二元组分金属相图
金属的晶体结构和二元合金相图68页PPT

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
金属的晶体结构和二元合金相图
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
第3章二元合金相图及应用PPT课件

31.10.2020
工程材料
99-30
合金I的结晶过程
温度继续下降, 从β中析出二次α。
31.10.2020
工程材料
99-31
合金I的结晶过程
室温组织为 β+二次α 。
组成相和组织组成物的成分和相对重量可根据杠杆定 律来确定。
31.10.2020
工程材料
99-32
相图与性能的关系
具有匀晶相图、共晶相图的合金的机械性能和物理性 能随成分而变化的一般规律见下图
工程材料
99-38
渗碳体(Cem渗en碳tit体e)组织金相图
定义——C与Fe的化合物(Fe3C)。 代表符号: Cm
性能:含碳6.69%,其硬度高,极脆,塑性几乎 为0,熔点为1227℃。
铁碳合金中渗碳体量多会导致材料力学性能变坏。 适量渗碳体若弥散分布在基体上,可提高材料强 度和硬度。
31.10.2020
31.10.2020
工程材料
99-21
合金Ⅳ的结晶过程
31.10.2020
工程材料
99-22
组织和相的关系
31.10.2020
工程材料
99-23
共析相图
31.10.2020
d点成分(共析成分)的合金从 液相经过匀晶反应生成 γ相后, 继续冷却到d 点温度(共析温度) 时, 在此恒温下发生共析反应: γ → (α+β)
分数相对重量。
液相在共晶反应后全部转变为共晶 体(α+β) , 这部分液相的质量分 数就是室温组织中共晶体 (α+β)
的质量分数。 初生 αc冷却不断析出 βII, 到室 温后转变为 αf和 βII。按照杠杆 定律, 可求出 αf、βII占 αf+ βII的质量分数(注意, 杠杆支点在 c'点), 再乘以初生 αc在合金中的 质量分数, 求得 αf、βII占合金的 质量分数。
金属相图(Pb-Sn体系)

曲线③表示其组成恰为最低共 熔混合物的步冷曲线,其形状与纯 物质相似,但它的水平段是三相平 衡。
即 L=A(s)+B(s)
分析2:
相图由一个单相区和三个两相区组成: 即 ①溶液相区;
②纯A(s)和溶液共存的两相区; ③纯B(s)和溶液共存的两相区; ④纯A(s)和纯B(s)共存的两相区; 水平线段表示:A(s)、B(s)和溶液共 存的三相线;水平线段以下表示纯A(s)和 纯B(s)共存的两相区;o为低共熔点。
相平衡是指多相体系中组分在各相中的量 不随时间而改变。
研究多相体系的状态如何随组成、温度、 压力等变量的改变而发生变化,并用图形 来表示体系状态的变化,这种图就叫相图。
本实验采用热分析法绘制相图,其基本原理:
先将体系加热至熔融成一均匀液相,然后让 体系缓慢冷却,①体系内不发生相变,则温 度--时间曲线均匀改变;②体系内发生相变, 则温度--时间曲线上会出现转折点或水平段。 根据各样品的温度--时间曲线上的转折点或 水平段,就可绘制相图。
徐州师范大学化学化工学院物理化学教研室温度温度ababbacabllaslbsasbso时间a步冷曲线b二元组分凝聚系统相图0ab100b准备样品按比例样品置入电炉中加热加液体石蜡覆盖启动自动平衡记录仪有关开关观察升温情况及时停止加热温度到最高点搅拌观察降温情况及时停止实验取出样品放入新样品测试实验结束记录数据恢复原状0203816080100铅g1008061940200锡g1008061940200锡的百分含量水平段t转折点t100纯锡80619低共熔物40200纯铅锡的百分含量tkl单相区0pb619100sn600k505k454klpbslsnspbssnspbsn金属相图pbsn体系的熔点对照表
含锡20%、含锡40%、含锡80%三个样品,如果出 现转折点,则停止加热,利用电炉的余热使温度再 升高30~50 ℃。
金属学 二元相图,铁碳相图

预测材料的组织和性能
第一节 相图知识
二、相图与冷却曲线的关系:
成分一定,在冷却过程中,不同的相热容量不相同,如果 系统散热能力一样,温度随时间的变化(冷却)曲线上的斜率将 不同,曲线的转折点对应温度就是某些相开始出现或完全小时 的温度,利用这一特点,由实测的冷却曲线可以作出相图。
第二节
二元匀晶相图与固溶体的凝固
第五章 二元相图
相图知识
二元匀晶相图与固溶体的凝固
二元共晶相图
二元包晶相图 复杂二元相图的分析方法 铁碳平衡相图
第一节 相图知识
一、相与相图
相:凡成分相同、结构相同并与其它部分有界面分开的物质均匀 组成部分,称之为相。 相图:相图又称为状态图,它是表示体系的成分、外界环境和组 成相与相之间的平衡关系的几何图形。它是研究材料组织变 化规律的重要参考工具。外界环境主要是温度和压力,例如 物理学中已经介绍的纯水和纯铁的相图。
第二节 二元匀晶相图与固溶体的凝固
五、固溶体中溶质的分布
由于固溶体凝固中,析出固体的成分与液体不相同,并 且在凝固时达不到平衡,所以凝固后溶质的分布是不均匀的, 当然这种不均匀有时也可带来有利的利用。下面仅就几种特 例讨论。 如图所示相图的一部分,在温度t时,平衡 的液—固相成分的比,称为平衡分配系数。
第一节 相图知识
一、相与相图
二元相图:当存在两个组元时,成分也是变量,但一种组元的含 量为独立,另一组元则为余下部分。为在二维平面上表示, 通常只考虑在常压下,取两个变量温度和成分。横座标用线 段表示成分,纵座标表示温度。平面上以按这时平衡状态下 存在的相来分隔。(如图)
相图用途:
1. 由材料的成分和温度预知平衡相; 2. 材料的成分一定而温度发生变化 时其他平衡相变化的规律; 3. 估算平衡相的数量。
二元合金相图(很好很强大)

(ab)、 x1x(ao)的长度。
因此两相的相对重量百分比为:
QL
xx2 x1x2
ob ab
Q
x1x x1x2
ao ab
两相的重量比为:
上式与力学中的杠杆定律完全相似,因此称之为杠 杆定律。即合金在某温度下两平衡相的重量比等于该 温度下与各自相区距离较远的成分线段之比。
在杠杆定律中,杠杆的支点是合金的成分,杠杆的 端点是所求的两平衡相(或两组织组成物)的成分。
④ 过共晶合金结晶过程
与亚共晶合金相似,不同的是
一次相为 ,二次相为Ⅱ 室温组织为Ⅰ+(+)+Ⅱ。
⑶ 组织组成物在相图上的标注
组织组成物是指组成合金显微组织的独立部分。
Ⅰ和Ⅰ, Ⅱ和 Ⅱ,共晶体 (+)都是组
织组成物。 相与相之间的
差别主要在 结构和成分 上。
组织组成物之间的差别主要在形态上。如Ⅰ 、 Ⅱ和 共晶 的结构成分相同,属同一个相,但它们的形
Fe-Fe3C相图
⑷ 三相区的确定:二 元相图中的水平线 是三相区,其三个 相由与该三相区点 接触的三个单相区 的相组成。
常见三相等温水平线上的反应
反应名称 图形特征 共晶反应 包晶反应 共析反应
反应式
说明
L⇄ +
恒温下由一个液相同时 结晶出两个成分结构不 同的新固相。
恒温下由一个液相包着
L + ⇄ 一个固相生成另一个新
铁碳合金相图
共析反应的产物是共析体(铁碳合金中的共析体称珠 光体),也是两相的机械混合物(铁素体+渗碳体)。
与共晶反应不同 的是,共析反应 的母相是固相, 而不是液相。
另外,由于固态 转变过冷度大, 因而共析组织比 共晶组织细。
物化 实验数据(1)

实验三二组分金属相图一、实验目的1. 学习用热分析法测绘金属相图的方法和原理技术;2. 用热分析法测绘Sn-Pb二组分系统的金属相图;3. 掌握热电偶测温技术和平衡记录仪的使用。
二、实验原理相图表示相平衡系统组成、温度、压力之间关系。
对于不同的系统、根据所研究对象和要求的不同可以采用不同的实验方法测绘相图。
例如对于水-盐系统,常用测定不同温度下溶解度的方法。
对于合金,可以采用热分析方法。
本实验采用热分析方法测绘Sn-Pb二元金属相图。
二元金属相图A、B两纯金属组成的系统,被加热完全熔化后,如果两组分在液相能够以分子状态完全混合,称其为液相完全互溶, 把系统降温,当有固相析出时,因A、B物质不同会出现三种情况:(a)液相完全互溶,固相也完全互溶;(b)液相完全互溶,固相也完全互溶;(c)液相完全互溶,固相部分互溶。
本实验测绘的Sn-Pb二元金属相图属于液相完全互溶,固相部分互溶系统,其相图如图1所示。
图的横坐标表示Sn的质量分数,纵坐标为温度(℃),α相为Sn溶于Pb中所形成的固体溶液(固溶体),β相为Pb溶于Sn中所形成的固体溶液(固溶体)。
图中ACB线以上,系统只有一相(液相);DCF线以下,α、β两相平衡共存;在ACD区域中,α相与液相两相平衡共存;在BCF区域,β相与液相两相平衡共存;ADP以左及BFQ以右的区域分别为α相和β相的单相区,C点为ACD与BCF两个相区的交点,α、β和液相三相平衡共存;在DCF 线上,α、β和液相三相平衡共存,该线称为三相线。
该图用热分析法测绘。
图 1 Sn-Pb相图图 2 Sn-Pb体系步冷曲线测绘相图就是要根据实验数据把图中分隔相区的线画出来。
热分析方法是测绘固-液相图最常用的方法之一。
该方法根据系统被加热或冷却的过程中,释放或吸收潜热,使系统升温或降温速率发生突变、系统温度-时间曲线上出现转折点这一现象,判断某组分的系统(样品)出现相变时的温度。
系统被冷却降温时温度-时间关系曲线称为步冷曲线,如图2所示。
金属二元二元相图

xA =
100%
xB =
100%
5.1.3. 相图的建立
5.1. 基本概念
5.1.3 相图的建立 可以从理论和实验两条途径获得相图 实验:测临界点 理论:热力学函数计算
测定临界点的方法:热分析、X射线、电阻法、 金相分析法、热膨胀、磁性方法等 原理:材料在到达临界点时,相关的性能或参数 有一个突变,通过测突变点来确定临界点。
第五章-I
二元相图
Binary Phase Diagram
T
米
水
基本概念- 相律、成分表示方法、相图测定、杠杆定理
匀晶
形成化合物的相图 共晶型
二 元 相 图
典型的 二元相图
共晶 包晶
包晶型
具有固态相变 两相平衡转变
其它类型的 二元相图
相图的热力学基础- G-X曲线、公切线法则、 G-x曲线推测相图、相图的几何规律 根据相图判断性能、实例分析, Fe-C相图
5.3.4 平衡凝固过程及组织
5.3 共晶相图
5.3.4 平衡凝固过程及组织
5.3 共晶相图
3. 亚共晶材料
液相中先生成 平衡反应后继续 冷却时析出bII 4. 过共晶材料 液相中先生成b 平衡反应后继续 冷却时析出II
L L L b bb
L L b L b bb
5.3.5 非平衡凝固过程及组织
5.3 共晶相图
b. 伪共晶区的形状和位置
对称型 非对称型
非对称的原因
两相的熔点不同
伪共晶区偏向于高熔点组元,这是因为此时共晶点偏 向于低熔点组元,共晶成分和低熔点相接近,低熔点 相容易先生成。
5.3.5 非平衡凝固过程及组织
实验六、二组分合金相图

二组分合金相图一、实验目的1.用热分析法(步冷曲线法)测绘Pb—Sn二组分金属相图。
2.了解固液相图的特点,进一步学习和巩固相律等有关知识。
3.掌握金属相图(步冷曲线)测定仪的基本原理及方法。
二、实验原理1、二组分固-液相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质的组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。
二组分相图已经得到广泛的研究和应用。
固-液相图多应用于冶金、化工等部门。
二组分体系的自由度与相的数目有以下关系:自由度= 组分数–相数+ 2 (1)由于一般的相变均在常压下进行,所以压力P一定,因此以上的关系式变为:自由度= 组分数–相数+ 1 (2)又因为一般物质其固、液两相的摩尔体积相差不大,所以固-液相图受外界压力的影响颇小。
这是它与气-液平衡体系的最大差别。
图1以邻-、对-硝基氯苯为例表示有最低共熔点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A、B和液相L三相平衡共存现象则是固-液相图所特有的。
从式(2)可知,压力既已确定,在这三相共存的水平线上,自由度等于零。
3、较为简单的二组分金属相图主要有三种;(1)是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu—Ni系统;(2)是液相完全互溶而固相完全不互溶的系统,最典型是Bi—Cd系统;(3)是液相完全互溶,而固相是部分互溶的系统,如Pb—Sn系统,本实验研究的系统就是这一种。
在低共熔温度下,Pb在固相Sn中最大溶解度为(质量百分数)。
2、热分析法(步冷曲线法)是绘制相图的基本方法之一。
热分析法是相图绘制工作中常用的一种实验方法。
按一定比例配成均匀的液相体系,让它缓慢冷却。
以体系温度对时间作图,则为步冷曲线。
曲线的转折点表征了某一温度下发生相变的信息。
由体系的组成和相变点的温度作为T-x图上的一个点,众多实验点的合理连接就成了相图上的一些相线,并构成若干相区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元组分金属相图
一实验目的
1. 学会用热分析法测绘Sn—Bi二组分金属相图。
2. 了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。
3. 了解热电偶测量温度和进行热电偶校正的方法。
掌握自动平衡记录仪的使用方法。
二基本要求
(1)学会用热分析法测绘Sn-Bi二组分金属相图。
(2)了解热电偶测量温度和进行热电偶校正的方法。
三实验原理
测绘金属相图常用的实验方法是热分析法,原理是将一种金属或两种金属混合物熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称步冷曲线。
当熔融体系在均匀冷却过程中无相变时,温度将连续均匀下降得一平滑的步冷曲线;
当体系内发生相变则因体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点对应的温度,为该组成体系的相变温度。
利用步冷曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连起来,就可绘出相图。
二元简单低共熔体系的冷却曲线具有图5-1所示的形状
图1 根据步冷曲线绘制相图
用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。
此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;
但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。
见图2-5-2。
遇此情况,可延长dc线与ab线相交,交点e即为转折点。
图2 有过冷现象时的步冷曲线
四仪器试剂
立式加热炉1台;保温炉1台;镍铬-镍硅热电偶1副;不锈钢样品管4个;250mL 烧杯1个。
Sn(化学纯);Bi(化学纯);石腊油;石墨粉。
五实验步骤
1. 样品配制
用感量0.1g的台称分别称取纯Sn、纯Bi各50g,另配制含锡20%、40%、60%、80%的铋锡混合物各50g,分别置于坩埚中,在样品上方各覆盖一层石墨粉。
2. 绘制步冷曲线
(1) 将热电偶及测量仪器连接好。
图3 步冷曲线测量装置
1.加热炉
2.不锈钢管
3.套管
4.热电偶
(2) 将样品放入加热炉内加热(炉温不超过320℃)。
待样品熔化后停止加热,并在样品表面撒一层石墨粉,以防止样品氧化。
(3) 自然冷却,每分钟记录一次温度(300 ℃开始),直至水平线段以下为止,即130 ℃以下。
(4) 用上述方法绘制所有样品的步冷曲线。
六、注意事项
1.用电炉加热样品时,温度要适当,温度过高样品易氧化变质;温度过低或加热时间不够则样品没有完全熔化,步冷曲线转折点测不出。
2.热电偶热端插到样品中心部位,管内注入少量的石腊油,热电偶浸入油中。
搅拌时注意勿使热端离开样品,金属熔化后常使热电偶玻璃套管浮起,这些因素都会导致测温点变动。
3.在测定一样品时,可将另一待测样品放入加热炉内预热,以便节约时间,体系有两个转折点,必须待第二个转折点测完后方可停止实验。
4.电炉加热到设定温度后,注意将电炉电压调到零。
七数据处理
1. 根据记录的时间和温度绘制步冷曲线图。
2. 找出各步冷曲线中拐点和平台对应的温度值。
3. 以温度为纵坐标,以物质组成为横坐标,绘出Sn—Bi金属相图。
Sn-Bi二元相图的绘制
八实验成败的关键
(1)温度要适当,温度过高样品易氧化变质;温度过低或加热时间不够则样品没有全部融化,步冷曲线转折点测不出。
(2)热电偶热端应插到样品中心部位。
将热电偶浸入油中。
搅拌时要注意勿使热端离开样品。
(3)合金有两个转折点,必须待第二个转折点测完后方可停止实验;否则,须重新测定。
九实验讨论
1. 本实验的关键是步冷曲线上折变和水平线段是否明显。
步冷曲线上温度变化的速率取决于体系与环境间的温差、体系的热容量、体系的热传导率等因素,若体系析出固体放出的热量抵消散失热量的大部分,转折变化明显,否则就不明显。
故控制好样品的降温速度很重要,一般控制在6℃/min ~8℃/min,在冬季室温较低时,就需要给体系降温过程加以一定的电压(约20V左右)来减缓降温速率。
2. 本实验所用体系为Sn-Bi、Cd-Bi或Pb-Zn等低熔点金属体系,但它们的蒸气对人体健康有危害,因而要在样品上方覆盖石墨粉或石蜡油,防止样品的挥发和氧化。
3.Bi-Sn相图是具有代表性的部分互溶固-液体系相图。
这种体系由三个两相区和一条三相共存线。
但是两侧各有一个固溶区,以Sn为只要成分的为α区,以Bi为主要成分的为β区。
一个相图的完整绘制,除了采用热分析法外,常需借助其它技术。
例如αβ相的存在和固溶区线的确定,可用金相显微镜、x-射线衍射方法以及化学分析法等。