物理层
物理层详解

物理层详解物理层是计算机网络领域中的一个重要概念,它是网络协议中的第一层,主要功能是将数据转换成物理信号进行传输。
本文将详细介绍物理层的定义、功能和组成部分。
一、物理层的定义:物理层是网络协议的第一层,主要负责透明地传输原始数据。
在物理层中,数据被转换成特定的电信号,在网络媒介上传输。
它定义了数据传输的物理规范,包括传输介质、数据编码、数据传输速率等。
二、物理层的功能:1.数据的编码和解码:物理层负责将数字数据转换为模拟信号进行传输,并将接收到的模拟信号转换为数字数据进行解码。
为此,物理层需要定义数据的编码方式,例如常见的8B/10B编码、曼彻斯特编码等。
2.数据的传输:物理层负责将编码过的数据按照预定的方式传输。
它需要定义传输介质的类型和特性,例如有线传输、无线传输和光纤传输等。
传输速率是物理层的另一个重要特性,它决定了数据传输的速度。
3.传输媒介的管理:物理层需要定义传输媒介的类型、长度、宽度等,以便正确地传输数据。
它还负责检测传输媒介上的错误和干扰,并进行纠正或重传。
三、物理层的组成部分:物理层包括以下组成部分:1.传输介质:物理层使用不同类型的传输介质,例如双绞线、同轴电缆、光纤等。
每种介质都有其特定的传输特性和使用限制。
2.传输速率:物理层定义了数据传输的速率,通常以bps(比特每秒)为单位,例如10M bps、100M bps和1G bps等。
3.信号编码:物理层使用不同类型的编码方式将数字数据转换为模拟信号进行传输。
编码方式取决于传输介质的特性和信号需求。
4.传输媒介的处理:物理层需要对传输介质进行预处理,例如放大、整形、调整等,以保证数据在传输过程中的稳定性和正确性。
综上所述,物理层是网络协议中最基本的层次之一。
它负责将原始数据转换为物理信号进行传输,为更高层次的网络协议提供底层的传输支持。
一个高效、可靠的物理层是实现网络快速、稳定传输的关键。
osi七层模型的定义和各层功能

OSI七层模型的定义和各层功能随着网络技术的不断发展,我们的生活已经离不开网络了。
而OSI七层模型是计算机网络体系结构的实质标准,它将计算机网络协议的通信功能分为七层,每一层都有着独特的功能和作用。
下面,我将以此为主题,深入探讨OSI七层模型的定义和各层功能。
1. 第一层:物理层在OSI七层模型中,物理层是最底层的一层,它主要负责传输比特流(Bit Flow)。
物理层的功能包括数据传输方式、电压标准、传输介质等。
如果物理层存在问题,整个网络都无法正常工作。
2. 第二层:数据链路层数据链路层负责对物理层传输的数据进行拆分,然后以帧的形式传输。
它的功能包括数据帧的封装、透明传输、差错检测和纠正等。
数据链路层是网络通信的基础,能够确保数据的可靠传输。
3. 第三层:网络层网络层的主要功能是为数据包选择合适的路由和进行转发。
它负责处理数据包的分组、寻址、路由选择和逻辑传输等。
网络层的存在让不同的网络之间能够互联互通,实现数据的全球传输。
4. 第四层:传输层传输层的功能是在网络中为两个端系统之间的数据传输提供可靠的连接。
它通过TCP、UDP等协议实现数据的可靠传输、分节与重组、流量控制、差错检测和纠正等。
5. 第五层:会话层会话层负责建立、管理和结束会话。
它的功能包括让在网络中的不同应用之间建立会话、同步数据传输和管理数据交换等。
6. 第六层:表示层表示层的作用是把数据转换成能被接收方识别的格式,然后进行数据的加密、压缩和解压缩等。
7. 第七层:应用层应用层是OSI模型中的最顶层,它为用户提供网络服务,包括文件传输、电流信箱、文件共享等。
应用层是用户与网络的接口,用户的各种应用软件通过应用层与网络进行通信。
OSI七层模型是计算机网络体系结构的基本标准,它将通信协议的功能划分为七层以便管理和开发。
每一层都有独特的功能和作用,共同构成了完整的网络通信体系。
只有了解并理解这些层次的功能,我们才能更好地利用网络资源,提高网络效率。
物理层

OSI物理层制作人:邓荣嘉目录物理层 (1)主要功能 (2)物理层要解决的主要问题: (2)组成部分 (2)重要内容 (3)重要标准 (4)通信硬件 (5)编程方法 (6)常见的物理层设备 (6)物理层在无线传感器中的应用 (6)物理层物理层(或称物理层,Physical Layer)是计算机网络OSI模型中最低的一层。
物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。
简单的说,物理层确保原始的数据可在各种物理媒体上传输。
局域网与广域网皆属第1、2层。
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。
物理层关注在一条通道上传输原始比特。
设计问题必须确保当一方发送了比特1时,另一方收到的也是比特1,而不是比特0。
这里的典型问题包括用什么电子信号来表示1和0、一个比特持续多少秒、传输是否可以在两个方向上同时进行、初始连接如何建立、当双方结束后如何撤销连接、网络连接器有多少针对以及每一针的用途是什么等。
这些设计问题主要涉及机械、电子和时序接口,以及物理层之下的物理传输介质等。
该层定义了了比特作为信号在通道上发送时相关的电气、时序和其他接口。
物理层是构建网路的基础。
物理信道的不同特征决定了其传输性能的不同(比如,吞吐量、延迟和误码率),所以物理层是我们展开网络旅行的始发地。
物理层一般有三种传输介质:有线(铜线和光纤)、无线(陆地无线电)和卫星。
这里要说的是信号在物理层存在的两种方式,数字信号(电脑可以识别的0和1即比特),模拟信号是铜线和光纤等可以传输的电信号或者无线信号,在悠闲中模拟信号的存在方式诸如连续变化的电压,而在无线传输中类似光照强度或者声音强度。
物理层简介

DCE 调制 解调器
图3-6 EIA-232-D/V.24的主要信号线定义 的主要信号线定义
规程特性
规 程 特 性 : EIA-232-D 的 规 程 特 性 也 与 CCITT的V.24建议书一致,可用下例简单说 明. 假设有一台计算机DTE通过调制解调器DCE 及电话线路与远端的终端DTE建立呼叫并进 行半双工通信,待数据传送完毕以后,释放 呼叫.
1.规定了物理连接时对插头和插座的几何尺寸,插针或插
孔芯数及排列方式,锁定装置形式等.图中列出了各类已 被ISO标准化了的DCE连接器的几何尺寸及插孔芯数和排 列方式.一般来说,DTE的连接器常用插针形式,其几何 尺寸与DCE连接器相配合,插针芯数和排列方式与DCE连 接器成镜像对称.
EIA-232-D/V.24接口标准 EIA-232-D/V.24接口标准
其中端口名为COM1或COM2;数据速率可选150,300,600,1200, 2400,4800或9600bps;校验方式为E(偶校验),O(奇校验)或(无校验); 数据位数为7或8位;停止位位数为1或2位.通信双方设置的参数应 一致,如双方都键入如下命令 MODE COM1:1200,E,7,1 <Enter> : , , , 则表示双方以COM1为异步通信端口,速率1200bps,偶校,7位数 据位,1位停止位的设置参数据进行通信. DOS中有一个名为CON的标准控制台设备,作为输入时CON指的就 是键盘,作为输出时CON指的就是显示器.准备发送的PC机执行如 下命令:COPY CON :COM1: <Enter> : 表示将从键盘收到的信息通过COM1串行口发送出去.准备接收的 PC机执行如下命令:COPY COM1:CON: <Enter> : : 则表示将接收来自COM1串行口的信息,并在显示器上加以显示. 两台PC机分别执行完上述命令后,在发送方键盘上输入的字符便会 在接收方显示器上显示出来.
计算机网络原理——物理层

105 106 双绞线 调幅 海事 无线电 无线电
107 同轴电缆
108
109
1010 卫星
1011 1012
1013
1014
1015 光纤
1016
地面微波
调频 移动 无线电 无线电 电视 HF VHF UHF SHF EHF THF
波段
LF
MF
地表 对流层 电离层 空间及视线
空间
26
物理层
微波通信
允许发送 振铃指示
物理层
TD DTR SG DSR RTS
CTS RI
16
RS-232-C的规程特性
• 过程特性指RS-232-C的各条控制线在下列不同情况下接通
(ON,逻辑0)和断开(OFF,逻辑1)的顺序:
• 建立物理连接 • 传输数据比特流 • 释放物理连接
PSTN
物理层
17
建立物理连接
• 当DTE-A要与DTE-B通信时,将DTR(20)臵为ON ,同时通过TD(2)向 DCE-A发送电话号码信号,请求与对方建立物理连接; • DCE-B将RI(22)臵为ON,通知DTE-B有呼叫到达。DTE-B将DTR(20)臵 为ON,DCE-B接着产生载波信号,并将DSR(6)臵为ON ,表示已准备好;
30
[例1]
•采用四相调制方式,即N=4,且T=833x10-6秒,则 S=1/T*log2N=1/(833x10-6)*log24=2400 (bps) B=1/T=1/(833x10-6)=1200 (Baud)
物理层
31
信道容量
1)信道容量表示一个信道的最大数据传输速率,单位:位/秒(bps) 信道容量与数据传输速率的区别是,前者表示信道的最大数据 传输速率,是信道传输数据能力的极限,而后者是实际的数据传输 速率。 2)离散的信道容量 奈奎斯特(Nyquist)无噪声下的码元速率极限值B与信道带宽H 的关系: B=2*H (Baud) ......⑸ 奈奎斯特公式--无噪信道传输能力公式: C=2*H*log2N (bps) ......⑹ 式中 H为信道的带宽,即信道传输上、下限频率的差值,单 位为Hz; N为一个码元所取的离散值个数。
什么是物理层

什么是物理层物理层定义物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。
物理层主要功能物理层要解决的主要问题:(1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。
(2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。
(3)在两个相邻系统之间唯一地标识数据电路。
物理层主要功能:为数据端设备提供传送数据通路、传输数据。
1.为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。
一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。
所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
2.传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。
一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。
传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
3.完成物理层的一些管理工作。
物理层接口协议电话网络modems-V。
92IRDA物理层USB物理层EIARS-232,EIA-422,EIA-423,RS-449,RS-485EthernetphysicallayerIncluding10BASE-T,10BASE2,10BASE5,100BASE-TX,100BASE-FX。
第3章 物理层

第三章
物理层
通信系统的质量指标
数据传输速率 bps 1Kbps=1000 bps 1Mbps=1000 Kbps 1Gbps=1000 Mbps 误码率 误码率= 发生错误bit数 传送的bit数
第三章
物理层
信源、信宿和信道
物理层协议的四个特性 机械特性 电气特性 功能特性 规程特性
第三章
物理层
3.4.2 常见的国际标准组织
国际标准化组织 ISO 美国电子工业协会 EIA 国际电报电话咨询委员会CCITT 国际电信联盟ITU 欧洲电信标准组织 电气电子工程师协会 IEEE IEEE802 ATM 论坛
第三章
物理层
1.不归零编码(Non-Return Zero,简称NRZ)
0 1 0 0 1 0 1 1
缺点:由于不能判断位的开始和结束,收发双方不能保持 同步因此必须使用另一个信道同时传送同步时钟信号
第三章
物理层
2.曼彻斯特(Manchester)编码
曼彻斯特编码将每比特信号周期T分为前T/2和后T/2,用前T/2 传送该比特的反(原)码,用后T/2传送该比特的原(反)码
并行通信:使用多个传输信道,有多个数据位同
时传输
b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7
适合近距 离通信
发送端
接收端
第三章
物理层
数据通信方式
(2)单工通信/半双工通信/全双工通信
单工通信:
A
B
数据只能在一个固定的方向上传送 eg 广播、电视信号
模拟信号 连续的,普遍存在于自然界
第2章物理层12课件

2.2 数据通信的基础知识
3、信道的最高码元传输速率
▪ 任何实际的信道都不是理想的,在传输信号时会产生各 种失真以及带来多种干扰。
▪ 码元传输的速率越高,或信号传输的距离越远,在信道 的输出端的波形的失真就越严重。
11
▪ 码元(code)——在使用时间域(或简称为时域)的 波形表示数字信号时,代表不同离散数值的基本波 形。
▪ 若 1 个码元携带 n bit 的信息量,则 M Baud 的码元传 输速率所对应的信息传输速率为 M n b/s。
19
4、信道的极限信息传输速率 ▪ 香农(Shannon)用信息论的理论推导出了带宽受限且有高
斯白噪声干扰的信道的极限、无差错的信息传输速率。 ▪信信息道论是的运极用限概信率息论与传数输理速统率计的C方可法表研达究信为息、信息熵、
23
导向传输媒体
•双绞线是综合布线工程中最常用的一种传输介质。 •双绞线——两根互相绝缘的铜导线并排放在一起,用规则
的方法绞合起来(降低信号干扰)。
24
屏蔽双绞线 (STP)
Shielded Twisted Pair
以铝箔屏蔽以减少电磁 干扰和串音,适合于配 电房附近等区域布线。
非屏蔽双绞线 (UTP)
▪ 波特(Baud)和比特(bit)是两个不同的概念。 - 波特是码元传输的速率单位(每秒传多少个码元)。码 元传输速率也称为调制速率、波形速率或符号速率。 - 比特是信息量的单位。
18
2.2 数据通信的基础知识
▪ 信息的传输速率“比特/秒”与码元的传输速率“波特 ”在数量上却有一定的关系。
▪ 若 1 个码元只携带 1 bit 的信息量,则“比特/秒”和“ 波特”在数值上相等。
理想低通信道的最高码元传输速率 = 2W Baud W 是理想低通信道的带宽,单位为赫(Hz)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 物理信道与传输信道1.11.逻辑信道、传输信道和物理信道的区别、联系和功能下行上行逻辑信道是MAC子层向上层提供的服务,表示承载的内容是什么(what),,按信息内容划分,分为两大类:控制信道和业务信道。
! ^: q1 n' y" E 传输信道表示承载的内容怎么传,以什么格式传,分为两大类:专用传输信道和公用传输信道.逻辑信道定义传送信息的类型,这些信息可能是独立成块的数据流,也可能是夹杂在一起但是有确定起始位的数据流,这些数据流是包括所有用户的数据。
传输信道是在对逻辑信道信息进行特定处理后再加上传输格式等指示信息后的数据流,这些数据流仍然包括所有用户的数据。
物理信道则是将属于不同用户、不同功用的传输信道数据流分别按照相应的规则确定其载频、扰码、扩频码、开始结束时间等进行相关的操作,并在最终调制为模拟射频信号发射出去;不同物理信道上的数据流分别属于不同的用户或者是不同的功用。
链路则是特定的信源与特定的用户之间所有信息传送中的状态与内容的名称,比如说某用户与基站之间上行链路代表二者之间信息数据的内容以及经历的一起操作过程。
链路包括上行、下行等。
简单来讲,逻辑信道={所有用户(包括基站,终端)的纯数据集合}传输信道={定义传输特征参数并进行特定处理后的所有用户的数据集合}物理信道={定义物理媒介中传送特征参数的各个用户的数据的总称}打个比方,某人写信给朋友,逻辑信道=信的内容传输信道=平信、挂号信、航空快件等等 物理信道=写上地址,贴好邮票后的信件1.12. 逻辑信道、传输信道和物理信道分别有哪些?8 逻辑信道通常可以分为两类:控制信道和业务信道。
控制信道用于传输控制平面信息,而业务信道用于传输用户平面信息。
控制信道包括:广播控制信道(BCCH):广播系统控制信息的下行链路信道。
寻呼控制信道(PCCH):传输寻呼信息的下行链路信道。
专用控制信道(DCCH ):传输专用控制信息的点对点双向信道,该信道在UE 有RRC 连接时建立。
公共控制信道(CCCH ):在RRC 连接建立前在网络和UE 之间发送控制信息的双向信道。
多播控制信道(MCCH ): 从网络到UE 的MBMS 调度和控制信息传输使用点到多点下行信道。
业务信道包括:专用业务信道(DTCH ):专用业务信道是为传输用户信息的,专用于一个UE 的点对点信道。
该信道在上行链路和下行链路都存在。
多播业务信道(MTCH ):点到多点下行链路 下行物理信道有:。
● PDSCH : 下行物理共享信道,承载下行数据传输和寻呼信息。
● PBCH : 物理广播信道,传递UE 接入系统所必需的系统信息,如带宽天线数目、小区ID 等● PMCH : 物理多播信道,传递MBMS (单频网多播和广播)相关的数据 ● PCFICH :物理控制格式指示信道,表示一个子帧中用于PDCCH 的OFDM符号数目● PHICH :物理HARQ 指示信道, 用于NodB 向UE 反馈和PUSCH 相关的ACK/NACK 信息。
● PDCCH : 下行物理控制信道,用于指示和PUSCH ,PDSCH 相关的格式,资源分配,HARQ 信息,位于每个子帧的前n 个OFDM 符号,n<=3。
上行物理信道有:● PUSCH :物理上行共享信道 ● PRACH :物理随机接入信道,获取小区接入的必要信息进行时间同步和小区搜索等● PUCCH :物理上行控制信道,UE 用于发送ACK/NAK ,CQI ,SR ,RI 信息。
1.1 传输信道到物理信道的基本处理流程(不分上下行)输入:TBS(transport block size),也叫码字,可能有一个或者两个码字-----调度决定给UE 多少个RB ,让然后根据‘CQI 或者加上其他因素‘算出M C S I ,根据M CS I 算出TBS I ,最后根据TBS I 和分配的RB 数查表36213---Table 7.1.7.2.1得到能传多少个bit ,这也就是MAC 最后组成的PDU 的大小。
∙ 流程codeword0CRC segment + CRCdelivered from MAC layercodeword1CRCTurbo coding rate matching code block concatenationsegment + CRCTurbo codingrate matchingcode block concatenationabc defTurbo coding Turbo codingrate matching rate matchingTurbo coding Turbo codingrate matching rate matching注:(1)每个分段自己去做turbo 编码和速率匹配,最后才串联在一起。
(2)对于某些信道可能增加过程,也可能有些过程没有。
总之是恰当的思想,不需要就不要;不足的就加。
从该图也看出了有时只有一个码字codeword ,codewrod1不一定有。
1.1.1 PBCH(Physical Broadcast Channel) --- 规定1.1.1.1 作用∙ 作用:周期性的发送MIB 消息. 通过解调PBCH ,可以得到系统帧号和带宽信息,以及PHICH 的配置以及天线配置。
广播信息分为两类:o MIB (Master Information Block ,主信息块),它由有限个最常见的的传输参数组成,这些参数在物理广播信道上进行传输,对初始小区接入是必要的。
o 其他SIB (System Information Blocks ,系统信息块),它在物理层上与下行链路共享信道上传输的单播数据进行复用。
无论实际的系统带宽如何,UE 在没有系统带宽的先验信息条件下,其检测是通过将PBCH 映射到OFDM 信号中心的72个子载波上得到(对应了最小可能的LTE 系统带宽)。
UE 首先从同步信号中识别系统的中心频率。
1.1.1.2 思想来源∙ 任何一套通讯系统开始都必须通过一种‘潜规则’去获得一些最基本的信息,例如:‘带宽’,LTE 中的‘PHICH ’的配置情况。
然后通过这些基本信息和一些规则不断的推论出其他的东西。
PBCH 携带的MIB 信息就是‘最基本的信息’。
∙ 主辅同步信号携带的也是‘最基本的信息’。
1.1.1.3 数据来源∙ 原始BIT 数: 24bit (downlink cell bandwidth 3bit + PHICH config 3bit + SFN 的前8个bit 8bit + 10bit spare )1.1.1.4 流程codeword0CRCdelivered from MAC layerTurbo codingrate matchinga(24bit)c(crc16,40bit)d(convolutional,120bit)e(1920)scramblingb(1920bit)modulationlayer mappingb^(1920)d(960)mapping to resource elements mapping to resource elements mapping to resource elements mapping to resource elementsy(240symbolper port per 10ms)注:(1)因为‘BCH 的一个transport block ’对应的40ms 的周期,所以会图中加扰对应到了4次资源的映射。
也就是通过四次发送。
具体发送时间,频域可以看后面 (2)enodeb 的天线端口的数目是‘算在crc16中的’。
k k a c = for k = 0, 1, 2, …, A -1()2m od ,A k ant A k k x p c --+= for k = A , A +1, A +2,..., A +15.Table 5.3.1.1-1: CRC mask for PBCHNumber of transmit antenna ports at eNode-BPBCH CRC mask><15,1,0,,...,,ant ant ant x x x1 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>2 <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1> 4<0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1>∙ 速率匹配:和Rvidx (redundancy version )没有关系。
由于没有分段不可能有<NIL>数据,其实就相当与把‘turbo 编码后的120bit ’的数据重复了‘16次’。
∙ 扰码的初始化:cell ID init N c =。
∙ 调制模式:QPSK∙ 发射分集:层映射的层数应该与实际物理的天线端口数一样。
不管多少根天线,层映射之后虽然每层的symbol 符号数变成了240/portNum ,但后面发射分集之后每个port 对应的symbol 数又恢复到了240.1.1.1.5 时频位置 ---- 潜规则∙ 频域(k):与CELL 带宽无关,只分配在中心频点的72子载波上 ∙ 时域(l 符号位置):3,...,1,071,...,1,0' ,'362RB s cD L RB ==+-=l k k N N k注:(1)显然如果以后天线port 增加了,CELL 对应的下行参考信号增加了。
上图中有些‘蓝色’放MIB 消息的地方就得去掉了,算法也就需要修改。
(2)这个图的同步信号只是对FDD(帧格式1有效)。
TDD(帧格式2)对应的同步信号的位置在不同的位置。
1.1.1.6 特殊性∙ 频域位置和CELL 带宽无关,只分配在中心频点的72子载波上。
∙ 由于UE 开始没有收到MIB 信息,并不知道天线数,所以只能假设最多的天线数4,这样对应的参考信号的位置就不能放置数据。
∙ 小区对应的天线数隐性放在CRC 中的。
根据CRC 不同的序列决定小区不同的天线数∙ 在PBCH 的MIB 广播中只广播系统帧号的前8个bit ,因为系统帧号是0~1023所以只需要10个bit 表示,剩下的两位根据该帧在PBCH 40ms 周期窗口的位置确定,第一个10ms 帧为00,第二帧为01,第三帧为10,第四帧为11。
PBCH 的40ms 窗口手机可以通过盲检确定。
开始我也认为‘剩下的两位根据该帧在PBCH 40ms 周期窗口的位置确定’,但其实有更简单直接的方法:解码PBCH 的时候,由于扰码是用cell IDinit N c =初始化,你知道用生成的扰码的那一部分解码成功,其实就可以推断出系统帧的后面两位了,例如:如果生成的扰码是0000 1111 0011 1100,如果我用0000解码成功就知道‘对应的系统帧号的后两位是00,如果用0011解码成功就知道是10了’。