有时候,立体几何问题可以通过转换为平面几何问题来解决。

我们可以尝试在某个平面上进行投影或者进行截面的分析,将立体问题转化为二维几何问题来解决。

3. 利用相似三角形:在立体几何问题中,相似三角形的性质经常被用到。

通过找出共性和相似关系,我们可以推导出一些有用的结论,从而解决问题。

4. 使用平行四边形法则:在解决立体几何问题时,我们可以运用平行四边形的性质。

例如,如果某个角度为90度,那么某
些边和角度之间可能存在平行四边形关系,可以利用平行四边形法则求解。

5. 应用平面几何定理:立体几何与平面几何密切相关,因此一些平面几何定理也可以在解决立体几何问题时使用。

例如,利用圆锥的旋转对称性可以得到一个圆锥的表面积和体积的关系。

6. 巧妙使用一点一线:有时候,一个线段或一个点的位置可以帮助我们推导出其他线段或点的位置,从而解决问题。

在解题
过程中,我们需要善于发现和运用这些信息。

总之,在解决高考立体几何问题时,需要充分理解题意,巧妙应用几何知识和技巧,灵活运用不同的解题方法。

通过反复联系和练习,提高自己的解题能力和水平。

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。

对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。

本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。

一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。

立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。

学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。

二、立体几何定理掌握一些常见的立体几何定理十分必要。

例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。

这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。

三、快速计算体积的方法体积是立体几何题目中最常见的考点。

理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。

例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。

此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。

四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。

学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。

例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。

五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。

例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。

这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。

以上五点是掌握高考数学中的立体几何解题方法的基础。

学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。

通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。

高考数学解题技巧及规范答题:立体几何大题

高考数学解题技巧及规范答题:立体几何大题
(2)当四棱锥 体积为 时,求二面角 的正弦值.
【分析】
(1)分别取 , 的中点 , ,证明 , 可得 平面 ,
可证 ,由等腰三角形的性质可得 ,证明三角形全等即可求证;
(2)在 上取一点O,连接 ,使 ,根据已知条件证明O为正方形 的中心,建立空间直角坐标系求出平面 和平面 的法向量,利用夹角公式即可求解.
又 ,所以 ,
故 .
【此处由三角形的面积公式和体积公式求体积,若底面面积正确但体积计算错误,减1分.】
【评分细则】
①利用三线合一证明AO⊥BD,得1分
②利用面面垂直的性质证明AO⊥平面BCD,得2分.
③利用线面垂直的性质证明AO⊥CD,得1分.
④利用(1)结论证明三线垂直,合理建系得2分.
⑤正确写出和设出点的坐标,指出一个平面的法向量,得2分.
(1)若三棱锥 体积是 ,求 的值;
(2)若直线 与平面 所成角的正弦值是 ,求 的值.
【分析】
(1)由题意知, 、 、 两两垂直,建立空间直角坐标系,设 ,由 ,求得M的坐标,过 作 于 , 于 ,再由 求解;
(2)由(1)知 ,求得平面 的一个法向量为 ,设直线 与平面 所成的角为 ,然后由 求解.

又 平面 平面 ,
平面 ,
即 ,
又 ,
平面 ,
故 为四棱锥 的高,
为直线 与平面 所成角,
又 ,
即 ,
四棱锥 的体积为 ;
(2)假设存在点 ,建立如图所示的空间直角坐标系,
设 , ,
则 ,
则 , , ,
设平面 和平面 的法向量分别为 , ,
则 ,令 ,则 ,
,令 ,
则 ,
二面角 的余弦值为 ,

解决高中数学中的立体几何问题的技巧与方法

解决高中数学中的立体几何问题的技巧与方法

解决高中数学中的立体几何问题的技巧与方法高中数学中的立体几何问题是学习者常常遇到的难点之一。

掌握解决这类问题的技巧和方法,有助于提升学习效率和解题能力。

本文将介绍一些解决高中数学中的立体几何问题的技巧与方法,帮助学习者更好地理解和应对这个领域的挑战。

一、画图准确在解决立体几何问题时,准确的图形是解题的基础。

因此,学习者需要养成细心观察和准确描绘图形的习惯。

画图时,应注意每一个线段、角度和形状的相对关系。

可以使用直尺、圆规等工具帮助画出准确的图形,避免出现不必要的错误。

二、理解立体几何基本概念在解决立体几何问题时,理解立体几何的基本概念非常重要。

这些基本概念包括平行、垂直、对称、相似、全等等。

学习者应该熟悉并理解这些概念的几何定义和性质,以便在解题过程中能够准确地运用它们。

三、运用立体几何定理和定律高中数学中有许多立体几何的定理和定律,学习者需要熟悉并灵活运用。

例如,平行线与截线定理可以用来确定平行线与平面的关系;空间中两条垂直平分线的交点在该线段的中点等。

运用这些定理和定律,可以简化解题过程,提高解题效率。

四、利用立体几何等距原理利用立体几何等距原理是解决数学中立体几何问题的重要方法。

该原理指出,如果两个几何体的形状和大小完全相同,则它们的性质和关系也相同。

在解题过程中,如果能够找到两个或多个形状完全相同的几何体,就可以将问题转化为更简单的几何关系,从而更容易解决问题。

五、建立几何模型为了更好地理解和解决立体几何问题,学习者可以尝试建立几何模型。

几何模型能够帮助学习者形象地展示和观察问题,从而更容易找出解题的思路和方法。

通过动手实践建立几何模型,能够增加对立体几何性质和关系的直观认识,提高解题的准确性和效率。

六、多思考、多练习解决立体几何问题需要思维的灵活性和逻辑推理能力。

学习者应该养成多思考、多练习的习惯,通过大量的练习来提高解题的技巧和速度。

在解题过程中,遇到困难或者不理解的地方,可以请教老师或者同学,进行思路的交流和互动,有助于拓宽解题思路和提高解题能力。

高三数学高考教案必胜秘诀(四)

城东蜊市阳光实验学校立体几何1、三个公理和三条推论:〔1〕公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

这是判断直线在平面内的常用方法。

〔2〕公理2、假设两个平面有两个公一一共点,它们有无数个公一一共点,而且这无数个公一一共点都在同一条直线上。

这是判断几点一一共线〔证这几点是两个平面的公一一共点〕和三条直线一一共点〔证其中两条直线的交点在第三条直线上〕的方法之一。

〔3〕公理3:经过不在同一直线上的三点有且只有一个平面。

推论1:经过直线和直线外一点有且只有一个平面。

推论2:经过两条相交直线有且只有一个平面。

推论3:经过两条平行直线有且只有一个平面。

公理3和三个推论是确定平面的根据。

如〔1〕在空间四点中,三点一一共线是四点一一共面的_____条件〔答:充分非必要〕;〔2〕给出命题:①假设A∈l,A∈α,B∈l,B∈α,那么l ⊂α;②假设A∈α,A∈β,B∈α,B∈β,那么α∩β=AB ;③假设l ⊄α,A∈l,那么A ∉α④假设A 、B 、C∈α,A 、B 、C∈β,且A 、B 、C 不一一共线,那么α与β重合。

上述命题中,真命题是_____〔答:①②④〕;〔3〕长方体中ABCD-A1B1C1D1中,AB=8,BC=6,在线段BD ,A1C1上各有一点P 、Q ,在PQ 上有一点M ,且PM=MQ ,那么M 点的轨迹图形的面积为_______〔答:24〕2、直观图的画法〔斜二侧画法规那么〕:在画直观图时,要注意:〔1〕使0135x o y '''∠=,x o y '''所确定的平面表示程度平面。

〔2〕图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半。

如〔1〕用斜二测画法画一个程度放置的平面图形为如以下列图的一个正方形,那么原来图形的形状是〔〕〔答:A 〕〔2〕正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为_____2616〕 3、空间直线的位置关系:〔1〕相交直线――有且只有一个公一一共点。

2021高考数学必考点解题方式秘籍 立体几何3 理(1)

2021高考理科数学必考点解题方式秘籍:立体几何3一.专题综述:立体几何的要紧任务是培育学生的空间想像能力,固然推理中兼顾逻辑思维能力的培育,几何是研究位置关系与数量关系的学科,而位置关系与数量关系能够彼此转化,解决立体几何的大体方式是将空间问题转化为平面的问题,即空间问题平面化,平面化的手法有:平移(包括线、面、体的平移)、投影、展开、旋转等变换。

1.考纲要求(1)把握平面的大体性质。

会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各类位置关系的图形,能够依照图形想像它们的位置关系。

(2)把握直线和平面平行的判定定理和性质定理:明白得直线和平面垂直的概念,把握直线和平面垂直的判定定理:把握三垂线定理及其逆定理。

(3)明白得空间向量的概念,把握空间向量的加法、减法和数乘。

(4)了解空间向量的大体定理;明白得空间向量坐标的概念,把握空间向量的坐标运算。

(5)把握空间向量的数量积的概念及其性质:把握用直角坐标计算空间向量数量积的公式;把握空间两点间距离公式。

(6)明白得直线的方向向量、平面的法向量、向量在平面内的射影等概念。

(7)把握直线和直线、直线和平面、平面和平面所成的角、距离的概念,关于异面直线的距离,只要求会计算已给出公垂线或在座标表示下的距离把握直线和平面垂直的性质定理把握两个平面平行、垂直的判定定理和性质定量。

(8)了解多面、凸多面体的概念,了解正多面体的概念。

(9)了解棱柱的概念,把握棱柱的性质,会画直棱柱的直观图。

(10)了解棱锥的概念,把握正棱锥的性质,会画正棱锥的直观图。

(11)了解球的概念,把握球的性质,把握球的表面积、体积公式。

2.考题设置与分值从近几年各地高考试题分析,立体几何题型一样是1至3个填空或选择题,1个解答题,分值25分左右3.考试重点与难度(1)空间大体的线、面位置关系。

一样以客观题的形式显现,试题很基础,但需要全面、准确把握空间线、面位置关系的判定、性质,还需要有好的空间感。

高二数学立体几何大题的八大解题技巧

高二数学立体几何大题的八大解题技巧引言立体几何是高中数学中较为抽象和复杂的一个分支,对于很多学生来说,解决立体几何的大题可能会显得有些困难。

然而,只要我们掌握一些解题技巧,并进行适当的练习,就能够更加游刃有余地解决这类问题。

本文将介绍八大解题技巧,帮助高二学生在数学考试中取得好成绩。

技巧一:构造合理的立体模型对于立体几何问题,构造一个合理的三维模型是非常重要的。

通过绘制图形,我们可以更清晰地理解问题,有助于推导出解题方法。

例如,当我们遇到一个求体积的问题时,可以根据题目中的条件,构造一个与实际物体相似的模型,并确定其几何关系。

这样一来,在计算体积时,我们可以很容易地将问题转化为计算几何体的体积。

技巧二:利用平行关系简化解题在立体几何问题中,平行关系是经常出现的。

我们可以利用平行性质简化解题过程。

例如,当我们遇到一道求两条直线之间的距离的问题时,如果题目中给出的条件中存在两条平行线,我们可以通过利用平行关系,使用相似三角形等方法,直接求出距离,而不需要进一步计算。

技巧三:灵活应用平行截面法平行截面法是解决某些立体几何问题的重要方法。

它利用了不同截面的面积比例以及平行线与截面的关系,帮助我们求解立体几何问题。

当我们遇到一个立体几何问题时,可以尝试引入平行截面,通过计算各截面的面积比例、长度比例等,推导出所需的结果。

技巧四:加长或减短前提条件有时候,我们遇到的立体几何问题可能较为复杂,不容易解决。

这时,我们可以尝试通过增加或减少一些前提条件,简化问题,使其能够更容易解决。

例如,当我们遇到一个立体几何问题需要计算某个长度时,有时我们可以通过修改前提条件,使其成为一个相似三角形问题,从而更容易求解目标长度。

技巧五:利用相似关系求解相似关系在立体几何问题中有着广泛的应用。

通过找到合适的相似三角形或相似立体,我们可以快速求解问题。

当我们遇到一个立体几何问题时,可以尝试寻找相似的几何形状,并利用相似关系设置等式,求解出所需的结果。

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何1、三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

这是判断直线在平面内的常用方法。

(2)公理2、如果两个平面有两个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上。

这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。

(3)公理3:经过不在同一直线上的三点有且只有一个平面。

推论1:经过直线和直线外一点有且只有一个平面。

推论2:经过两条相交直线有且只有一个平面。

推论3:经过两条平行直线有且只有一个平面。

公理3和三个推论是确定平面的依据。

如(1)在空间四点中,三点共线是四点共面的_____条件(答:充分非必要);(2)给出命题:①若A ∈l ,A ∈α,B ∈l ,B ∈α,则 l ⊂α;②若A ∈α,A ∈β,B ∈α,B ∈β,则α∩β=AB ;③若l ⊄α ,A ∈l ,则A ∉α④若A 、B 、C ∈α,A 、B 、C ∈β,且A 、B 、C 不共线,则α与β重合。

上述命题中,真命题是_____(答:①②④);(3)长方体中ABCD-A 1B 1C 1D 1中,AB=8,BC=6,在线段BD ,A 1C 1上各有一点P 、Q ,在PQ 上有一点M ,且PM=MQ ,则M 点的轨迹图形的面积为_______(答:24)2、直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使0135x o y '''∠=,x o y '''所确定的平面表示水平平面。

(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半。

如(1)用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )(答:A ) (2)已知正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为_____(答:26) 3、空间直线的位置关系:(1)相交直线――有且只有一个公共点。

(2)平行直线――在同一平面内,没有公共点。

(3)异面直线――不在同一平面内,也没有公共点。

如(1)空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系_____(答:相交);(2)给出下列四个命题:①异面直线是指空间既不平行又不相交的直线;②两异面直线b a ,,如果a 平行于平面α,那么b 不平行平面α;③两异面直线b a ,,如果⊥a 平面α,那么b 不垂直于平面α;④两异面直线在同一平面内的射影不可能是两条平行直线 。

其中正确的命题是_____(答:①③)4、异面直线的判定:反证法。

如(1)“a、b为异面直线”是指:①a∩b=Φ,但a不平行于b;②a⊂面α,b⊂面β且a ∩b =Φ;③a⊂面α,b⊂面β且α∩β=Φ;④a⊂面α,b ⊄面α ;⑤不存在平面α,能使a⊂面α且b⊂面α成立。

上述结论中,正确的是_____(答:①⑤);(2)在空间四边形ABCD 中,M 、N 分别是AB 、CD 的中点,设BC+AD=2a ,则MN 与a 的大小关系是_____(答:MN<a );(3)若E 、F 、G 、H 顺次为空间四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,且EG=3,FH=4,则AC 2+BD 2= _____(答:50);(4)如果a、b是异面直线,P 是不在a、b上的任意一点,下列四个结论:①过点P 一定可以作直线l 与a、b都相交; ②过点P 一定可以作直线l 与a、b都垂直;③过点P 一定可以作平面α与a、b都平行; ④过点P 一定可以作直线l 与a、b都平行。

其中正确的结论是_____(答:②);(5)如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为_____(答:24);(6)已知平面,//,,,a c c A a b b a 且平面βαβα⊂=⋂⊂=⋂求证:b 、c 是异面直线.F D C B A E D 1C 1B 1A 15、异面直线所成角θ的求法:(1)范围:(0,]2πθ∈;(2)求法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角。

如(1)正四棱锥ABCD P -的所有棱长相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于____(答:33);(2)在正方体AC 1中,M 是侧棱DD 1的中点,O 是底面ABCD 的中心,P 是棱A 1B 1上的一点,则OP 与AM 所成的角的大小为____(答:90°);(3)已知异面直线a 、b 所成的角为50°,P 为空间一点,则过P 且与a 、b 所成的角都是30°的直线有且仅有____条(答:2);(4)若异面直线,a b 所成的角为3π,且直线c a ⊥,则异面直线,b c 所成角的范围是____(答:[,]62ππ); 6、异面直线的距离的概念:和两条异面直线都垂直相交的直线叫异面直线的公垂线。

两条异面直线的公垂线有且只有一条。

而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交。

如(1)ABCD 是矩形,沿对角线AC 把ΔADC 折起,使AD ⊥BC ,求证:BD 是异面直线AD 与BC 的公垂线;(2)如图,在正方体ABCD —A 1B 1C 1D 1中,EF 是异面直线AC 与A 1D 的公垂线,则由正方体的八个顶点所连接的直线中,与EF平行的直线有____条(答:1); 7、两直线平行的判定:(1)公理4:平行于同一直线的两直线互相平行;(2)线面平行的性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行;(3)面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行;(4)线面垂直的性质:如果两条直线都垂直于同一个平面,那么这两条直线平行。

8、两直线垂直的判定:(1)转化为证线面垂直;(2)三垂线定理及逆定理。

9、直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交。

其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直。

注意:任一条直线并不等同于无数条直线;(3)直线与平面平行。

其中直线与平面相交、直线与平面平行都叫作直线在平面外。

如(1)下列命题中,正确的是 A、若直线a 平行于平面α内的一条直线b , 则 a // α B、若直线a 垂直于平面α的斜线b 在平面α内的射影,则a ⊥b C、若直线a 垂直于平面α,直线b 是平面α的斜线,则a 与b 是异面直线 D、若一个棱锥的所有侧棱与底面所成的角都相等,且所有侧面与底面所成的角也相等,则它一定是正棱锥(答:D );(2)正方体ABCD-A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是___________(答:线段B 1C )。

10、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。

(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。

在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。

如(1)α、β表示平面,a 、b 表示直线,则a ∥α的一个充分不必要条件是 A 、α⊥β,a ⊥β B 、α∩β=b ,且a ∥b C 、a ∥b 且b ∥α D 、α∥β且a ⊂β(答:D );(2)正方体ABCD-A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM=DN ,求证:MN ∥面AA 1B 1B 。

11、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。

②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。

(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。

②如果两条直线都垂直于同一个平面,那么这两条直线平行。

如(1)如果命题“若y y x ,⊥∥z ,则z x ⊥”不成立,那么字母x 、y 、z 在空间所表示的几何图形一定是_____(答:x 、y 是直线,z 是平面);(2)已知a ,b ,c 是直线,α、β是平面,下列条件中能得出直线a ⊥平面α的是 A 、a ⊥b ,a⊥c其中b⊂α,c⊂α B 、a ⊥b ,b∥α C 、α⊥β,a∥β D 、a∥b,b⊥α(答:D );(3)AB 为⊙O 的直径,C 为⊙O 上的一点,AD ⊥面ABC ,AE ⊥BD 于E ,AF ⊥CD 于F ,求证:BD ⊥平面AEF 。

12、三垂线定理及逆定理:(1)定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(2)逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直。

其作用是证两直线异面垂直和作二面角的平面角。

13、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。

(2)范围:[0,90];(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。

如(1)在正三棱柱ABC-A 1B 1C 1中,已知AB=1,D 在棱BB 1上,BD=1,则AD 与平面AA 1C 1C 所成的角为______(答:arcsin46);(2)正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点,则棱 A 1B 1 与截面A 1ECF 所成的角的余弦值是______(答:13);(3)PC PB PA ,,是从点P 引出的三条射线,每两条的夹角都是︒60,则直线PC 与平面PAB 所成角的余弦值为______(答:33);(4)若一平面与正方体的十二条棱所在直线都成相等的角θ,则sin θ的值为______(答:33)。

14、平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线。

15、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。

相关文档
最新文档