信号与系统课后题解第五章

合集下载

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
全响应:
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析

信号与系统第五章

信号与系统第五章
信号分配的作用。
P289
➢ 仅有输出支路,而无输入支路的节点称为源点(或输入结
点),如图中的 x1 。
➢ 仅有输入支路,而无输出支路的结点称为汇点(或输出结
点),如图中的 x5。
➢ 既有输入支路又有输出支路的结点称为混合结点,如图中
的x2 、x3 和x4 。
➢ 从任一结点出发沿支路箭头方向连续经过各相连的不同的 支路和结点,到达另一结点的路径称为通路。
梅逊公式为
H1
k
gkk
式中: 1 La LbLc Ld LeLf L
a
b,c
d ,e, f
称为信号流图的特征行列式; La是所有不同环路的增益
之和;
Lb
Lc
a
是所有两两互不接触环路的增益乘积之和;
b,c
Ld LeLf 是所有三个互不接触环路的增益乘积之和;…
d ,e, f
H 1
流图所描述的方程是
x2 ax1 x3 bx2 ex5 x4 cx2 dx3 x5 fx4 x6 x5
联立求解后,可得 x6 Hx1 ,结果完全同上。
b.化简信号流图的具体步骤可不同,但最终结果必相同。 即不同结构的框图可实现同一功能。
3.信号流图的Mason(梅逊)公式 P293
用化简信号流图的方法求系统输入输出间的系统函数比较 复杂。若利用梅逊公式可直接由初始的、未经化简的信号流 图很方便地求得输入输出间的系统函数。
若将式
dy t
dt
a0
y
t
b0
x
t

dy t
dt
a0
y
t
b1
dx t
dt
b0
x
t

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

《信号与系统》第五章基本内容示例(含答案)

《信号与系统》第五章基本内容示例(含答案)

e−4t
sin(0t)
(t)
(2)ℒ
(2t

5)
=
1
−5s
e2
s
(3)ℒ-1
1 1− e−s
=
k =0
(t

k)
(4)ℒ
cos(3t − 2) (3t − 2) =
s
2
s +
9

e
2 3
s
(5)ℒ
e−t (t)
− e−(t −3)
(t

3)
=
s
1 (1− +1
e−3s )
(6)ℒ-1
1 2
2. 已知系统的 H (s) = s +1 ,画出系统的零、极点分布图。
(s + 2)2 + 4
六、简单计算下列式子
ℒ 1、
-1
(s
+
0 4)2
+
02
2、ℒ (2t − 5)
ℒ-1
3、
1
1 − e−
s
4、ℒ cos(3t − 2) (3t − 2)
ℒ 5、 e−t (t) − e−(t −3) (t − 3)
系统并联后的复合系统的系统函数为( )。
A . H1(s) + H2 (s)
B . H1(s) H2(s)
C.无法确定
D. H1(s) // H2(s) 14、若 f (t) 1 ,Re[s] −3 ,根据终值定理,原函数 f (t) 的终值为
s+3
( )。
A.无穷小
B.无穷大
C. 1 D. 0
X (s) = F(s) + s X (s) + s2 X (s)

郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义 第5章 傅里叶变换应用于通信系统——

郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义  第5章 傅里叶变换应用于通信系统——

3 2
c
j)2 (
3 2
c
)
2
| H ( j) | e
j ( )
| H ( j) |
1
[1
(
c
)
2
]2
(
c
)
2
(
)
arctan[
1
c
(c
)
2
]
h(t) F 1[H ( j)]
2 c 3
ct
e 2 sin(
3 2
ct
)
波形及频谱图:
6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
衰减不能过于迅速;佩利-维纳准则是系统物理可实现的必要条件,而不是充分条件。
五、希尔伯特变换研究系统函数的约束条件
7 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

希尔伯特变换对
R()
1
X
()
d
X
(
)
1
R( )
d
该变换对说明具有因果性的系统函数 H ( j) 的实部 R() 被已知的虚部 X () 唯一
轴上的相对位置产生变化;
(3)线性失真:幅度、相位变化,不产生新的频率成分;
(4)非线性失真:产生新的频率成分。
2.无失真传输条件
(1)无失真传输
系统的无失真传输是指响应信号与激励信号相比,只是大小与出现的时间不同,而无波
形 上 的 变 化 。 设 激 励 信 号 为 e(t) , 响 应 信 号 为 r(t) , 则 无 失 真 传 输 的 条 件 是 r(t) Ke(t t0) ,K 为常数, t0 为滞后时间,如图 5-1 所示。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。

](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S RS LS C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号分析与处理课后习题答案

信号分析与处理课后习题答案

1 信号分析与处理课后习题答案第五章快速傅里叶变换1.1.如果一台通用计算机的速度为平均每次复乘需要如果一台通用计算机的速度为平均每次复乘需要50us 50us,每次复加需要,每次复加需要10us 10us,,用来就散N=1024点的DFT DFT,问:,问:(1)直接计算需要多少时间?用FFT 计算呢?(2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率?解:分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1);利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ;(1)直接DFT 计算:复乘所需时间2215010245052.4288T N us us s=´=´=复加所需时间2(1)101024(10241)1010.47552T N N us us s=-´=-´=所以总时间1262.90432DFT T T T s=+=FFT 计算:复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =´=´´´=复加所需时间422log 101024log 1024100.1024T N N us us s =´=´´=所以总时间为340.3584FFT T T T s =+=(2)假设计算两个N 长序列1()x n 和2()x n 的卷积计算过程为如下:第一步:求1()X k ,2()X k ;所需时间为2FFTT ´第二步:计算12()()()X k X k X k =·,共需要N 次复乘运算所需时间为501024500.0512To N us us s=´=´=第三步:计算(())IFFT X k ,所需时间为FFTT 所以总时间为230.35840.0512 1.1264FFT T T To s s s=´+=´+=容许计算信号频率为N/T=911.3Hz 2.2.设设x(n)x(n)是长度为是长度为2N 的有限长实序列,()X k 为x(n)x(n)的的2N 点得DFT DFT。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−2 −2
1 2 5 = 4
271
联立以上两式可解得: A1 = 2 , A2 = −3 则系统的零输入响应为
y zi [n ] = 2(− 1) − 3(− 2)
n
n
5.4 设有离散系统的差分方程为 y[n] + 4 y[n − 1] + 3 y[n − 2] = 4 f [n] + f [n − 1] ,试画出其时域模拟 图。 【知识点窍】主要考察由系统的差分方程画出系统的直接模拟图,掌握直接模拟图的意义。 【逻辑推理】将差分方程各个环节分别用加法器及延时器来表示。 解:时域模拟图如图 5.1
联立以上两式可解得: A1 = 1 , A2 = 2 于是齐次解为
275
y h [n] = (− 3) + 2 n+1
n
5.10
如有齐次差分方程为 y[n] + 4 y[n − 1] + 4 y[n − 2] = 0 , 已知 y[0] = y[1] = −2 , 试求其齐次解。 【知识点窍】主要考察系统的齐次解的概念及其求解方法。 【逻辑推理】首先通过差分方程得特征方程,由特征方程求得特征根,代入条件即可求得齐次
273
②将序列 f 2 [− i ] 沿正 n 轴平移 n 个单位,成为 f 2 [n − i ] ; ③求乘积 f 1 [i ] f 2 [n − i ] ; ④按式 f 1 [n] ∗ f 2 [n ] = 2)阵列表法 3)解析法:利用卷积和定义求解。 解: f [n] ∗ h[n] = 上式是公比为
(
)
λ2 + λ − 6 = 0
其特征根 λ1 = −3, λ2 = 2 。其齐次解为
y h [n] = A1 (− 3) + A2 (2 )
n
n
将初始状态 y[0] = 3, y[1] = 1 代入上式,有:
y[0] = y h [0] = A1 (− 3) + A2 (2) = 3
0 0
y[1] = y h [ 1] = −3 A1 + 2 A2 = 1
5.2 教材习题同步解析
5.1 设信号 f (t ) 为包含 0~ ω m 的频带有限信号,试确定 f (3t ) 的抽样频率。 【知识点窍】主要考察奈奎斯特频率的概念。 【逻辑推理】时域的信号的压缩,在频域中将会扩展。时域中压缩多少培,频域中将扩展多少 培。另外,抽样频率等于奈奎斯特频率与 2π 之比。 解:因为信号 f (t ) 为包含 0~ ω m 的频带有限信号,则信号 f (3t ) 为包含 0~3ω m 的频带有限信 号。
1 f s min
最小理想取样点数 n min =
τ (时间间隔) Ts max
解:电视信号占有的频带为 1~6MHz,即带宽为 f m = 5MHz , 则抽样频率为 f s ≥ 10MHz 。 抽样点的个数为 n =
25 f s = 4000 个 625
1 , 2 y[− 2] = 5 ,试 4
270
则其奈奎斯特频率 Ω N = 2 × 3ωm ,故 f (3t ) 的抽样频率 f s ≥
Ω N 3ω m = 。 2π π
5.2 若电视信号占有的频带为 1~6MHz , 电视台每秒发送 25 幅图像, 每幅图像又分为 625 条水平扫 描线,问每条水平线至少要有多少个抽样点? 【知识点窍】主要考察香农取样定理及理想取样点数求法。 【逻辑推理】最小取样频率 f s min = 2 f m (等于 2 倍的信号最高频率) 。 香农取样间隔 Ts max =
该一阶系统的单位响应是
h[2] = 0.8h[1] + δ [2] = 0.8 2
h[n] = 0.8 n ε [n]
(2)令输入激励 f [n] = ε [n] ,系统在阶跃序列 ε [n] 的激励下的零状态响应就为单位阶跃响应 g [n] 。 即隐含初始条件为 n < 0 时 则给定的差分方程变为
5.3 设有差分方程为 y[n] + 3 y[n − 1] + 2 y[n − 2] = f [n ] ,初始状态 y[− 1] = − 求系统的零输入响应。
【知识点窍】主要考察系统零输入响应的概念,会用特征值求零输入响应。 【逻辑推理】首先由差分方程得到特征方程,由此求出特征根,然后代入初始条件求出零输入 响应。 解:由差分方程得其特征方程为 由此解得其特征根 λ1 = −1, λ2 = −2 。 故系统的零输入响应为
λ2 + 3λ + 2 = 0
y zi [n ] = A1 (− 1) + A2 (− 2)
n
n
将初始状态 y[− 1] = −
1 , 2
y[− 2] =
5 代入上式,有: 4
−1 −1
y[− 1] = y zi [− 1] = A1 (− 1) + A2 (− 2 ) = − y[− 2] = y zi [− 2 ] = A1 (− 1) + A2 (− 2 )
1 − a n+1 1 − a n− 5 ε [n] − ε [n − 6] 1−a 1− a
274
=
5.8
描述某线性非时变离散系统的差分方程为 y[n] − 2 y[n − 1] = f [n] , 若已知初始状态 y[− 1] = 0 ,
激励为单位阶跃序列,即 f [n] = ε [n] ,试求 y[n] 。 【知识点窍】主要考察系统的阶跃响应的概念及其求解方法。 【逻辑推理】利用选代法求解。 解:由给定的差分方程变得
h[n] 。即隐含初始条件为 n < 0 时
则给定的差分方程变为
h[n] = 0
h[n] = 0.8h[n − 1] + δ [n]
可依次迭代得
272
h[0 ] = 0.8h[− 1] + δ [0] = 1 h[1] = 0.8h[0 ] + δ [ 1] = 0.8 L h[n] = 0.8h[n − 1] + 0 = 0.8 n
解:因为 同理可得
1 − a n +1 a ε [n] ∗ ε [n] = ∑ a ε [i ] ⋅ ε [n − i ] = ∑ a = ε [n] i = −∞ i =0 1−a
n ∞ i n i
a nε [n] ∗ ε [n − 6] = ∑ a i ε [i ] ⋅ ε [n − 6 − i ] = ∑ a i =
求得
y[n] = 2 n+1 − 1 ε [n]
5.9 如有齐次差分方程为 y[n] + y[n − 1] − 6 y[n − 2] = 0 ,已知 y[0] = 3, y[1] = 1 ,试求其齐次解。 【知识点窍】主要考察系统的齐次解的概念及其求解方法。 【逻辑推理】首先通过差分方程得特征方程,由特征方程求得特征根,代入条件即可求得齐次 解。 解:其特征方程为
y [n ] f [n]
4
D

D -4 -3
D
图 5.1
5.5 设有一阶系统为
y[n] − 0.8 y [n −Байду номын сангаас1] = f [n]
(1)试求单位响应 h[n] ; (2)试求阶跃响应 g [n] 。 【知识点窍】主要考察系统的单位响应和阶跃响应的概念及其求解方法。 【逻辑推理】利用选代法求解。 解: (1)令输入激励 f [n] = δ [n] ,系统在冲激序列 δ [n ] 的激励下的零状态响应就为单位响应
1 3
n
f [n] ∗ h[n] 。
卷积和的图解计算法是把取卷积的过程分解为反褶、平移、相乘、求和四个步骤。具体求序列 的卷积和 f 1 [n ]∗ f 2 [n] 按下述步骤进行: ①将序列 f 1 [n] 、 f 2 [n ] 的自变量用 i 替换, 然后将序列 f 2 [i ] 以纵坐标为轴线反褶, 成为 f 2 [− i ] ;
(
)
g [n ] = 5 1 − 0.8 n+1 ε [n]
则该一阶系统的单位响应是
(
)
5.6
设离散系统的单位响应为 h[n] = ε [n] ,输入信号为 f [n] = 2 n ,试求 【知识点窍】主要考察离散系统的卷积和概念及计算方法 【逻辑推理】卷积和计算方法通常有:1)图解计算法
y[n] = 2 y[n − 1] + f [n]
因为激励为 f [n] = ε [n] ,所以当 n < 0 时 f [n] = 0 可依次迭代得
y[0 ] = 2 y[− 1] + ε [0] = 1 y[1] = 2 y [0] + 1 = 3 y[2] = 2 y [ 1] + 1 = 7 y[3] = 2 y [2] + 1 = 15 L y[n] = 2 y[n − 1] + 1 = 2 n+1 − 1
第五章 离散时间系统的时域与频域分析
5.1 学习重点
1、深刻理解离散时间系统的基本概念,学会建立离散系统的数学模型——差分方程。 2、掌握离散时间系统的时域分析方法,灵活应用迭代法、经典法求解单位响应、单 位阶跃响应、零输入响应、零状态响应和全响应等。 3、理解卷积和的定义,掌握求解卷积和的方法,包括图解法、阵列表法和解析法等; 会用卷积和求零状态响应。 4、了解周期离散时间信号的离散傅里叶级数的表示方法,非周期离散时间信号的离 散时间傅里叶变换以及周期序列的离散时间傅里叶变换。 5、熟悉离散时间傅里叶变换的性质,并会灵活应用。 6、掌握离散时间 LTI 系统的频域分析方法。 7、用 MATLAB 进行离散时间系统的时域与频域分析
所以
5.7
已知系统的的响应
h[n] = a n ε [n ]
(0 < a < 1)
输入信号 f [n] = ε [n] − ε [n − 6 ] ,试求系统的零状态响应。 【知识点窍】主要考察离散系统的零状态响应概念及求解。 【逻辑推理】利用系统的零状态响应的卷积和求解。即: y zs [n ] = f [n] ∗ h[n]
相关文档
最新文档