中职数学第4册教案

合集下载

中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征11.5一元线性回归分析第十二章三角计算及其应用(第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(?ω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。

中职教材数学(基础模块 高教版)上册电子教案:4

中职教材数学(基础模块 高教版)上册电子教案:4

【课题】4.1 实数指数幂(2)【教学目标】知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点 .能力目标:⑴正确进行实数指数幂的运算;⑵ 培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力 . 【教学重点】有理数指数幂的运算.【教学难点】有理数指数幂的运算.【教学设计】⑴ 在复习整数指数幂的运算中,学习实数指数幂的运算;⑵ 通过学生的动手计算,巩固知识,培养计算技能;⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;⑷通过知识应用巩固有理数指数幂的概念 .【教学备品】教学课件.【课时安排】2 课时. (90 分钟)【教学过程】教过*揭示课题4.1 实数指数幂.*回顾知识复习导入知识点整数指数幂,当n N* 时,a n = ;规定当a 0 时,a0 = ; a n =教学意图复习已有知识教师行为介绍学生行为了解学程时间;m 分数指数幂:a n =m ;a0时,a n=其中m、n N*且n>1.当n 为奇数时, a R;当n 为偶数时, a 0.问题1.将下列各根式写成分数指数幂:(1) ; (2) .20 4 32.将下列各分数指数幂写成根式:3(2) (2.3) 3.扩展整数指数幂的运算法则为:(1) a m . a n = ;(2) (a m )n = ;(3) (ab)n = .其中(m、n Ζ).归纳运算法则同样适用于有理数指数幂的情况.*动脑思考探索新知概念当p 、q 为有理数时,有a p . a q = a p+q ;(a p )q = a pq ;(ab)p = a p .b p.教师行为提问巡视解答引导学生行为回忆求解交流思考领会教学意图知识建构基础了解学生指数运算掌握情况回顾整数指数幂为后续做好3 2(1) 65 4;a2教过时间学程.运算法则成立的条件是,出现的每个有理数指数幂都有意义.说明可以证明,当p 、q 为实数时,上述指数幂运算法则也成立.*巩固知识典型例题例 4 计算下列各式的值:说明总结归纳说明了解思考理解记忆领会准备自然过渡到实数指数幂通过115 说明观察例题13 根 3 6(1) 0.1253; (2). 3 9 根 3 2分析 (1)题中的底为小数,需要首先将其化为分数,有利于运算法则的利用; (2)题中,首先要把根式化成分数指数幂,然后再进行化简与计算.解 (1)1 -3根 1 8 21 1 1 1 1(2) 3 根 3 6 = 32 根 (3 根 2)3 =32 根 33 根 233 9 根 3 2 1 1 2 1(32 )3 根 23 33 根 231 12 1 1 1 1说明 (2)题中,将 9 写成 32 ,将 6 写成 2根3 ,使得式子中只出现两种底,方便于化简及运算.这种尽可能将底的化同的做法,体现了数学中非常重要的“化同”思想. 例 5 化简下列各式: (1); (2) (||(a 21 +b 21))|| (||(a 21 -b 21))||;(3) 5 a -3b 2 合 5 a 2 合 5 b 3 .分析 化简要依据运算的顺序进行,一般为“先括号内,再括教师 行为分析强调引领讲解质疑学生 行为思考主动 求解领会了解观察教学 意图进一步使 学生 理解指数 幂的 运算 法则引导 学生 体会 化同 的的数学 思想= 32+ 3- 3 根 23-3 = 36 根 20 = 36.1 1 1 1教 过学 程0.1253 = ( )3 = (2-3 )3 = 2 3 = 2-1 = ;时 间号外;先乘方,再乘除,最后加减”,也可以利用乘法公式. 解 (2a 4b 3 )4= 24 a 4根4b 3根4 = 16a 16b 12 = 16 a 16-6b 12-2 = 16 a 10b 10.(3a 3b )2 32 a 3根2b 1根2 9a 6b 2 9 9(||(a 21 + b 21))|| (||(a 21 -b 21))|| = (||(a 21))||2- (||(b 21))||2= a 21根2 - b 21根2= a - b .1 2 35 a -3b 2 合 5 a 2 合 5 b 3 = (a -3b 2 )5 合 a 5 合 b 51 123 3 2 2 3= (a -3 )5 (b 2 )5 合 a 5 合 b 5 = a -5 b 5 合 a 5 合 b 5= a (- 53 - 52)b 52 - 53 = a -1b -51.说明 作为运算的结果,一般不能同时含有根号和分数指数分析强调讲解思考主动 求解领会了解注意 观察 学生 是否 理解 知识点可以 适当 交给 学生自我 探究幂. (3)题的结果也可以写成1 ,但是不能写成a一 1 ,本章a 5b 5 b中一般不要求将结果中的分数指数幂化为根式.*运用知识强化练习教材练习4.1.21.计算下列各式:2 1 1 5(1) 3 人3 9 人4 27; (2) (23 42 )3 (2一2 48 )4.2 .化简下列各式:( 2 1 )3 ( 1 5 )4 (1) a3 . a一3 . a2 . a0;(3) 3 b2 . 3 a 政a3b.a*知识回顾复习导入问题观察函数y = x、相关性质.探究由于 y = x =x1,y = x2 、y = ,回忆三个函数的图像和xy = = x一1 ,故这三个函数都可以写成xy = x a ( a 仁R )的形式.教师行为强调提问巡视指导质疑学生行为动手求解交流思考教学意图及时了解学生知识掌握情况引导学生用所345 (2)|a 3 b2|.|2a一2 b8|;( ) ( )1 2学程时间11教过*动脑思考探索新知概念一般地,形如 y = x a ( a 仁R )的函数叫做幂函数.其中指数 a 为常数,底x 为自变量.*巩固知识典型例题1例 6 指出幂函数 y=x 3 和 y=x 2 的定义域,并在同一个坐标系中作出它们的图像.分析首先分别确定各函数的定义域,然后再利用“描点法”分别作出它们的图像.引导分析总结归纳说明分析体会理解记忆观察思考学的知识进行判断特别强调关键词汇通过例题555教学 意图 进一 步使学生 感知 幂函引领数的图像…特点y= x 2引导领会掌握描点 作图 的方 法观察突出 数形 结合的数 学思 想质疑总结:这两个函数的定义域不同,在定义域内它们都是增函 数.两个函数的图像都经过坐标原点和点 (1,1). 例 7 指出幂函数 y = x 2 的定义域,并作出函数图像.以表中的每组 x, y 的值为坐标, 描出相应的点 (x, y), 再用1光滑的曲线依次联结这些点, 分别得到函数y=x 3 和函数 y = x 2 的图像,如下图所示.1解 函数 y =x 3 的定义域为 R ,函数 y=x 2 的定义域为 [0,+).分别设值列表如下: 教师 行为 学生 行为 xy=x 3 主动求解学 程教 过时 间−2 −8−1 −1… ………1 41体会讲解学生 强调归纳引领了解4 20 09 30 02 81 11 1…x1于 = ,故函数为偶函数.其图像关于 y 轴对称, 可以注意是否理解 知识解 y = x 2 的定义域为 (,0) (0,+ ). 由分析过程知道函1 1 (x)2 x 2先作出区间 (0, + ) 内的图像, 然后再利用对称性作出函数在区 间 (,0) 内的图像.分析 考虑到 x 2 = , 因此定义域为 ( ,0) (0,+ ), 由 分析思考2x数为偶函数.在区间 (0, + ) 内,设值列表如下:1…2 1…以表中的每组 x, y 的值为坐标, 描出相应的点(x, y), 再用光滑的曲线依次联结各点,得到函数在区间(0, + ) 内 的图 像.再作出图像关于 y 轴对称图形,从而得到函数 y = x 2的图像,如下图所示.引导观察学生 总结 函数图像 的特 点*理论升华 整体建构总结: 这个函数在 (0, + ) 内是减函数;函数的图像不经过坐标 原点,但是经过点 (1,1).可以 适当 交给学生 自我 探究教学 意图点教师行为 学生行为主动求解学 程教 过时间x …y …领会体会讲解 理解强调归纳引领704 421 1及时 总结例题 中的 规律75了解 学生 知识一般地,幂函数 y = x a具有如下特征:(1) 随着指数 a 取不同值,函数 y = x a 的定义域、单调性 和奇偶性会发生变化;(2) 当 a >0 时, 函数图像经过原点(0,0)与点(1,1); 当 a <0 时,函数图像不经过原点(0,0),但经过(1,1)点.*运用知识 强化练习 教材练习 4.1.31.用描点法作出幂函数 y = x 4 的图像并指出图像具有怎样的对领会理解 记忆动手引领总结提问2.用描点法作出幂函数 y = x3 的图像并指出图像具有怎样的对称性?*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?*继续探索活动探究(1)读书部分:教材章节4.1;(2)书面作业:学习与训练 4.1;(3)实践调查:了解常见幂函数的性质特点.教师行为指导引导提问说明学生行为交流回忆反思交流记录教学意图掌握情况培养学生总结反思学习过程能力8859学程时间教过。

中职数学基础模块上册第四章指数、对数函数教案集

中职数学基础模块上册第四章指数、对数函数教案集

4.1.1 分数指数幂【教学目标】1. 理解整数指数幂及其运算律,并会进行有关运算.2. 培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养学生合作交流等良好品质.【教学重点】零指数幂、负整指数幂的定义.【教学难点】零指数幂及负整指数幂的定义过程,整数指数幂的运算.【教学方法】这节课主要采用问题解决法和分组教学法.在引入指数幂时,以在国际象棋棋盘上放米粒为导入素材,既体现数学的应用价值,也能引起学生的学习兴趣.从正整指数的运算法则中的a mm-n(m>n,a≠0)a n=a这一法则出发,通过取消m>n的限制引入了零指数幂和负整指数幂的定义,从而把正整指数幂推广到整数指数幂.在本节教学中,要以取消m>n这一条件为出发点,让学生积极大胆地猜想,以此增强学生的参与意识,从而提高学生的学习兴趣.指数(n N+)4.1.1 实数指数幂及其运算法则【教学目标】1. 了解根式的概念和性质;理解分数指数幂的概念;掌握有理数指数幂的运算性质.2. 会对根式、分数指数幂进行互化.培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生用事物之间普遍联系的观点看问题.【教学重点】分数指数幂的概念以及分数指数幂的运算性质.【教学难点】对分数指数幂概念的理解.【教学方法】这节课主要采用问题解决教学法.在引入分数指数幂时,先讲方根的概念,根据方根的定义,得到根式具有的性质.在利用根式的运算性质对根式的化简过程中,引导学生注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在对根式的性质进行练习以后,为了解决运算的合理性,引入了分数指数幂的概念,从而将指数幂推广到了有理数范围.在学生掌握了有理指数幂的运算性质后,将有理指数幂推广到实数指数幂.考虑到职校学生的实际情况,并没有给出严格的推证.【教学过程】一、根式有关概念定义:一般地,若x n=a (n>1,n N),则x叫做a的n次方根.例如:(1) 由32=9知,3是9的二次方根(平方根);由(-3)2=9知,-3也是9的二次方根(平方根);(2) 由(-5)3=-125知,-5是-125的三次方根(立方根);(3) 由64=1 296知,6是1 296的4次方根.有关结论:三、分数指数幂一般地,我们规定:a 1n =na (a >0); a m n=n a m =(n a )m (a >0,m ,n N +,且mn 为既约分数). a -m n=1 a m n (a >0,m ,n N +,且m n为既约分数) . 四、实数指数幂的运算法则 (1) a α a β=a α+β; (2) (a α)β=a α β; (3) (a b )α=a α b α. 以上a α,a β中,a >0,b >0,且α,β为任意实数. 练习1 835×825 =83+25=81=8; 823=(813)2=22=4; 33×33×63=3×312×313×316=31+12+13+16=32=9; (a 23b 14)3=(a 23)3·(b 14)3=a 2b 34. 例1利用函数型计算器计算(精确到0.001): (1)0.21.52;(2)3.14-2;(3)3.123. 例2利用函数型计算器计算函数值. 已知f (x )=2.71x ,求f (-3),f (-2),f (-1),f (1),f (2),f (3)(精确到0.001). 请同学们结合教材在小组内合作完成. 练习2 教材 P 73,练习1.2,.4.1.2 幂函数举例【教学目标】1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质. 【教学重点】 幂函数的定义. 【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】这节课主要采用启发式和讲练结合的教学方法.从函数y =x ,y =x 2,y =1x 等导入,通过观察这类函数的解析式,归纳其共性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.【教学过程】 一、幂函数的概念一般地,形如y =x的函数我们称为幂函数.学生回答练习1,进一步理解幂函数的概念.针对学生的回答,教师结合定义点评.在教师的引导下利用指数幂的有关定义,师生共同完成例题.学生寻找规律,形成解题规律.师:由上例我们可以看出,当幂函数的指数为负整数时,一般是先将函数表达式转化为分式形式;当幂函数的指数为分数时,一般是先将函数表达式转化为根式,然后再来求函数的定义域.教师根据学生的解答进行点评,并给予相应评价.师:函数图象可以直观反映函数性质,是研究函数性质的有利工具,请同学们回顾一下,作函数图象分为哪三步?学生回答.学生分组完成列表.4.1.3 指数函数【教学目标】1. 掌握指数函数的定义、图象、性质及其简单的应用.2. 培养学生用数形结合的方法解决问题的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养独立思考等良好的个性品质.【教学重点】指数函数的图象与性质.【教学难点】指数函数的图象性质与底数a的关系.【教学方法】这节课主要采用讲练结合和小组合作的教学方法.本节课由生活中的真实例子导入新课,引入指数函数的定义,并通过一组练习深化指数函数的定义.先通过列表——描点——连线得到指数函数的图象,然后在教师的启发下,充分利用函数的图象来研究函数的性质.为了加强学生对函数性质的应用,增加了一道求函数定义域的例题,然后安排一定数量的练习,体现练为主线,讲练结合的教学方法.【教学过程】则对于x 的某些数值,可使a x 无意义.如 (-2)x,这时对于x =14 ,x =12 ,…等等,在实数范围内函数值不存在. (3) 若a =1, 则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定a >0且a 1. 在规定以后,对于任何x ∈R ,a x 都有意义,且 a x >0. 因此指数函数的定义域是R ,值域是 (0,+∞). 练习1 指出下列函数哪些是指数函数: (1) y =4⋅3x ; (2) y =πx ; (3) y =0.3x ; (4)y =x 3. 二、指数函数的图象和性质 在同一坐标系中分别作出函数y =2x 和y =(12)x的图象. (1)列表:略. (2)描点:略. (3)连线:略. xy123-1-2 -3 12 3 45 6789 O y =2x y =(12)x4.2.1 对数【教学目标】1. 理解对数的概念,掌握对数式与指数式的互化.2. 培养学生的类比、分析、转化能力,提高理解和运用数学符号的能力.3. 通过对数概念的建立,明确事物的辩证发展和矛盾转化的观点,培养学生科学严谨的治学态度.【教学重点】对数的概念,对数式与指数式的相互转化.【教学难点】对数概念及性质的理解掌握.【教学方法】这节课主要采用启发式和分组合作教学法.在教学过程中遵循学生是教学的主体的精神,要给学生提供各种可能的参与机会,调动学生学习的积极性,使学生化被动为主动.利用多媒体辅助教学,引导学生从实例出发,认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生积极思维,通过课堂练习、学生讨论的方式来加深理解重点,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.4.2.2 积、商、幂的对数【教学目标】1. 掌握积、商、幂的对数运算法则,并会进行有关运算.2. 培养学生的观察,分析,归纳等逻辑思维能力.3.培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】积、商、幂的对数运算法则的应用.【教学难点】积、商、幂的对数运算法则的推导.【教学方法】本节教学采用引导发现式教学方法,并充分利用多媒体辅助教学,体现“教师为主导、学生为主体”的教学原则.通过教师在教学过程中的点拨启发,使学生主动思考.通过分组合作的教学方式,使学生在合作中快乐学习,培养学生的团结协作能力和集体主义情操.通过设置三组“低台阶,小坡度”的练习,满足各层次学生的学习需求,从而培养学生的计算能力和学习数学的兴趣.【教学过程】4.2.3 换底公式与自然对数【教学目标】1. 掌握换底公式,了解自然对数,能利用换底公式求对数值.2. 培养学生的逻辑思维能力和应用能力.3.培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】换底公式.【教学难点】利用换底公式求值、化简及证明.【教学方法】本节采用启发引导式教学,并利用多媒体以体现“教师为主导,学生为主体”的教学原则.通过一个特殊例子导出课题.针对本节课的特点,教师应多引导,多启发,与学生之间进行适当交流和讨论,在应用换底公式时可设定不同层次的题目,让各层次同学都能掌握公式,从而培养学生学习数学的兴趣和运用公式的能力.4.2.4 对数函数【教学目标】1.掌握对数函数的概念,图象和性质,并会简单的应用.2. 培养学生用数形结合的方法去解决问题.注重培养学生的观察,分析,归纳等逻辑思维能力.3. 培养学生发现、探索、创新的精神;培养合作交流、独立思考等良好的个性品质.【教学重点】对数函数的图象、性质及其运用.【教学难点】对数函数图象和性质的发现过程,培养数形结合的思想.【课时】2课时.【教学方法】这节课主要采用启发式和引导发现式的教学方法,结合对数函数的特点,让学生动手做,动脑想,大胆猜,以学生的研究为主体采用,引导发现式的教学方法并充分利用多媒体辅助教学.这样既增强学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣.通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受.【教学过程】4.3指数、对数函数的应用【教学目标】1. 能够运用指数函数、对数函数知识解决某些简单的实际应用问题.2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了指数函数、对数函数知识的应用价值.3. 通过对实际问题的研究解决,渗透了数学建模的思想,提高学生学习数学的兴趣.【教学重点】通过指数、对数函数的应用,培养学生分析、解决问题的能力和运用数学的意识.【教学难点】根据实际问题建立相应的指数函数和对数函数模型.【教学方法】这节课主要采用问题解决法和分组合作的教学方法.在教学过程中,从学生身边的实例开始,引起学生的兴趣,体会所学知识的应用和重要性,提高学生学习数学的兴趣,培养学生分析问题和解决问题的能力.通过本节内容让学生体会指数函数与对数函数是解决有关自然科学领域中实际问题的重要工具,是今后进一步学习的基础.教师应当结合学生的专业特点,增设有关例题,突出数学为专业课服务的教学理念.【教学过程】。

中职数学拓展模块全册教案精编【配套高教版教材】

中职数学拓展模块全册教案精编【配套高教版教材】

思考
因 此 向 量 OA (cos ,sin ) , 向 量 OB (cos ,sin ) , 且
OA 1 , OB 1.
总结
于是 OA OB OA OB cos( ) cos( ) ,
归纳
又 OA OB cos cos sin sin , 所以 cos( ) cos cos sin sin . (1)
【教学难点】
难点是公式的推导和运用.
【教学设计】
在介绍新知识之前,首先利用特殊角的三角函数值,让学生认识到 cos(60 30) cos60 cos30 ,
然后提出如何计算 cos( ) 的问题.利用矢量论证 cos( ) 的公式,使得公式推导过 程简捷.教学重点放在对公式形式特点的认识和对公式正向与反向的应用上.例 1 和例 2 都是两角和与差的余弦公式的应用,教学中要强调公式的特点.推广 sin(π ) cos 时,
II
中职数学拓展模块全册教案精编【配套高教版教材】
1.1 两角和与差的正弦公式与余弦公式(一)
【教学目标】
知识目标: 理解两角和与差的正弦公式与余弦公式,能正确运用各个公式进行简单的三角函数式的 计算和化简. 能力目标: 学生逆向思维能力及灵活选用公式解决问题的能力得到提高.
【教学重点】
本节课的教学重点是两角和与差的正弦公式与余弦公式.
2
2
观察 思考 理解
学生 自我 发现 归纳
= 3 cos sin =左边.
故原式成立.
证 2 左边= 2( 3 cos 1 sin )
2
2
= 2(sin π cos cos π sin)
3
3
= 2sin( π ) =右边. 3
故原式成立.

中职数学教学设计5篇

中职数学教学设计5篇

中职数学教学设计5篇光阴迅速,一眨眼就过去了,教学工作者们又将迎来新的教学目标,现在就让我们好好地规划一下吧。

很多人都十分头疼怎么写一份精彩的教学计划,那么怎么写呢?下面是小编给大家带来的中职数学教学设计5篇,以供大家参考!中职数学教学设计1【教学内容】《义务教育课程标准实验教材数学》六年级上册第2~3页。

【教学目标】1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

会在方格纸上用“数对”确定位置。

2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

【教学重点】使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

【教学难点】在方格纸上用“数对”确定位置。

【教学过程】一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置1.谈话引入。

今天有这么多老师和我们一起上课,同学们欢迎吗?老师们都很想认识你们。

咱们先来给他们介绍一下我们班的班长,可以吗?2.合作交流,在已有经验的基础上探究新知。

(1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。

汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…哪个小组也用语言描述出了班长的位置?请班长起立,他们的描述准确吗?刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。

为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

板书:列行老师左手起第一组就是第一列…,横排就是第一行…班长的位置在第4列、第3行。

还有其他的表示方法吗?画图的方法:如果大家是站在老师这个位置看全班的座位,这张图应该怎么放?(课件)把座位图转过来,班长的位置变了吗?为什么?(没变,还是第四列第三行,因为老师和我们看到的方向正好相反,但位置没变)(2)探究新知。

中职数学 第十二章 直线

中职数学 第十二章 直线

的倾斜角为α(α≠90°),则α的正切值叫作这条直线的斜率,通常用小写
字母k
k=tanα.
(12-3
当α=90°时,直线l的斜率不存在,当α≠90°时,直线l都有确定的斜率.
学习提示
倾斜角可用来表示直线对于x轴的倾斜程度.
第二节 直线的方程
根据直线倾斜角的取值范围, 直线的斜率可以分为以下4种情况: (4)
,截距不相等,
条直线相交;
则两条直线平行.
第三节 两直线的位置关系
【例2】
判断下列各组直线的位置关系,若相交的话求出交点. (1)l1:x+3y+2=0,l2:2x-6y=0;
第三节 两直线的位置关系
将方程2x-6y=0化为斜截式方程得
第三节 两直线的位置关系
图 12-9
第三节 两直线的位置关系
如图12-9(b)所示,两条直线l1,l2的斜率都为0,则 这两条直线都与x轴平行,所以直线l1,l2平行.
如图12-9(c)所示,两条直线l1,l2的斜率都不存在, 则这两条直线都与y轴平行,所以直线l1,l2平行.
所以,当两条直线的斜率都存在但不相等或一条直线 的斜率存在而另一条直线的斜率不存在时,两条直线相交, 这样我们就可以利用前面的知识求两条直线的交点.
第三节 两直线的位置关系
因此,两条直线是否有交点,主要是看方程组 是否有唯一解.
第三节 两直线的位置关系
【例1】
l1:x-2y+2=0 l2:x+2y-9=0.
第三节 两直线的位置关系
课堂练 习求下列两条直线的交点:
(1) l1:2x-y-3=0与l2:4x+5y+1=0 (2) l1:2x-5y+3=0与l2:x-2y-2=0.

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B(可编辑)第一章:函数的性质1.1 函数的单调性【教学目标】1. 理解函数单调性的概念;2. 学会判断函数的单调性;3. 能够运用函数单调性解决实际问题。

【教学内容】1. 函数单调性的定义;2. 函数单调性的判断方法;3. 函数单调性在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入函数单调性的概念;2. 新课:讲解函数单调性的定义和判断方法;3. 练习:让学生通过练习题巩固函数单调性的理解和判断;4. 应用:结合实际问题,让学生运用函数单调性解决问题。

1.2 函数的奇偶性【教学目标】1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 能够运用函数奇偶性解决实际问题。

【教学内容】1. 函数奇偶性的定义;2. 函数奇偶性的判断方法;3. 函数奇偶性在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入函数奇偶性的概念;2. 新课:讲解函数奇偶性的定义和判断方法;3. 练习:让学生通过练习题巩固函数奇偶性的理解和判断;4. 应用:结合实际问题,让学生运用函数奇偶性解决问题。

第二章:三角函数2.1 三角函数的定义和性质【教学目标】1. 理解三角函数的定义;2. 学会判断三角函数的性质;3. 能够运用三角函数解决实际问题。

【教学内容】1. 三角函数的定义;2. 三角函数的性质;3. 三角函数在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入三角函数的定义;2. 新课:讲解三角函数的定义和性质;3. 练习:让学生通过练习题巩固三角函数的理解和判断;4. 应用:结合实际问题,让学生运用三角函数解决问题。

2.2 三角函数的图像和性质【教学目标】1. 理解三角函数图像的特点;2. 学会判断三角函数图像的性质;3. 能够运用三角函数图像解决实际问题。

【教学内容】1. 三角函数图像的特点;2. 三角函数图像的性质;3. 三角函数图像在实际问题中的应用。

中职高三数学教案5篇最新

中职高三数学教案5篇最新

中职高三数学教案5篇最新设计丰富多彩的数学活动,激发学生的学习兴趣。

通过学生喜闻乐见的游戏、童话、故事、卡通等形式,丰富学生的感性积累,发展学生的数感和空间观念。

通过说一说、做一做、比一比等形式,让学生在生动有趣的活动中体验数学并学习数学。

今天小编在这里整理了一些中职高三数学教案5篇最新,我们一起来看看吧!中职高三数学教案1数学教案-圆1、教材分析(1)知识结构(2)重点、难点分析重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.2、教法建议本节内容需要4课时第一课时:圆的定义和点和圆的位置关系(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.第二课时:圆的有关概念(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.第三、四课时:点的轨迹条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.第一课时:圆(一)教学目标:1、理解圆的描述性定义,了解用集合的观点对圆的定义;2、理解点和圆的位置关系和确定圆的条件;3、培养学生通过动手实践发现问题的能力;4、渗透“观察→分析→归纳→概括”的数学思想方法.教学重点:点和圆的关系教学难点:以点的集合定义圆所具备的两个条件教学方法:自主探讨式教学过程设计(总框架):一、创设情境,开展学习活动1、让学生画圆、描述、交流,得出圆的第一定义:定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.从旧知识中发现新问题观察:共性:这些点到O点的距离相等想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2) 到定点距离等于定长的点都在圆上.定义2:圆是到定点距离等于定长的点的集合.3、点和圆的位置关系问题三:点和圆的位置关系怎样?(学生自主完成得出结论)如果圆的半径为r,点到圆心的距离为d,则:点在圆上d=r;点在圆内d点在圆外d>r.“数”“形”二、例题分析,变式练习练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.已知(略)求证(略)分析:四边形ABCD是矩形A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D 4个点在以O为圆心的圆上证明:∵ 四边形ABCD是矩形∴ OA=OC,OB=OD;AC=BD∴ OA=OC=OB=OD∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上.符号“”的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D 4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨) 练习1 求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成) 练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业 82页2、3、4.中职高三数学教案2圆(三)——点的轨迹教学目标1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点
1两角和与差的余弦公式
2两角和与差的正弦公式
教学难点
1熟练运用两角和与差的余弦公式
2熟练运用两角和与差的正弦公式
课程设计
1问题探究
两角和与差的余弦公式,已经学习完毕,那两角和与差的正弦公式会和余弦公式有哪些相似相通的地方呢?
利用公式 ,得到两角和的正弦公式
和上节课两角和与差的余弦公式类似,变化角度可以得到两角差的正弦公式
2课时
授课章节
15.1 二角和与差的正弦、余弦公式
使用教具
(教学资源)




知识目标
1两角和的余弦公式
2两角差的余弦公式
3两角和的正弦公式
4两脚差的正弦公式
能力目标
1学习简单角度加减
2熟悉判断特殊角度的组合
3熟练运用两角和与差的余弦公式
4熟练运用两角和与差的正弦公式
德育目标
情感目标
(素质目标)
1通过角度运用增加逻辑思考能力
教学内容
教学方法
时间
新课引入
以错误的例子 ,打开问题匣子,这种做法对不?错在哪里?
5min
实施步骤
1从错误公式引入正确思考方式
利用向量理解三角函数和差来由,和理论依据
从而得出两角差的余弦公式
2根据角度变化公式,得到两脚和的余弦公式
3例1讲解
4例2讲解
已知 ,且 为第二象限角,求 的值
解:因为 为第二象限角,所以
再根据角度变化的方式得到
例1
例2已知 ,且 为第二象限角,求 的值
解:因为 为第二象限角,所以
课堂练习
(1) (2)
(3)
(4)
(5)
(1)参照例1进行解答
(2)参照例1解答,注意正负号
(——(5)反向运用两角和与差的余弦公式
课后作业
P8 1,2
作业参照例题解答
第二题较难,以字母为主,注意变化
教学后记
例3
例4已知 , ,求 的值
解因为 为第三象限角,所以
课堂练习
(1)
(2)
(3)
(4)
课后作业
P8 3.4.5第五题,难度较大,不做要求
教学后记
授课主要内容或板书设计
教学过程
教学内容
教学方法
时间
新课引入
回顾上一节的两角和与差的余弦公式,猜测是否存在正弦公式,正弦公式较余弦公式有哪些相同和不同之处
10min
本章节内容,不算太难,主要是以角的和差变化,以及和差的余弦公式运用,难度适中。但学生基础相对较差,所以解题速度较慢,正确率相对较差。通过多题的训练,学生能较好的掌握,因为特殊的三角函数值一共只有五种类型,共10个。所以学生多次练习后能较快的掌握。当然态度决定学习效果的好坏。
授课主要内容或板书设计
教学过程
3熟练运用两角和与差的余弦公式
4熟练运用两角和与差的正弦公式
德育目标
情感目标
(素质目标)
1通过角度运用增加逻辑思考能力
教学重点
1两角和与差的余弦公式
2两角和与差的正弦公式
教学难点
1熟练运用两角和与差的余弦公式
2熟练运用两角和与差的正弦公式
课程设计
1两角和与差的余弦公式
分析公式来由,从向量角度出发: ,得到
5课后练习训练
(1) (2)
(3)
(4)
(5)
(1)参照例1进行解答
(2)参照例1解答,注意正负号
(3)——(5)反向运用两角和与差的余弦公式
10min
5min
15min
20min
25min
苏州市医药化工技工学校教案(首页)
教师姓名
蔡智伟
科目
数学
授课形式
讲授法、讨论法
授课日期
3.9
班级
13-5
教学时数
15min
10min
20min
15min
10min
苏州市医药化工技工学校教案(首页)
教师姓名
蔡智伟
科目
数学
授课形式
讲授法、讨论法
授课日期
3.2
班级
13-5
教学时数
2课时
授课章节
15.1 二角和与差的正弦、余弦公式
使用教具
(教学资源)




知识目标
1两角和的余弦公式
2两角差的余弦公式
3两角和的正弦公式
4两脚差的正弦公式
能力目标
1学习简单角度加减
2熟悉判断特殊角度的组合
实施步骤
1利用公式 ,得到两角和的正弦公式
2和上节课两角和与差的余弦公式类似,变化角度可以得到两角差的正弦公式
例3
例3一共两道题,分别是和与差两种类型,通过两种不同模式,让学生学习和了解,也作为范例给学生解题作为参考
例4已知 , ,求 的值
解因为 为第三象限角,所以
课堂练习
(1)
(2)
(3)
(4)
由于这一节内容相比上一节课难度要大,所以课堂练习时间不足,可以转为回家作业的补充
相关文档
最新文档